Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1199

Question Number 96065    Answers: 3   Comments: 0

y′ + y = x (y^2 )^(1/(3 ))

$$\mathrm{y}'\:+\:\mathrm{y}\:=\:\mathrm{x}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{y}^{\mathrm{2}} } \\ $$

Question Number 96114    Answers: 0   Comments: 6

A read only snapshot of questions and answers on this forum is accessible from www.tinkutara.com. This can be viewed in any browser and also included plain text. Version 2.079 has been uploaded to playstore and will be available for download in next couple of days.

$$\mathrm{A}\:\mathrm{read}\:\mathrm{only}\:\mathrm{snapshot}\:\mathrm{of}\:\mathrm{questions} \\ $$$$\mathrm{and}\:\mathrm{answers}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum}\:\mathrm{is} \\ $$$$\mathrm{accessible}\:\mathrm{from}\:\mathrm{www}.\mathrm{tinkutara}.\mathrm{com}. \\ $$$$\mathrm{This}\:\mathrm{can}\:\mathrm{be}\:\mathrm{viewed}\:\mathrm{in}\:\mathrm{any}\:\mathrm{browser} \\ $$$$\mathrm{and}\:\mathrm{also}\:\mathrm{included}\:\mathrm{plain}\:\mathrm{text}. \\ $$$$ \\ $$$$\mathrm{Version}\:\mathrm{2}.\mathrm{079}\:\mathrm{has}\:\mathrm{been}\:\mathrm{uploaded} \\ $$$$\mathrm{to}\:\mathrm{playstore}\:\mathrm{and}\:\mathrm{will}\:\mathrm{be}\:\mathrm{available} \\ $$$$\mathrm{for}\:\mathrm{download}\:\mathrm{in}\:\mathrm{next}\:\mathrm{couple}\:\mathrm{of}\:\mathrm{days}. \\ $$

Question Number 96060    Answers: 1   Comments: 4

Question Number 96052    Answers: 1   Comments: 0

Question Number 96051    Answers: 0   Comments: 1

(x−y) dx + (x^2 +y^2 ) dy = 0

$$\left(\mathrm{x}−\mathrm{y}\right)\:\mathrm{dx}\:+\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\:\mathrm{dy}\:=\:\mathrm{0}\: \\ $$

Question Number 96041    Answers: 1   Comments: 0

if f(x)=3^x^(2+x^3 ) find f′(x)?

$${if}\:{f}\left({x}\right)=\mathrm{3}^{{x}^{\mathrm{2}+{x}^{\mathrm{3}} } } \:\:\:{find}\:{f}'\left({x}\right)? \\ $$

Question Number 96034    Answers: 2   Comments: 1

∫_0 ^∞ (1/(x^(10) +1))dx=((2π)/(5((√5)−1)))=((πφ)/5)

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{x}^{\mathrm{10}} +\mathrm{1}}{dx}=\frac{\mathrm{2}\pi}{\mathrm{5}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}=\frac{\pi\phi}{\mathrm{5}} \\ $$

Question Number 96032    Answers: 1   Comments: 3

Question Number 96023    Answers: 0   Comments: 0

Question Number 96022    Answers: 0   Comments: 0

Question Number 96021    Answers: 0   Comments: 1

if p and q are two complex number and p×q=m ,m is a real number . is there always exists a p^(1/3) and q^(1/3) (we know p^(1/3) and q^(1/3) each has actually 3 values) such that p^(1/3) ×q^(1/3) =m^(1/3) .where m^(1/3) is real .?? how to prove it?

$$\mathrm{if}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{two}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{p}×\mathrm{q}=\mathrm{m}\:\:,\mathrm{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:. \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{always}\:\mathrm{exists}\:\mathrm{a}\:\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{and}\:\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left(\mathrm{we}\:\mathrm{know}\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{and}\:\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{each}\:\mathrm{has}\:\mathrm{actually}\:\right. \\ $$$$\left.\mathrm{3}\:\mathrm{values}\right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} ×\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{m}^{\frac{\mathrm{1}}{\mathrm{3}}} .\mathrm{where}\:\mathrm{m}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\mathrm{is}\:\mathrm{real}\:.??\:\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}? \\ $$$$ \\ $$

Question Number 96012    Answers: 2   Comments: 1

Question Number 96008    Answers: 0   Comments: 1

((1−(1/a))/(a^2 −(1/a^2 )))

$$\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{a}}}{\mathrm{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }} \\ $$

Question Number 96007    Answers: 0   Comments: 1

((9x^2 +4a^2 )/(9x^2 −4a^2 )) +((3x)/(3x+2a)) −((2a)/(2a−3x))

$$\frac{\mathrm{9x}^{\mathrm{2}} +\mathrm{4a}^{\mathrm{2}} }{\mathrm{9x}^{\mathrm{2}} −\mathrm{4a}^{\mathrm{2}} }\:+\frac{\mathrm{3x}}{\mathrm{3x}+\mathrm{2a}}\:−\frac{\mathrm{2a}}{\mathrm{2a}−\mathrm{3x}} \\ $$

Question Number 95999    Answers: 2   Comments: 0

Question Number 95986    Answers: 0   Comments: 1

In a set of 3 consecutive natural numbers the sum of the last 2 numbers is equal to 3 times the first numbers. Find the sum of all the three numbers.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{3}\:\mathrm{consecutive}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{2}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\mathrm{3}\:\mathrm{times}\:\mathrm{the}\:\mathrm{first}\:\mathrm{numbers}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}. \\ $$

Question Number 95985    Answers: 2   Comments: 0

A and B can complete a piece of work in 12 days and 24 days respectively. After A had worked for 6 days, B joined him, and then they completed the work. How much should A receive as his share from the total amount of Rs. 180 paid for completing the work?

$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{can}\:\mathrm{complete}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{work}\:\mathrm{in} \\ $$$$\mathrm{12}\:\mathrm{days}\:\mathrm{and}\:\mathrm{24}\:\mathrm{days}\:\mathrm{respectively}.\:\mathrm{After} \\ $$$$\mathrm{A}\:\mathrm{had}\:\mathrm{worked}\:\mathrm{for}\:\mathrm{6}\:\mathrm{days},\:\mathrm{B}\:\mathrm{joined}\:\mathrm{him}, \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{they}\:\mathrm{completed}\:\mathrm{the}\:\mathrm{work}.\:\mathrm{How} \\ $$$$\mathrm{much}\:\mathrm{should}\:\:\mathrm{A}\:\mathrm{receive}\:\mathrm{as}\:\mathrm{his}\:\mathrm{share}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{Rs}.\:\mathrm{180}\:\mathrm{paid}\:\mathrm{for} \\ $$$$\mathrm{completing}\:\mathrm{the}\:\mathrm{work}? \\ $$

Question Number 95982    Answers: 1   Comments: 0

Σx(y^3 −z^3 )=_____.

$$\Sigma{x}\left({y}^{\mathrm{3}} −{z}^{\mathrm{3}} \right)=\_\_\_\_\_. \\ $$

Question Number 95980    Answers: 1   Comments: 0

If lim_(x→3) (((√(3x+7))−((20x+4))^(1/(3 )) +ax+b)/((x−3)^2 )) exist , what is the value of ab

$$\mathrm{If}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\sqrt{\mathrm{3x}+\mathrm{7}}−\sqrt[{\mathrm{3}\:\:}]{\mathrm{20x}+\mathrm{4}}\:+{a}\mathrm{x}+{b}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\mathrm{exist}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{ab}\: \\ $$

Question Number 95968    Answers: 1   Comments: 0

3^(((log _3 (2)+log _3 (3log _(1/3) (cot (π/3))))/(log _π (3).(log _2 (π)))) ? )

$$\mathrm{3}^{\frac{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)+\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{3log}\:_{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{cot}\:\frac{\pi}{\mathrm{3}}\right)\right)}{\mathrm{log}\:_{\pi} \left(\mathrm{3}\right).\left(\mathrm{log}\:_{\mathrm{2}} \left(\pi\right)\right)}\:?\:} \\ $$

Question Number 95964    Answers: 0   Comments: 0

{ ((x^2 +y^2 =13)),((2x^2 +3y=2xy^2 )) :}

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{13}}\\{\mathrm{2x}^{\mathrm{2}} +\mathrm{3y}=\mathrm{2xy}^{\mathrm{2}} }\end{cases} \\ $$

Question Number 95951    Answers: 4   Comments: 3

Question Number 95949    Answers: 2   Comments: 0

∫_0 ^(+∞) (x^2 /(e^x^2 −1))dx

$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\mathrm{1}}\mathrm{dx} \\ $$

Question Number 95943    Answers: 0   Comments: 0

f is a integrable function wich verify f(x+π)=f(x) prove that ∫_0 ^∞ f(x)×((sinx)/x)dx =∫_0 ^(π/2) f(x)dx

$$\mathrm{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{integrable}\:\mathrm{function}\:\mathrm{wich}\:\mathrm{verify}\:\mathrm{f}\left(\mathrm{x}+\pi\right)=\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{prove}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{f}\left(\mathrm{x}\right)×\frac{\mathrm{sinx}}{\mathrm{x}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 95966    Answers: 1   Comments: 0

find all pairs of integer for xy+3x−4y = 29

$$\mathrm{find}\:\mathrm{all}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{integer}\:\mathrm{for}\: \\ $$$$\mathrm{xy}+\mathrm{3x}−\mathrm{4y}\:=\:\mathrm{29}\: \\ $$

Question Number 95967    Answers: 1   Comments: 1

  Pg 1194      Pg 1195      Pg 1196      Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com