Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1199

Question Number 93265    Answers: 1   Comments: 1

calculate ∫_0 ^((2π)/3) (dx/(3+sin(3x)))

$${calculate}\:\int_{\mathrm{0}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\frac{{dx}}{\mathrm{3}+{sin}\left(\mathrm{3}{x}\right)} \\ $$

Question Number 93258    Answers: 1   Comments: 1

Question Number 93256    Answers: 0   Comments: 2

{ ((3 cos x = 4 cos y)),((3 sin x + 4sin y = 5)) :} find x &y with acute angle

$$\begin{cases}{\mathrm{3}\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{4}\:\mathrm{cos}\:\mathrm{y}}\\{\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{4sin}\:\mathrm{y}\:=\:\mathrm{5}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}\:\&\mathrm{y}\:\mathrm{with}\:\mathrm{acute}\:\mathrm{angle}\: \\ $$

Question Number 93283    Answers: 0   Comments: 0

(dy/dx) = 2x^2 +y^2 , y(0) = 1

$$\frac{{dy}}{{dx}}\:=\:\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:,\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\: \\ $$

Question Number 93284    Answers: 0   Comments: 5

Question Number 93249    Answers: 0   Comments: 4

calculate∫_0 ^((Π/2) ) (dx/(2+cos2x))

$${calculate}\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}\:} \frac{{dx}}{\mathrm{2}+{cos}\mathrm{2}{x}} \\ $$

Question Number 93248    Answers: 1   Comments: 1

∫ _0 ^1 ln(x) dx

$$\int\underset{\mathrm{0}} {\overset{\mathrm{1}} {\:}}\:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{dx}\: \\ $$

Question Number 93241    Answers: 1   Comments: 0

(1+(1/x))^(x+1) =(1+(1/(2019)))^(2019) Find all possible values of x

$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2019}}\right)^{\mathrm{2019}} \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{x} \\ $$

Question Number 93239    Answers: 2   Comments: 3

Calculate; i) cos(arctan x) ii) cos(arcsin x) iii) tan(arcsin x)

$$\mathrm{Calculate}; \\ $$$$\left.{i}\right)\:\mathrm{cos}\left(\mathrm{arctan}\:{x}\right) \\ $$$$\left.{ii}\right)\:\mathrm{cos}\left(\mathrm{arcsin}\:{x}\right) \\ $$$$\left.{iii}\right)\:\mathrm{tan}\left(\mathrm{arcsin}\:{x}\right) \\ $$

Question Number 93227    Answers: 0   Comments: 4

Question Number 93225    Answers: 0   Comments: 2

Question Number 93220    Answers: 0   Comments: 5

Please in an arithmetic mean a, A_1 , A_2 , A_3 , ... , A_n , b where A_1 , A_2 , A_3 , ... , A_n are nth arithmetic mean why is b = (n + 2)th term: like T_(n + 2) Please

$$\mathrm{Please}\:\mathrm{in}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{mean} \\ $$$$\:\:\:\:\:\:\:\mathrm{a},\:\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{A}_{\mathrm{2}} ,\:\mathrm{A}_{\mathrm{3}} ,\:...\:,\:\mathrm{A}_{\mathrm{n}} ,\:\mathrm{b} \\ $$$$\mathrm{where}\:\:\:\mathrm{A}_{\mathrm{1}} ,\:\mathrm{A}_{\mathrm{2}} ,\:\mathrm{A}_{\mathrm{3}} ,\:...\:,\:\mathrm{A}_{\mathrm{n}} \:\:\mathrm{are}\:\mathrm{nth}\:\mathrm{arithmetic}\:\mathrm{mean} \\ $$$$\mathrm{why}\:\mathrm{is}\:\:\mathrm{b}\:\:=\:\:\left(\mathrm{n}\:\:+\:\:\mathrm{2}\right)\mathrm{th}\:\:\mathrm{term}:\:\:\mathrm{like}\:\:\mathrm{T}_{\mathrm{n}\:\:+\:\:\mathrm{2}} \\ $$$$\mathrm{Please} \\ $$

Question Number 93209    Answers: 1   Comments: 6

Question Number 93208    Answers: 0   Comments: 8

Question Number 93204    Answers: 1   Comments: 1

Question Number 93203    Answers: 0   Comments: 1

what is the average area of a triangle formed by 3 random points in a 1×1 square?

$${what}\:{is}\:{the}\:{average}\:{area}\:{of}\:{a}\:{triangle} \\ $$$${formed}\:{by}\:\mathrm{3}\:{random}\:{points}\:{in}\:{a}\:\mathrm{1}×\mathrm{1} \\ $$$${square}? \\ $$

Question Number 93200    Answers: 1   Comments: 3

Question Number 93193    Answers: 1   Comments: 1

∫ ((ln(x+(√(x^2 −1))))/(√((x^2 −1)^3 ))) dx ?

$$\int\:\frac{\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\right)}{\sqrt{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} }}\:\mathrm{dx}\:?\: \\ $$

Question Number 93184    Answers: 0   Comments: 0

in solving the linear congruence ax ≡ b (mod n) ⇒ n∣(ax − b) ⇒ ax −b = kn ⇔ ax −kn = b ⇒ solving the linear diophantine equation ax −kn = b what are the general solution to the equation ax−kn = b

$$\mathrm{in}\:\mathrm{solving}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{congruence} \\ $$$${ax}\:\equiv\:{b}\:\left(\mathrm{mod}\:{n}\right)\:\Rightarrow\:{n}\mid\left({ax}\:−\:{b}\right)\:\Rightarrow\:{ax}\:−{b}\:=\:{kn}\:\Leftrightarrow\:{ax}\:−{kn}\:=\:{b} \\ $$$$\Rightarrow\:\mathrm{solving}\:\mathrm{the}\:\mathrm{linear}\:\mathrm{diophantine}\:\mathrm{equation}\:{ax}\:−{kn}\:=\:{b} \\ $$$$\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:{ax}−{kn}\:=\:{b} \\ $$$$\: \\ $$$$ \\ $$

Question Number 93177    Answers: 0   Comments: 3

x^2 +(1/x^2 )=47 (√x)+(1/(√x))=...

$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{47} \\ $$$$\sqrt{{x}}+\frac{\mathrm{1}}{\sqrt{{x}}}=... \\ $$

Question Number 93175    Answers: 3   Comments: 1

∫ (dx/(√(sin^3 (x).cos^5 (x)))) ?

$$\int\:\frac{\mathrm{dx}}{\sqrt{\mathrm{sin}\:^{\mathrm{3}} \:\left(\mathrm{x}\right).\mathrm{cos}\:^{\mathrm{5}} \left(\mathrm{x}\right)}}\:?\: \\ $$

Question Number 93173    Answers: 1   Comments: 0

If a_(n + 3) = (a_(n − 1) /a_(n + 1) ) , and a_0 = 1, a_2 = 2 find a_n

$$\mathrm{If}\:\:\:\:\:\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{3}} \:\:=\:\:\frac{\mathrm{a}_{\mathrm{n}\:\:−\:\:\mathrm{1}} }{\mathrm{a}_{\mathrm{n}\:\:+\:\:\mathrm{1}} }\:,\:\:\:\:\mathrm{and}\:\:\:\mathrm{a}_{\mathrm{0}} \:\:=\:\:\mathrm{1},\:\:\:\mathrm{a}_{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\mathrm{find}\:\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 93170    Answers: 0   Comments: 2

x^2 +(1/x^2 )=27 (√x)+(1/(√x))=....

$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{27} \\ $$$$\sqrt{{x}}+\frac{\mathrm{1}}{\sqrt{{x}}}=.... \\ $$

Question Number 93166    Answers: 1   Comments: 0

Question Number 93146    Answers: 0   Comments: 2

lim_(x→0) ((∫_0 ^x (a+bcos t+c cos (2t))dt)/x^5 ) = 15

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\underset{\mathrm{0}} {\overset{\mathrm{x}} {\int}}\left(\mathrm{a}+\mathrm{bcos}\:\mathrm{t}+\mathrm{c}\:\mathrm{cos}\:\left(\mathrm{2t}\right)\right)\mathrm{dt}}{\mathrm{x}^{\mathrm{5}} }\:=\:\mathrm{15} \\ $$

Question Number 93144    Answers: 1   Comments: 0

∫ ((x^3 −1)/(x^3 +6x^2 +10x)) dx

$$\int\:\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} +\mathrm{6x}^{\mathrm{2}} +\mathrm{10x}}\:\mathrm{dx}\: \\ $$

  Pg 1194      Pg 1195      Pg 1196      Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com