Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1199
Question Number 95396 Answers: 0 Comments: 2
$$\:\:\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}{e}^{\mathrm{2}} }\:\: \\ $$$$\: \\ $$
Question Number 95394 Answers: 0 Comments: 31
$$\mathrm{Solve}:\:\:\:\mathrm{x}\:\:+\:\:\mathrm{y}\:\:=\:\:\mathrm{3}\:\:\:\:\:\:....\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{y}} \:\:+\:\:\mathrm{y}^{\mathrm{x}} \:\:=\:\:\mathrm{6}\:\:\:\:.....\:\:\left(\mathrm{ii}\right) \\ $$
Question Number 95378 Answers: 1 Comments: 1
$$\mathrm{If}\:\:{I}\:\left({m},\:{n}\right)=\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{x}^{{m}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{n}−\mathrm{1}} {dx},\:\mathrm{then} \\ $$
Question Number 95373 Answers: 1 Comments: 2
$$\: \\ $$$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{roots} \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{3}} \:+\:\mathrm{6}{x}^{\mathrm{2}} \:+\:\mathrm{11}{x}\:+{m}\:=\:\mathrm{0} \\ $$$$\:\mathrm{form}\:\mathrm{a}\:\mathrm{linear}\:\mathrm{sequence}. \\ $$$$ \\ $$
Question Number 95371 Answers: 2 Comments: 1
$$\int\frac{{x}^{\mathrm{2}/\mathrm{3}} }{\sqrt{\mathrm{1}+{x}^{\mathrm{2}/\mathrm{3}} }}{dx}=? \\ $$
Question Number 95363 Answers: 2 Comments: 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{x}!\right)^{\mathrm{2}} }{\left(\mathrm{2x}\right)!}\:=\:? \\ $$
Question Number 95328 Answers: 0 Comments: 3
Question Number 95326 Answers: 0 Comments: 4
$$\mathrm{sin}\:\mathrm{72}^{\mathrm{o}} \:=\:\mathrm{p}\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{48}^{\mathrm{o}} \\ $$$$\mathrm{find}\:\mathrm{tan}\:\mathrm{12}^{\mathrm{o}} \:? \\ $$
Question Number 95325 Answers: 0 Comments: 1
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\:\frac{\mathrm{1}}{{n}}{HCF}\left(\mathrm{20},{n}\right)\:=\:\mathrm{0}\:\:\:\:\:\:\:? \\ $$
Question Number 95324 Answers: 0 Comments: 2
$$\mathrm{If}\:\:\:\mathrm{sin}\:\mathrm{A}\:\:+\:\:\left(\mathrm{sin}\:\mathrm{A}\right)^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{1} \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{cos}\:\mathrm{A}\right)^{\mathrm{12}} \:\:+\:\:\mathrm{3}\left(\mathrm{cos}\:\mathrm{A}\right)^{\mathrm{10}} \:\:+\:\:\mathrm{3}\left(\mathrm{cos}\:\mathrm{A}\right)^{\mathrm{8}} \:\:+\:\:\left(\mathrm{cos}\:\mathrm{A}\right)^{\mathrm{6}} \:\:−\:\:\mathrm{1}\:\:\:\:\:\mathrm{is}\:? \\ $$$$ \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{b}\right)\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$\left(\mathrm{c}\right)\:\:\:\:−\:\mathrm{1} \\ $$$$\left(\mathrm{d}\right)\:\:\:\:\:\:\mathrm{2} \\ $$
Question Number 95323 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{ln}\left(\mathrm{2}+{t}\right)}{{t}}{dt}\:=\:\left({ln}\mathrm{2}\right)^{\mathrm{2}} \\ $$
Question Number 95316 Answers: 1 Comments: 0
$$\frac{{dy}}{{dx}}−{y}\:=\:{xy}^{\mathrm{5}} \: \\ $$
Question Number 95309 Answers: 1 Comments: 0
$$\mathrm{if}\:\mathrm{y}\:=\:\left[\:\mathrm{2x}+\mathrm{5}\:\right]\:=\:\mathrm{3}\left[\mathrm{x}−\mathrm{4}\right]\: \\ $$$$\mathrm{then}\:\left[\:\mathrm{3x}+\mathrm{y}\:\right]\:=\:?\: \\ $$
Question Number 95294 Answers: 1 Comments: 2
$$\mathrm{3}\:\mathrm{men},\:\mathrm{4}\:\mathrm{women}\:\&\:\mathrm{6}\:\mathrm{boy}\:\mathrm{together} \\ $$$$\mathrm{working}\:\mathrm{a}\:\mathrm{job}\:\mathrm{within}\:\mathrm{25}\:\mathrm{day}.\:\mathrm{if}\:\mathrm{2}\:\mathrm{men}\: \\ $$$$,\:\mathrm{3}\:\mathrm{women}\:\mathrm{and}\:\mathrm{4}\:\mathrm{boy}\:\mathrm{working}\:\mathrm{the}\: \\ $$$$\mathrm{same}\:\mathrm{job},\:\mathrm{complete}\:\mathrm{in}\:? \\ $$
Question Number 95277 Answers: 2 Comments: 4
Question Number 95269 Answers: 0 Comments: 3
Question Number 100664 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{matrix}\:\mathrm{2x2}\:\&\:\mathrm{B}\:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\mathrm{3}}\\{\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{4}}\end{pmatrix}\:\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{A}^{\mathrm{T}} \mathrm{B}+\mathrm{3A}^{\mathrm{T}} \:=\:\begin{pmatrix}{\:\:\:\mathrm{5}\:\:\:\:\mathrm{4}}\\{−\mathrm{1}\:\:\:\mathrm{1}}\end{pmatrix}\:\:\mathrm{so}\:\mathrm{find}\:\mathrm{det}\left(\mathrm{4A}^{−\mathrm{1}} \right) \\ $$
Question Number 95262 Answers: 3 Comments: 0
$$\mathrm{3x}^{\mathrm{2}} +\mathrm{5x}^{\mathrm{4}} −\mathrm{7} \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{equation} \\ $$
Question Number 95260 Answers: 1 Comments: 3
$$\mathrm{if}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{2y}−\mathrm{1}=\mathrm{0}\:\mathrm{transformed} \\ $$$$\mathrm{by}\:\mathrm{matrix}\:\mathrm{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\mathrm{a}}\\{\mathrm{b}\:\:\:\mathrm{2}}\end{pmatrix}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{image}\:\mathrm{is}\:\mathrm{the}\:\mathrm{line}\:\mathrm{2x}+\mathrm{8y}+\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}×\mathrm{b}×\mathrm{c}\: \\ $$
Question Number 95259 Answers: 1 Comments: 1
$${find}\:{all}\:{roots}\:\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{2}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {by}\:{using}\:{demover}\:{theorem}\:? \\ $$
Question Number 95246 Answers: 4 Comments: 0
Question Number 95232 Answers: 3 Comments: 6
Question Number 95230 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{7}^{\sqrt{\mathrm{x}}} \:−\mathrm{1}}{\mathrm{2}^{\sqrt{\mathrm{x}}} \:−\mathrm{1}}\:=\:? \\ $$
Question Number 95339 Answers: 6 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mid\mathrm{2x}+\mathrm{3}\mid \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)=...? \\ $$
Question Number 95227 Answers: 1 Comments: 0
$$\underset{−\pi} {\overset{\pi} {\int}}\:\mid\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{cos}\:\mathrm{x}\:\mid\:\mathrm{dx}\:=?\: \\ $$
Question Number 95222 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} \:+\:{x}\:\sqrt[{\mathrm{3}\:\:}]{{xy}^{\mathrm{2}} }\:=\:\mathrm{80}\:}\\{{y}^{\mathrm{2}} \:+\:{y}\:\sqrt[{\mathrm{3}\:\:}]{{x}^{\mathrm{2}} {y}}\:=\:\mathrm{5}\:}\end{cases} \\ $$$${find}\:{x}\:{and}\:{y}\: \\ $$
Pg 1194 Pg 1195 Pg 1196 Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203
Terms of Service
Privacy Policy
Contact: info@tinkutara.com