Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1199
Question Number 92447 Answers: 0 Comments: 1
$${find}\:\int_{\frac{\mathrm{1}}{\mathrm{6}}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \:\:\frac{{dx}}{\sqrt{\mathrm{1}−\mathrm{3}{x}}+\sqrt{\mathrm{1}+\mathrm{3}{x}}} \\ $$
Question Number 92410 Answers: 0 Comments: 3
$${find}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \:\:\:\:\frac{{dx}}{\sqrt{\mathrm{1}+\mathrm{3}{x}}−\sqrt{\mathrm{1}−\mathrm{3}{x}}} \\ $$
Question Number 92407 Answers: 0 Comments: 0
$${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+{a}\sqrt{\mathrm{1}−{x}}\right){dx}\:\:\:{with}\:\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){explicite}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\sqrt{\mathrm{1}−{x}}}{\sqrt{\mathrm{1}+{x}}+{a}\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\mathrm{2}\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$$${and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\mathrm{1}−{x}}\right){dx} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{\mathrm{1}+{x}}+{sin}\theta\:\sqrt{\mathrm{1}−{x}}\right){dx}\: \\ $$$$\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$
Question Number 92399 Answers: 0 Comments: 1
$$\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{x}\right)+\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{x}\right)\:=\:\mathrm{0} \\ $$
Question Number 92398 Answers: 1 Comments: 0
$$\mathrm{x}^{\mathrm{3}} \:\left(\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\right)\:+\mathrm{x}^{\mathrm{2}} \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:=\:\mathrm{ln}\:\left(\mathrm{x}\right)\: \\ $$
Question Number 92397 Answers: 0 Comments: 2
$$\int\:\frac{\mathrm{1}}{{x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\: \\ $$$$\left[\:{x}\:=\:\mathrm{sin}\:{w}\:\right]\: \\ $$$$\int\:\frac{\mathrm{cos}\:\mathrm{w}\:\mathrm{dw}}{\mathrm{sin}\:\mathrm{w}−\mathrm{cos}\:\mathrm{w}}\:=\:\int\:\frac{\mathrm{dw}}{\mathrm{tan}\:\mathrm{w}−\mathrm{1}} \\ $$$$=\:\int\:\frac{\mathrm{sec}^{\mathrm{2}} \:\mathrm{w}\:\mathrm{dw}}{\left(\mathrm{tan}\:\mathrm{w}−\mathrm{1}\right)\mathrm{sec}^{\mathrm{2}} \:\mathrm{w}} \\ $$$$=\:\int\:\frac{\mathrm{du}}{\left(\mathrm{u}−\mathrm{1}\right)\left(\mathrm{u}^{\mathrm{2}} +\mathrm{1}\right)}\:;\:\left[\:\mathrm{u}\:=\:\mathrm{tan}\:\mathrm{w}\:\right]\: \\ $$$$=\:\int\:\frac{\mathrm{du}}{\mathrm{2}\left(\mathrm{u}−\mathrm{1}\right)}−\int\:\frac{\mathrm{u}\:\mathrm{du}\:}{\mathrm{2}\left(\mathrm{u}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{u}−\mathrm{1}\mid\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{u}^{\mathrm{2}} +\mathrm{1}\mid\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{u}\right)\:+\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\mathrm{tan}\:\mathrm{w}−\mathrm{1}\mid−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{tan}\:^{\mathrm{2}} \mathrm{w}+\mathrm{1}\mid− \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{tan}\:\mathrm{w}\right)\:+\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\frac{{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−\mathrm{1}\mid+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\mid\mathrm{1}−{x}^{\mathrm{2}} \mid− \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left({x}\right)\:+\:{c} \\ $$
Question Number 92394 Answers: 0 Comments: 2
$$\int\:\mathrm{ln}\:\left(\sqrt{\mathrm{1}−{x}}\:+\:\sqrt{\mathrm{1}+{x}}\:\right)\:{dx}\: \\ $$
Question Number 92390 Answers: 0 Comments: 2
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{meaning}\:\mathrm{of}\:\mathrm{this}\:\mathrm{symbol}\:\:\left(\varepsilon\right)\:\mathrm{in}\:\mathrm{limit}\:\mathrm{please}. \\ $$$$\mathrm{or}\:\mathrm{as}\:\mathrm{used}\:\mathrm{in}\:\mathrm{convergent}/\mathrm{divergent}\:\mathrm{series} \\ $$
Question Number 92366 Answers: 0 Comments: 3
Question Number 92356 Answers: 0 Comments: 7
Question Number 92379 Answers: 1 Comments: 5
$${f}\left({x}\right)\:{and}\:{g}\left({x}\right)\:{are}\:{functions}\:{with}\:{no} \\ $$$${constants}. \\ $$$${if}\:{f}\:'\left({x}\right)={g}\:'\left({x}\right)\:{is}\:{that}\:{mean}\:{f}\left({x}\right)={g}\left({x}\right) \\ $$$$?? \\ $$
Question Number 92347 Answers: 1 Comments: 3
Question Number 92346 Answers: 3 Comments: 3
$${solve} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{{x}}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt{{x}}}=\sqrt[{\mathrm{3}}]{\mathrm{5}} \\ $$
Question Number 92344 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{3x}}−\sqrt{\mathrm{1}−\mathrm{3x}}} \\ $$
Question Number 92340 Answers: 0 Comments: 2
$$\underset{\mathrm{i}\:=\:\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\mathrm{5}^{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{i}} } +\mathrm{3}^{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{i}} } }{\mathrm{2}}\:=\: \\ $$
Question Number 92337 Answers: 0 Comments: 0
Question Number 92335 Answers: 0 Comments: 0
$$\sqrt{\left\{\mathrm{x}\right\}}\:=\:\mathrm{1}+\:\mathrm{ln}\left(\mathrm{x}\right)\: \\ $$
Question Number 92334 Answers: 0 Comments: 0
Question Number 92324 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}\:\:\mathrm{for}\:\mathrm{which}\:\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}\:\:=\:\:\infty} {\sum}}\:\mathrm{16}\left(\frac{\mathrm{3}}{\mathrm{4}}\mathrm{x}\:\:+\:\:\mathrm{1}\right)^{\mathrm{n}} \\ $$$$\left(\mathrm{a}\right)\:\:\:\mathrm{Is}\:\mathrm{convergent} \\ $$$$\left(\mathrm{b}\right)\:\:\:\mathrm{Is}\:\mathrm{equal}\:\mathrm{to}\:\:\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Question Number 92323 Answers: 2 Comments: 3
Question Number 92319 Answers: 0 Comments: 3
$$\mathrm{log}\:_{\mathrm{9}} \left(\mathrm{x}+\frac{\mathrm{7}}{\mathrm{2}}\right).\mathrm{log}\:_{\mathrm{3}/\mathrm{4}} \left(\mathrm{x}^{\mathrm{2}} \right)\:\geqslant\: \\ $$$$\mathrm{log}\:_{\mathrm{3}/\mathrm{4}} \left(\mathrm{x}+\frac{\mathrm{7}}{\mathrm{2}}\right)\: \\ $$
Question Number 92301 Answers: 1 Comments: 2
$$\mathrm{given}\:\mathrm{eq}\:\mathrm{of}\:\mathrm{line}\: \\ $$$$\left(\mathrm{1}\right)\:\left[\:\mathrm{x},\mathrm{y}\:\right]\:=\:\left[\mathrm{3},−\mathrm{2}\right]\:+\:\mathrm{t}\:\left[\mathrm{4},−\mathrm{5}\right]\: \\ $$$$\left(\mathrm{2}\right)\:\left[\mathrm{x},\mathrm{y}\right]\:=\:\left[\mathrm{1},\mathrm{1}\right]\:+\:\mathrm{s}\:\left[\:\mathrm{7},\mathrm{k}\:\right]\: \\ $$$$\mathrm{find}\:\mathrm{t}\:\mathrm{and}\:\mathrm{s}\:\mathrm{if}\:\left(\mathrm{1}\right)\:\parallel\:\left(\mathrm{2}\right) \\ $$$$\mathrm{if}\:\left(\mathrm{1}\right)\:\bot\:\left(\mathrm{2}\right) \\ $$
Question Number 92291 Answers: 0 Comments: 1
$$ \\ $$$$\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{ln}\:\mathrm{x}} \:=?\: \\ $$
Question Number 92289 Answers: 0 Comments: 1
$$ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{ln}\left(\frac{\left(\mathrm{3}+\mathrm{e}\right)^{\mathrm{x}} }{\mathrm{2x}}\right)\:? \\ $$
Question Number 92283 Answers: 0 Comments: 3
$$\mathrm{9}^{\mathrm{x}} +\mathrm{3}^{\mathrm{x}} \:=\:\mathrm{25}^{\mathrm{x}} −\mathrm{5}^{\mathrm{x}} \: \\ $$$$\mathrm{find}\:\frac{\mathrm{5}^{\mathrm{x}} }{\mathrm{3}^{\mathrm{x}} +\mathrm{1}}\:? \\ $$
Question Number 92279 Answers: 0 Comments: 2
$$\mathrm{7}{sin}\left(\theta\right)+\mathrm{2}{cos}^{\mathrm{2}} \left(\theta\right)=\mathrm{5} \\ $$$$ \\ $$$$\mathrm{0}\leqslant\theta\leqslant\mathrm{2}\pi \\ $$
Pg 1194 Pg 1195 Pg 1196 Pg 1197 Pg 1198 Pg 1199 Pg 1200 Pg 1201 Pg 1202 Pg 1203
Terms of Service
Privacy Policy
Contact: info@tinkutara.com