Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1199

Question Number 84430    Answers: 0   Comments: 4

Question Number 84420    Answers: 1   Comments: 2

Question Number 84415    Answers: 3   Comments: 0

∫ (√(x − (√(4 − x^2 )))) dx

$$\int\:\sqrt{\mathrm{x}\:−\:\sqrt{\mathrm{4}\:−\:\mathrm{x}^{\mathrm{2}} }}\:\:\mathrm{dx} \\ $$

Question Number 84409    Answers: 3   Comments: 4

Question Number 84407    Answers: 1   Comments: 0

dy+2xy dx = xe^(−x^2 ) y^3 dx

$$\mathrm{dy}+\mathrm{2xy}\:\mathrm{dx}\:=\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{y}^{\mathrm{3}} \:\mathrm{dx} \\ $$$$ \\ $$

Question Number 84404    Answers: 0   Comments: 1

(x^2 −2)(x^2 −4)(x^2 −6)...(x^2 −2020)=1 x=?

$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{6}\right)...\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2020}\right)=\mathrm{1} \\ $$$$\mathrm{x}=? \\ $$

Question Number 84399    Answers: 0   Comments: 1

Question Number 84396    Answers: 0   Comments: 2

∫((x(√(x+1)))/(x+2))dx

$$\int\frac{\mathrm{x}\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}+\mathrm{2}}\mathrm{dx} \\ $$

Question Number 84395    Answers: 0   Comments: 0

((x(√(x+1)))/(x+2))

$$\frac{\mathrm{x}\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}+\mathrm{2}} \\ $$

Question Number 84394    Answers: 0   Comments: 2

find the solution ((2x)/(x−2)) ≤ ∣x−3∣

$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\frac{\mathrm{2x}}{\mathrm{x}−\mathrm{2}}\:\leqslant\:\mid\mathrm{x}−\mathrm{3}\mid\: \\ $$

Question Number 84393    Answers: 0   Comments: 0

if x^x .y^y .z^z =x^y .y^z .z^x =x^z .y^x .z^y such that x, y and z are positive intigers greater than 1 ,what is the value of xyz and x+y+z ?

$${if}\:{x}^{{x}} .{y}^{{y}} .{z}^{{z}} ={x}^{{y}} .{y}^{{z}} .{z}^{{x}} ={x}^{{z}} .{y}^{{x}} .{z}^{{y}} \:{such}\:{that}\:{x},\:{y}\:{and}\:{z}\: \\ $$$${are}\:{positive}\:{intigers}\:{greater}\:{than}\:\mathrm{1} \\ $$$$,{what}\:{is}\:{the}\:{value}\:{of}\:{xyz}\:{and}\:{x}+{y}+{z}\:? \\ $$

Question Number 84386    Answers: 1   Comments: 0

∫(√(x−(√(4−x^2 )))) dx

$$\int\sqrt{{x}−\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }}\:{dx} \\ $$

Question Number 84384    Answers: 0   Comments: 3

[x]^x =2(√2) , ∀x>0

$$\left[{x}\right]^{{x}} =\mathrm{2}\sqrt{\mathrm{2}}\:\:,\:\forall{x}>\mathrm{0} \\ $$

Question Number 84382    Answers: 0   Comments: 0

∫((cos(2x) sin(x))/(cos(x)+sin(2x))) dx

$$\int\frac{{cos}\left(\mathrm{2}{x}\right)\:{sin}\left({x}\right)}{{cos}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)}\:{dx} \\ $$

Question Number 84381    Answers: 1   Comments: 3

Question Number 84379    Answers: 2   Comments: 0

Question Number 84377    Answers: 1   Comments: 0

lim_(x→0) (((√(1+tan x))−(√(1+sin x)))/(x^2 sin x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}−\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:\mathrm{x}} \\ $$

Question Number 84370    Answers: 2   Comments: 0

1.) ∣x∣ +∣x+2∣ <5 2.) ∣x∣ +∣x+2∣ + ∣2−x∣ ≤8

$$\left.\mathrm{1}.\right)\:\mid{x}\mid\:+\mid{x}+\mathrm{2}\mid\:<\mathrm{5} \\ $$$$\left.\mathrm{2}.\right)\:\mid{x}\mid\:+\mid{x}+\mathrm{2}\mid\:+\:\mid\mathrm{2}−{x}\mid\:\leqslant\mathrm{8} \\ $$

Question Number 84446    Answers: 0   Comments: 0

Question Number 84367    Answers: 0   Comments: 0

Given the squence of R (x_n ). If Σ_(n=1) ^∞ x_k <∞, Find lim_(n→∞) ((Σ_(k=1) ^∞ (√x_k ))/(√n))=.....

$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Given}\:\mathrm{the}\:\mathrm{squence}\:\mathrm{of}\:\mathbb{R} \\ $$$$\left({x}_{{n}} \right).\:{If}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{x}_{{k}} <\infty, \\ $$$${Find} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\sqrt{{x}_{{k}} }}{\sqrt{{n}}}=..... \\ $$$$ \\ $$

Question Number 84364    Answers: 1   Comments: 0

lim_(x→π) (((√π)−(√(π+4x)))/(cos (((π(x+1))/2)))) = ?

$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\sqrt{\pi}−\sqrt{\pi+\mathrm{4x}}}{\mathrm{cos}\:\left(\frac{\pi\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{2}}\right)}\:=\:? \\ $$

Question Number 84359    Answers: 0   Comments: 1

Question Number 84341    Answers: 0   Comments: 1

Find the centre of symmetry of the curve: y = (1/(x + 2))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{curve}: \\ $$$$\:\:\:\:{y}\:=\:\frac{\mathrm{1}}{{x}\:+\:\mathrm{2}} \\ $$

Question Number 84335    Answers: 0   Comments: 4

Question Number 84334    Answers: 1   Comments: 1

∫((1−u)/(−1−2u+u^2 ))du

$$\int\frac{\mathrm{1}−\mathrm{u}}{−\mathrm{1}−\mathrm{2u}+\mathrm{u}^{\mathrm{2}} }\mathrm{du} \\ $$

Question Number 84333    Answers: 3   Comments: 0

1)find without l′hopital lim_(x→0) ((2(√(x+1))−((x+1))^(1/3) −((x+1))^(1/4) )/x) 2) prove that the general solution for tbe differential equation (1+y^2 )+(1+x^2 )((dy/dx))=0 is y=((k−x)/(1+kx)),k is a constant then find the special solution if y=(2/(3 )) when x=1

$$\left.\mathrm{1}\right){find}\:{without}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{2}\sqrt{{x}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}}{{x}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{the}\:{general}\:{solution}\:{for}\:{tbe}\:{differential}\:{equation} \\ $$$$\left(\mathrm{1}+{y}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\frac{{dy}}{{dx}}\right)=\mathrm{0}\:{is}\:{y}=\frac{{k}−{x}}{\mathrm{1}+{kx}},{k}\:{is}\:{a}\:{constant} \\ $$$${then}\:{find}\:{the}\:{special}\:{solution}\:{if}\:{y}=\frac{\mathrm{2}}{\mathrm{3}\:}\:{when}\:{x}=\mathrm{1} \\ $$

  Pg 1194      Pg 1195      Pg 1196      Pg 1197      Pg 1198      Pg 1199      Pg 1200      Pg 1201      Pg 1202      Pg 1203   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com