Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1194
Question Number 96244 Answers: 1 Comments: 2
$$ \\ $$$$\:\:\mathrm{The}\:\mathrm{line}\:{y}\:=\:{mx}\:\:\mathrm{meets}\:\mathrm{the}\:\mathrm{parabola} \\ $$$$\:\:{y}\:=\:\left({x}\:−\:{a}\right)\left({b}\:−\:{x}\right)\:\mathrm{tangentially}\:\mathrm{where} \\ $$$$\:\:\mathrm{0}\:<\:{a}\:<\:{b}.\:\mathrm{Show}\:\mathrm{that}\:{m}\:=\:\left(\sqrt{{b}}\:−\:\sqrt{{a}}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 96242 Answers: 2 Comments: 0
$$\mathrm{find}\:\mathrm{x}\:\mathrm{if}\:\mathrm{4}^{\mathrm{x}} +\mathrm{6}^{\mathrm{x}} =\mathrm{9}^{\mathrm{x}} \:\:\:\:\mathrm{findx}? \\ $$
Question Number 96241 Answers: 2 Comments: 0
$$\mathrm{find}\:\mathrm{x}^{\mathrm{2}} =\mathrm{2}^{×} \:\:\:\mathrm{findx}? \\ $$
Question Number 96240 Answers: 3 Comments: 0
$${Find}\:{the}\:{shortest}\:{distance}\:{from}\:{the} \\ $$$${point}\:{P}\left(\mathrm{2},−\mathrm{3},\mathrm{5}\right)\:{to}\:{the}\:{line}\:{L} \\ $$$$\frac{{x}+\mathrm{3}}{\mathrm{2}}=\frac{{y}−\mathrm{1}}{−\mathrm{3}}=\frac{{z}−\mathrm{2}}{\mathrm{4}} \\ $$
Question Number 96232 Answers: 3 Comments: 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{cos}\:\sqrt{{x}}−\mathrm{cos}\:{x}}{\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}}= \\ $$
Question Number 96231 Answers: 0 Comments: 1
Question Number 96222 Answers: 1 Comments: 2
$$\mathrm{If}\:\mathrm{for}\:\mathrm{nonzero}\:{x}\:;\:\mathrm{2}{f}\:\left({x}^{\mathrm{2}} \right)+\mathrm{3}{f}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:=\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${then}\:{f}\:\left({x}^{\mathrm{2}} \right)\:=\:? \\ $$
Question Number 96220 Answers: 0 Comments: 0
$$\int\frac{{tan}\left({x}\right)}{{x}}{dx} \\ $$$$\int{x}\:{tan}\left({x}\right)\:{dx} \\ $$
Question Number 96217 Answers: 1 Comments: 0
$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\left(\frac{\mathrm{y}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} +\mathrm{y}}{\mathrm{x}}\right)\: \\ $$
Question Number 96211 Answers: 3 Comments: 0
$$\mathrm{solve}\:\mathrm{inside}\:\mathrm{C}\:\:\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{3}} \:+\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} \:+\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{1}\:=\mathrm{0} \\ $$
Question Number 96497 Answers: 2 Comments: 0
Question Number 96200 Answers: 2 Comments: 0
$$\mathrm{solve}\:\:\mathrm{y}^{''} \:+\mathrm{y}^{'} \:−\mathrm{2y}\:=\mathrm{xcosx}\:\:\mathrm{with}\:\mathrm{y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=−\mathrm{2} \\ $$
Question Number 96198 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{a}^{\mathrm{2}} }\mathrm{dx}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:\:\left(\mathrm{a}>\mathrm{0}\right) \\ $$
Question Number 96197 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ch}\left(\mathrm{cosx}−\mathrm{sinx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\mathrm{dx} \\ $$
Question Number 96196 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\mathrm{sinx}\right)\:\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 96195 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$
Question Number 96194 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\mathrm{cosx}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 96193 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{ln}\left(\mathrm{cosx}\right)\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$
Question Number 96192 Answers: 0 Comments: 2
$$\mathrm{find}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{y}'\:=\frac{\mathrm{y}}{\mathrm{x}}+\mathrm{sin}\frac{\mathrm{y}}{\mathrm{x}}\:\mathrm{with}\:\mathrm{original}\:\mathrm{condition} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}} \\ $$
Question Number 96189 Answers: 3 Comments: 0
$$\mathrm{find}\:\mathrm{a}\:\mathrm{common}\:\mathrm{roots}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{quadratic}\:\mathrm{eq} \\ $$$$\mathrm{24x}^{\mathrm{2}} +\left(\mathrm{p}+\mathrm{4}\right)\mathrm{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{6x}^{\mathrm{2}} +\mathrm{11x}+\mathrm{p}+\mathrm{2}=\mathrm{0} \\ $$
Question Number 96185 Answers: 1 Comments: 0
$$\mathrm{what}\:\mathrm{are}\:\mathrm{critical}\:\mathrm{points}\:\mathrm{of}\:\mathrm{this} \\ $$$$\mathrm{function}\:\mathrm{z}\:=\:\mathrm{xy}+\mathrm{5xy}^{\mathrm{2}} +\mathrm{10y} \\ $$
Question Number 96182 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} {y}''−{xy}'+\mathrm{y}\:=\:\mathrm{0}\: \\ $$
Question Number 96175 Answers: 1 Comments: 1
$$\int\frac{{dx}}{\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{3}}}=? \\ $$
Question Number 96171 Answers: 0 Comments: 2
$$\left(\mathrm{4}+\sqrt{\mathrm{15}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left(\mathrm{4}−\sqrt{\mathrm{15}}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\:\mathrm{k}\sqrt{\mathrm{6}} \\ $$$$\mathrm{find}\:\mathrm{k}\: \\ $$
Question Number 96161 Answers: 1 Comments: 1
$$\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{sech}\:^{\mathrm{2}} \left(\sqrt{{x}}\right)+\mathrm{tanh}\:\left(\sqrt{{x}}\right)}{\sqrt{{x}}\:}\:{dx}\:? \\ $$
Question Number 96155 Answers: 1 Comments: 4
Pg 1189 Pg 1190 Pg 1191 Pg 1192 Pg 1193 Pg 1194 Pg 1195 Pg 1196 Pg 1197 Pg 1198
Terms of Service
Privacy Policy
Contact: info@tinkutara.com