Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1194

Question Number 96021    Answers: 0   Comments: 1

if p and q are two complex number and p×q=m ,m is a real number . is there always exists a p^(1/3) and q^(1/3) (we know p^(1/3) and q^(1/3) each has actually 3 values) such that p^(1/3) ×q^(1/3) =m^(1/3) .where m^(1/3) is real .?? how to prove it?

$$\mathrm{if}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{two}\:\mathrm{complex}\:\mathrm{number} \\ $$$$\mathrm{and}\:\mathrm{p}×\mathrm{q}=\mathrm{m}\:\:,\mathrm{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:. \\ $$$$ \\ $$$$\mathrm{is}\:\mathrm{there}\:\mathrm{always}\:\mathrm{exists}\:\mathrm{a}\:\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{and}\:\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left(\mathrm{we}\:\mathrm{know}\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{and}\:\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{each}\:\mathrm{has}\:\mathrm{actually}\:\right. \\ $$$$\left.\mathrm{3}\:\mathrm{values}\right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{p}^{\frac{\mathrm{1}}{\mathrm{3}}} ×\mathrm{q}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{m}^{\frac{\mathrm{1}}{\mathrm{3}}} .\mathrm{where}\:\mathrm{m}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\mathrm{is}\:\mathrm{real}\:.??\:\:\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}? \\ $$$$ \\ $$

Question Number 96012    Answers: 2   Comments: 1

Question Number 96008    Answers: 0   Comments: 1

((1−(1/a))/(a^2 −(1/a^2 )))

$$\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{a}}}{\mathrm{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }} \\ $$

Question Number 96007    Answers: 0   Comments: 1

((9x^2 +4a^2 )/(9x^2 −4a^2 )) +((3x)/(3x+2a)) −((2a)/(2a−3x))

$$\frac{\mathrm{9x}^{\mathrm{2}} +\mathrm{4a}^{\mathrm{2}} }{\mathrm{9x}^{\mathrm{2}} −\mathrm{4a}^{\mathrm{2}} }\:+\frac{\mathrm{3x}}{\mathrm{3x}+\mathrm{2a}}\:−\frac{\mathrm{2a}}{\mathrm{2a}−\mathrm{3x}} \\ $$

Question Number 95999    Answers: 2   Comments: 0

Question Number 95986    Answers: 0   Comments: 1

In a set of 3 consecutive natural numbers the sum of the last 2 numbers is equal to 3 times the first numbers. Find the sum of all the three numbers.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{3}\:\mathrm{consecutive}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{2}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\mathrm{3}\:\mathrm{times}\:\mathrm{the}\:\mathrm{first}\:\mathrm{numbers}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}. \\ $$

Question Number 95985    Answers: 2   Comments: 0

A and B can complete a piece of work in 12 days and 24 days respectively. After A had worked for 6 days, B joined him, and then they completed the work. How much should A receive as his share from the total amount of Rs. 180 paid for completing the work?

$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{can}\:\mathrm{complete}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{work}\:\mathrm{in} \\ $$$$\mathrm{12}\:\mathrm{days}\:\mathrm{and}\:\mathrm{24}\:\mathrm{days}\:\mathrm{respectively}.\:\mathrm{After} \\ $$$$\mathrm{A}\:\mathrm{had}\:\mathrm{worked}\:\mathrm{for}\:\mathrm{6}\:\mathrm{days},\:\mathrm{B}\:\mathrm{joined}\:\mathrm{him}, \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{they}\:\mathrm{completed}\:\mathrm{the}\:\mathrm{work}.\:\mathrm{How} \\ $$$$\mathrm{much}\:\mathrm{should}\:\:\mathrm{A}\:\mathrm{receive}\:\mathrm{as}\:\mathrm{his}\:\mathrm{share}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{Rs}.\:\mathrm{180}\:\mathrm{paid}\:\mathrm{for} \\ $$$$\mathrm{completing}\:\mathrm{the}\:\mathrm{work}? \\ $$

Question Number 95982    Answers: 1   Comments: 0

Σx(y^3 −z^3 )=_____.

$$\Sigma{x}\left({y}^{\mathrm{3}} −{z}^{\mathrm{3}} \right)=\_\_\_\_\_. \\ $$

Question Number 95980    Answers: 1   Comments: 0

If lim_(x→3) (((√(3x+7))−((20x+4))^(1/(3 )) +ax+b)/((x−3)^2 )) exist , what is the value of ab

$$\mathrm{If}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{\sqrt{\mathrm{3x}+\mathrm{7}}−\sqrt[{\mathrm{3}\:\:}]{\mathrm{20x}+\mathrm{4}}\:+{a}\mathrm{x}+{b}}{\left({x}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\mathrm{exist}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{ab}\: \\ $$

Question Number 95968    Answers: 1   Comments: 0

3^(((log _3 (2)+log _3 (3log _(1/3) (cot (π/3))))/(log _π (3).(log _2 (π)))) ? )

$$\mathrm{3}^{\frac{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)+\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{3log}\:_{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{cot}\:\frac{\pi}{\mathrm{3}}\right)\right)}{\mathrm{log}\:_{\pi} \left(\mathrm{3}\right).\left(\mathrm{log}\:_{\mathrm{2}} \left(\pi\right)\right)}\:?\:} \\ $$

Question Number 95964    Answers: 0   Comments: 0

{ ((x^2 +y^2 =13)),((2x^2 +3y=2xy^2 )) :}

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{13}}\\{\mathrm{2x}^{\mathrm{2}} +\mathrm{3y}=\mathrm{2xy}^{\mathrm{2}} }\end{cases} \\ $$

Question Number 95951    Answers: 4   Comments: 3

Question Number 95949    Answers: 2   Comments: 0

∫_0 ^(+∞) (x^2 /(e^x^2 −1))dx

$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\mathrm{1}}\mathrm{dx} \\ $$

Question Number 95943    Answers: 0   Comments: 0

f is a integrable function wich verify f(x+π)=f(x) prove that ∫_0 ^∞ f(x)×((sinx)/x)dx =∫_0 ^(π/2) f(x)dx

$$\mathrm{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{integrable}\:\mathrm{function}\:\mathrm{wich}\:\mathrm{verify}\:\mathrm{f}\left(\mathrm{x}+\pi\right)=\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{prove}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{f}\left(\mathrm{x}\right)×\frac{\mathrm{sinx}}{\mathrm{x}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 95966    Answers: 1   Comments: 0

find all pairs of integer for xy+3x−4y = 29

$$\mathrm{find}\:\mathrm{all}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{integer}\:\mathrm{for}\: \\ $$$$\mathrm{xy}+\mathrm{3x}−\mathrm{4y}\:=\:\mathrm{29}\: \\ $$

Question Number 95967    Answers: 1   Comments: 1

Question Number 95933    Answers: 2   Comments: 2

y′′′+2y′−3y= e^x (x+3)

$$\mathrm{y}'''+\mathrm{2y}'−\mathrm{3y}=\:\mathrm{e}^{\mathrm{x}} \:\left(\mathrm{x}+\mathrm{3}\right)\: \\ $$

Question Number 95924    Answers: 1   Comments: 1

form a Lagrangian to maximize x^2 −y^2 subject to the constraint 2x+y = 3?

$$\mathrm{form}\:\mathrm{a}\:\mathrm{Lagrangian}\:\mathrm{to}\:\mathrm{maximize} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\: \\ $$$$\mathrm{constraint}\:\mathrm{2x}+\mathrm{y}\:=\:\mathrm{3}? \\ $$

Question Number 95920    Answers: 3   Comments: 0

((54+(√x)))^(1/(3 )) + ((54−(√x)))^(1/(3 )) = ((18))^(1/(3 )) x = ?

$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{54}+\sqrt{\mathrm{x}}}\:+\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{54}−\sqrt{\mathrm{x}}}\:=\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{18}}\: \\ $$$$\mathrm{x}\:=\:?\: \\ $$

Question Number 95919    Answers: 1   Comments: 0

∫3^(−4x^2 ) dx=? (0,∞)

$$ \\ $$$$\int\mathrm{3}^{−\mathrm{4x}^{\mathrm{2}} } \mathrm{dx}=?\:\:\:\:\left(\mathrm{0},\infty\right) \\ $$

Question Number 95941    Answers: 0   Comments: 0

prove that (1/(sinx)) =Σ_(n=−∞) ^(+∞) (((−1)^n )/(x+nπ))

$$\mathrm{prove}\:\mathrm{that}\:\frac{\mathrm{1}}{\mathrm{sinx}}\:=\sum_{\mathrm{n}=−\infty} ^{+\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{x}+\mathrm{n}\pi} \\ $$

Question Number 95912    Answers: 0   Comments: 2

(((2n)),(n) ) = 20 find n?

$$\begin{pmatrix}{\mathrm{2n}}\\{\mathrm{n}}\end{pmatrix}\:=\:\mathrm{20}\: \\ $$$$\mathrm{find}\:\mathrm{n}? \\ $$

Question Number 95903    Answers: 2   Comments: 3

Question Number 95901    Answers: 1   Comments: 0

(1/(998!)) + (1/(999!)) = (x^3 /(100!))

$$\frac{\mathrm{1}}{\mathrm{998}!}\:+\:\frac{\mathrm{1}}{\mathrm{999}!}\:=\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{100}!}\: \\ $$

Question Number 95898    Answers: 0   Comments: 0

x^2 +xy+(y^3 /3)=25 (y^2 /3)+z^2 =9 z^2 +zx+x^2 =16 so xy+2yz+3zx=?

$${x}^{\mathrm{2}} +{xy}+\frac{{y}^{\mathrm{3}} }{\mathrm{3}}=\mathrm{25} \\ $$$$\frac{{y}^{\mathrm{2}} }{\mathrm{3}}+{z}^{\mathrm{2}} =\mathrm{9} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\mathrm{16} \\ $$$${so}\:{xy}+\mathrm{2}{yz}+\mathrm{3}{zx}=? \\ $$

Question Number 95897    Answers: 2   Comments: 0

If x∈C . find solution of 3+i(√2) = e^(ix)

$$\mathrm{If}\:{x}\in\mathbb{C}\:.\:\mathrm{find}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{3}+{i}\sqrt{\mathrm{2}}\:=\:{e}^{{ix}} \: \\ $$

  Pg 1189      Pg 1190      Pg 1191      Pg 1192      Pg 1193      Pg 1194      Pg 1195      Pg 1196      Pg 1197      Pg 1198   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com