Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1192
Question Number 96377 Answers: 1 Comments: 0
$$\mathrm{if}\:\mathrm{tan}\left(\mathrm{x}+\mathrm{iy}\right)=\mathrm{a}+\mathrm{ib}\:\:\:\mathrm{determine}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{interms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b} \\ $$
Question Number 96375 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{P}\left(\mathrm{x}\right)\:=\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)...\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}^{\mathrm{n}} } \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{solve}\:\mathrm{inside}\:\mathrm{C}\:\:\mathrm{the}\:\mathrm{equation}\:\mathrm{P}\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{factorize}\:\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{inside}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calvulate}\:\mathrm{P}^{'} \left(\mathrm{x}\right) \\ $$$$\left.\mathrm{4}\right)\:\mathrm{decompose}\:\mathrm{F}\:=\frac{\mathrm{1}}{\mathrm{P}\left(\mathrm{x}\right)} \\ $$
Question Number 96373 Answers: 2 Comments: 0
$$\mathrm{1}.\:\mathrm{find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{i}}\:\:\mathrm{and}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{i}}\:\:\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$$$\mathrm{2}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$
Question Number 96365 Answers: 2 Comments: 0
Question Number 96358 Answers: 0 Comments: 0
Question Number 96350 Answers: 1 Comments: 2
Question Number 96349 Answers: 0 Comments: 1
Question Number 96390 Answers: 1 Comments: 0
Question Number 96346 Answers: 1 Comments: 4
$$\int\frac{\mathrm{1}}{\mathfrak{ln}\left(\mathfrak{x}\right)}\boldsymbol{\mathrm{d}}\mathfrak{x} \\ $$
Question Number 96342 Answers: 2 Comments: 2
$$\int\mathfrak{e}^{\mathfrak{sin}\left(\mathfrak{x}\right)} \boldsymbol{\mathrm{d}}\mathfrak{x} \\ $$
Question Number 96340 Answers: 0 Comments: 4
$$\mathrm{The}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{two}\:\mathrm{circles}\:{S}_{\mathrm{1}} \:\mathrm{and}\:{S}_{\mathrm{2}} \:\mathrm{are}\:\mathrm{given}\:\mathrm{by} \\ $$$$\:{S}_{\mathrm{1}} :\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{2}{y}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\:\:\:{S}_{\mathrm{2}} :\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\mathrm{4}{x}\:+\:\mathrm{2}{y}\:+\mathrm{1}\:=\:\mathrm{0}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:{S}_{\mathrm{1}} \:\mathrm{and}\:{S}_{\mathrm{2}} \:\mathrm{touch}\:\mathrm{each}\:\mathrm{other}\:\mathrm{externally}\:\mathrm{and}\:\mathrm{obtain} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:{T}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{contact}. \\ $$
Question Number 96335 Answers: 0 Comments: 0
$$\int\frac{\left(\mathrm{3}\mathfrak{x}^{\mathrm{3}} −\mathfrak{x}^{\mathrm{2}} +\mathrm{2}\mathfrak{x}−\mathrm{4}\right)}{\sqrt{\mathfrak{x}^{\mathrm{3}} −\mathrm{3}\mathfrak{x}+\mathrm{4}}}\boldsymbol{\mathrm{d}}\mathfrak{x} \\ $$
Question Number 96330 Answers: 0 Comments: 2
Question Number 96329 Answers: 0 Comments: 2
$${x}\lfloor{x}\lfloor{x}\lfloor{x}\rfloor\rfloor\rfloor=\mathrm{88} \\ $$$${x}>\mathrm{0} \\ $$
Question Number 96321 Answers: 1 Comments: 1
$${It}\:{is}\:{given}\:{that}\:{x}^{\mathrm{2}} =\mathrm{2}^{{x}} .\:{Find}\:{x}. \\ $$
Question Number 96319 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left(\frac{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} }{{e}}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$
Question Number 96318 Answers: 0 Comments: 4
$${if} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right).....\left(\mathrm{1}+{x}^{\mathrm{128}} \right)=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{r}} \\ $$$${then}\:{find}\:{n} \\ $$
Question Number 96317 Answers: 0 Comments: 1
$${find}\:{the}\:{sum} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}×\mathrm{3}}{\mathrm{4}×\mathrm{6}}+\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}}{\mathrm{4}×\mathrm{6}×\mathrm{8}}.....=? \\ $$$${find} \\ $$$$\int\frac{\sqrt{{x}}}{\sqrt{{x}}+\sqrt{\mathrm{3}−{x}}}{dx} \\ $$$$ \\ $$$$ \\ $$
Question Number 96314 Answers: 0 Comments: 0
$$\mathfrak{a}\backslash\:\mathcal{L}\mathfrak{et}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}\right)\:\boldsymbol{\mathrm{d}}\mathfrak{enote}\:\mathfrak{the}\:\mathfrak{whole}\:\mathfrak{number}\:\mathfrak{part}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{real} \\ $$$$\left.\mathfrak{number}\:\mathfrak{x},\:\boldsymbol{\mathrm{d}}\mathfrak{etermine}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}} \right)\:\mathfrak{an}\boldsymbol{\mathrm{d}}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}^{\mathfrak{x}} } \right)\:\mathfrak{for}\:\mathfrak{x}\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\mathfrak{b}\backslash\:\mathcal{C}\mathfrak{alculate}\:\underset{\mathfrak{x}\rightarrow\mathrm{0}} {\mathfrak{lim}}\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}^{\mathfrak{x}} } \right) \\ $$
Question Number 96311 Answers: 1 Comments: 0
$$\left(\mathrm{4}+\sqrt{\mathrm{15}}\right)^{{x}} \:+\:\left(\mathrm{4}−\sqrt{\mathrm{15}}\right)^{{x}} \:=\:\mathrm{62}\: \\ $$$${x}=? \\ $$
Question Number 96310 Answers: 0 Comments: 3
Question Number 96306 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{z}\:=\:\frac{\mathrm{xy}−\mathrm{4y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{4y}^{\mathrm{2}} }\:,\:\mathrm{x},\mathrm{y}\neq\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{z}\: \\ $$
Question Number 96302 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 96296 Answers: 1 Comments: 0
Question Number 96293 Answers: 1 Comments: 0
Question Number 96290 Answers: 0 Comments: 1
$${If}\::\:\mathrm{tan}\left({x}\:+{iy}\right)\:=\:{a}\:+\:{bi}\: \\ $$$${then}\:{find}\:{a},{b} \\ $$
Pg 1187 Pg 1188 Pg 1189 Pg 1190 Pg 1191 Pg 1192 Pg 1193 Pg 1194 Pg 1195 Pg 1196
Terms of Service
Privacy Policy
Contact: info@tinkutara.com