Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1192

Question Number 96607    Answers: 0   Comments: 1

It is given that f(x) is a function defined on R, satisfying f(1)=1 and for any x∈R, f(x+5) ≥f(x)+5 and f(x+1) ≤f(x)+1. If g(x)= f(x)+1−x, then g(2002) = ___

$$\mathrm{It}\:\mathrm{is}\:\mathrm{given}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{function} \\ $$$$\mathrm{defined}\:\mathrm{on}\:\mathbb{R},\:\mathrm{satisfying}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{for}\:\mathrm{any}\:\mathrm{x}\in\mathbb{R},\:\mathrm{f}\left(\mathrm{x}+\mathrm{5}\right)\:\geqslant\mathrm{f}\left(\mathrm{x}\right)+\mathrm{5} \\ $$$$\mathrm{and}\:\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)\:\leqslant\mathrm{f}\left(\mathrm{x}\right)+\mathrm{1}.\:\mathrm{If}\:\mathrm{g}\left(\mathrm{x}\right)= \\ $$$$\mathrm{f}\left(\mathrm{x}\right)+\mathrm{1}−\mathrm{x},\:\mathrm{then}\:\mathrm{g}\left(\mathrm{2002}\right)\:=\:\_\_\_ \\ $$

Question Number 96606    Answers: 0   Comments: 1

Question Number 96604    Answers: 0   Comments: 6

Please how will you evaluate ∫ (√dx) ???

$$\mathrm{Please}\:\mathrm{how}\:\mathrm{will}\:\mathrm{you}\:\mathrm{evaluate} \\ $$$$\:\int\:\sqrt{{dx}}\:??? \\ $$

Question Number 96602    Answers: 3   Comments: 0

lim_(n→+∞) (1/(√n)) Σ_(k=1) ^n (√k)

$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\sqrt{\mathrm{n}}}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\mathrm{k}} \\ $$

Question Number 96593    Answers: 2   Comments: 0

let f(x) =arctan(x^n ) with n integr natural 1) calculate f^′ (x) and f^((2)) (x) 2) calculate f^((n)) (x) and f^((n)) (0) 3)developp f at integr serie

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{x}^{\mathrm{n}} \right)\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{'} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$

Question Number 96596    Answers: 2   Comments: 0

x(x+1) (dy/dx)−(2x+1)y = 0

$${x}\left({x}+\mathrm{1}\right)\:\frac{{dy}}{{dx}}−\left(\mathrm{2}{x}+\mathrm{1}\right){y}\:=\:\mathrm{0} \\ $$

Question Number 96595    Answers: 0   Comments: 0

∫_0 ^1 x^(4035) (x^4 +1)^(2017) (3x+1)^4 dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{4035}} \left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2017}} \left(\mathrm{3}{x}+\mathrm{1}\right)^{\mathrm{4}} {dx} \\ $$

Question Number 96586    Answers: 1   Comments: 0

find the minimum value of f(x)=x^x for x∈R^+

$${find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)={x}^{{x}} \\ $$$${for}\:{x}\in\mathbb{R}^{+} \\ $$

Question Number 96584    Answers: 1   Comments: 4

Question Number 96581    Answers: 1   Comments: 0

Question Number 96600    Answers: 1   Comments: 0

Question Number 96571    Answers: 2   Comments: 0

solve y^(′′) −2y^′ +y =(x+1)^2 e^(−x) with y(0)=−1 ,y^′ (0)=0 ,y^((2)) (0) =1

$$\mathrm{solve}\:\mathrm{y}^{''} −\mathrm{2y}^{'} \:+\mathrm{y}\:=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{x}} \:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)=−\mathrm{1}\:,\mathrm{y}^{'} \left(\mathrm{0}\right)=\mathrm{0}\:,\mathrm{y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)\:=\mathrm{1} \\ $$

Question Number 96570    Answers: 0   Comments: 0

solve xy^(′′) −(x^3 +1)y^′ +2y =x^2 e^(−x) with y(o)=1 and y^′ (0)=−2

$$\mathrm{solve}\:\:\mathrm{xy}^{''} \:−\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\mathrm{y}^{'} \:+\mathrm{2y}\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{x}} \:\mathrm{with}\:\:\mathrm{y}\left(\mathrm{o}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)=−\mathrm{2} \\ $$

Question Number 96567    Answers: 1   Comments: 1

Question Number 96558    Answers: 1   Comments: 0

Let m and n be two positive integers satisfy (m/n) = (1/(10×12))+(1/(12×14))+(1/(14×16))+...+(1/(2012×2014)) find the smallest possible value of m+n

$$\mathrm{Let}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{be}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{integers}\: \\ $$$$\mathrm{satisfy}\:\frac{\mathrm{m}}{\mathrm{n}}\:=\:\frac{\mathrm{1}}{\mathrm{10}×\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{12}×\mathrm{14}}+\frac{\mathrm{1}}{\mathrm{14}×\mathrm{16}}+...+\frac{\mathrm{1}}{\mathrm{2012}×\mathrm{2014}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{m}+\mathrm{n}\: \\ $$

Question Number 96554    Answers: 1   Comments: 2

∫(dx/(x!))=?

$$\int\frac{\mathrm{dx}}{\mathrm{x}!}=? \\ $$

Question Number 96548    Answers: 0   Comments: 1

Question Number 96543    Answers: 1   Comments: 0

Question Number 96542    Answers: 0   Comments: 6

Question Number 96538    Answers: 1   Comments: 0

Question Number 96530    Answers: 0   Comments: 1

If: (1+m)^3 −3m^3 =2 0≤m≤1 Find: (1+m)^2 −3m^2

$$\boldsymbol{\mathrm{If}}:\:\left(\mathrm{1}+{m}\right)^{\mathrm{3}} −\mathrm{3}{m}^{\mathrm{3}} =\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{m}\leqslant\mathrm{1} \\ $$$$\boldsymbol{\mathrm{Find}}:\:\left(\mathrm{1}+{m}\right)^{\mathrm{2}} −\mathrm{3}{m}^{\mathrm{2}} \\ $$

Question Number 96527    Answers: 2   Comments: 1

proof that 1^2 +2^2 +3^2 +....+n^2 =((n(2n+1)(n+1))/6)

$$\mathrm{proof}\:\mathrm{that}\:\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +....+\mathrm{n}^{\mathrm{2}} =\frac{\mathrm{n}\left(\mathrm{2n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Question Number 96524    Answers: 0   Comments: 1

∫(sinx^(cosx^(sinx) ) −cosx^(sinx^(cosx) ) )dx

$$\int\left(\mathrm{sinx}^{\mathrm{cosx}^{\mathrm{sinx}} } −\mathrm{cosx}^{\mathrm{sinx}^{\mathrm{cosx}} } \right)\mathrm{dx} \\ $$

Question Number 96523    Answers: 0   Comments: 0

Question Number 96514    Answers: 1   Comments: 3

∫_0 ^1 (1/(1+[(1/x)]))dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\left[\frac{\mathrm{1}}{\boldsymbol{{x}}}\right]}\boldsymbol{{dx}}=? \\ $$

Question Number 96508    Answers: 1   Comments: 0

  Pg 1187      Pg 1188      Pg 1189      Pg 1190      Pg 1191      Pg 1192      Pg 1193      Pg 1194      Pg 1195      Pg 1196   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com