Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1190

Question Number 95849    Answers: 2   Comments: 0

lim_(n→∞) (1/(n+1)) + (1/(n+2)) + (1/(n+3)) + ... + (1/(n+n))??

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}\:+\:...\:+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}}?? \\ $$

Question Number 95848    Answers: 4   Comments: 0

∫_0 ^(π/2) (dx/(√(1+sin x))) ?

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}\:?\: \\ $$

Question Number 95845    Answers: 1   Comments: 0

calculate ∫_0 ^1 (−1)^([(2/x)]) dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(−\mathrm{1}\right)^{\left[\frac{\mathrm{2}}{\mathrm{x}}\right]} \:\mathrm{dx} \\ $$

Question Number 95844    Answers: 2   Comments: 0

cacuate ∫_(−(π/4)) ^(π/4) ln(1+a cos^2 t)dt with ∣a∣<1

$$\mathrm{cacuate}\:\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{a}\:\mathrm{cos}^{\mathrm{2}} \mathrm{t}\right)\mathrm{dt}\:\mathrm{with}\:\mid\mathrm{a}\mid<\mathrm{1} \\ $$

Question Number 95843    Answers: 1   Comments: 0

((((√(3x−7)))^2 −2)/(x−3)) ≤ ((3−((√x))^2 )/(x−3)) find the solution

$$\frac{\left(\sqrt{\mathrm{3x}−\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\left(\sqrt{\mathrm{x}}\right)^{\mathrm{2}} }{\mathrm{x}−\mathrm{3}}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$

Question Number 95839    Answers: 1   Comments: 1

solve y^((3)) −2y^((2)) +3y −2y =sinx

$$\mathrm{solve}\:\mathrm{y}^{\left(\mathrm{3}\right)} −\mathrm{2y}^{\left(\mathrm{2}\right)} \:+\mathrm{3y}\:\:−\mathrm{2y}\:=\mathrm{sinx} \\ $$

Question Number 95838    Answers: 1   Comments: 0

determine L(f^((3)) (x) with L is laplace transform

$$\mathrm{determine}\:\mathrm{L}\left(\mathrm{f}^{\left(\mathrm{3}\right)} \left(\mathrm{x}\right)\:\:\mathrm{with}\:\mathrm{L}\:\mathrm{is}\:\mathrm{laplace}\:\mathrm{transform}\right. \\ $$

Question Number 95837    Answers: 2   Comments: 0

let p(x)=(1+ix+x^2 )^n −(1−ix +x^2 )^n 1) determine roots of p(x) 2) find p(x) at form Σ a_i x^i 3)ddtermne p(x) at form arctan 4) factorize p(x) inside C[x] 5) calculate ∫_0 ^1 p(x)dxand ∫_1 ^∞ (dx/(p(x)))

$$\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{ix}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} −\left(\mathrm{1}−\mathrm{ix}\:+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{p}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{at}\:\mathrm{form}\:\Sigma\:\mathrm{a}_{\mathrm{i}} \:\mathrm{x}^{\mathrm{i}} \\ $$$$\left.\mathrm{3}\right)\mathrm{ddtermne}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{at}\:\mathrm{form}\:\mathrm{arctan} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{factorize}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{inside}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$$$\left.\mathrm{5}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{p}\left(\mathrm{x}\right)\mathrm{dxand}\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\mathrm{p}\left(\mathrm{x}\right)} \\ $$

Question Number 95832    Answers: 2   Comments: 0

find without using l′hopital lim_(x→2) ((e^(2−x) −1)/(x^2 −4))

$${find}\:{without}\:{using}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {{lim}}\frac{{e}^{\mathrm{2}−{x}} −\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{4}} \\ $$

Question Number 95830    Answers: 2   Comments: 0

Question Number 95868    Answers: 1   Comments: 1

5^(10) (mod 11)=?

$$\mathrm{5}^{\mathrm{10}} \left({mod}\:\mathrm{11}\right)=? \\ $$

Question Number 95801    Answers: 2   Comments: 0

2y′′−y^′ =1; y(0) = 0 ; y′(0)=1

$$\mathrm{2y}''−\mathrm{y}^{'} =\mathrm{1};\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{0}\:;\:\mathrm{y}'\left(\mathrm{0}\right)=\mathrm{1} \\ $$

Question Number 95800    Answers: 1   Comments: 2

if f(0)=1 f(1)=2 and ∫_0 ^1 f(x) dx=3 than ∫_0 ^1 x f(x) dx = ? a. 1 b. −1 c. 2 d. −2

$${if}\:\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{2}\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right)\:{dx}=\mathrm{3}\: \\ $$$${than}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\:{f}\left({x}\right)\:{dx}\:=\:? \\ $$$$ \\ $$$${a}.\:\mathrm{1} \\ $$$${b}.\:−\mathrm{1} \\ $$$${c}.\:\mathrm{2} \\ $$$${d}.\:−\mathrm{2} \\ $$$$ \\ $$

Question Number 95789    Answers: 1   Comments: 1

Find the semi−interquartile range of of the following numbers: 15, 10, 9, 15, 15, 8, 10, 11, 8, 12, 11, 14, 9 and 15

$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{semi}−\mathrm{interquartile}\:\mathrm{range}\:\mathrm{of}\: \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{numbers}: \\ $$$$\:\mathrm{15},\:\mathrm{10},\:\mathrm{9},\:\mathrm{15},\:\mathrm{15},\:\mathrm{8},\:\mathrm{10},\:\mathrm{11},\:\mathrm{8},\:\mathrm{12},\:\mathrm{11},\:\mathrm{14}, \\ $$$$\:\mathrm{9}\:\mathrm{and}\:\mathrm{15} \\ $$

Question Number 95786    Answers: 1   Comments: 2

let f(x) =(1/x)ln(1+2x) 1) calculate f^((n)) (x)and f^((n)) (1) 2)developp f at integr serie at x_0 =1 3)developp f at integr serie at x_0 =0

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie}\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1} \\ $$$$\left.\mathrm{3}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie}\:\:\mathrm{at}\:\mathrm{x}_{\mathrm{0}} =\mathrm{0} \\ $$

Question Number 95785    Answers: 0   Comments: 0

calculate ∫_0 ^(π/2) (ln(cosx))^3 dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{ln}\left(\mathrm{cosx}\right)\right)^{\mathrm{3}} \:\mathrm{dx} \\ $$

Question Number 95784    Answers: 0   Comments: 0

calculate Σ_(n=1) ^∞ (H_n /n^2 ) H_n =Σ_(k=1) ^n (1/k)

$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} } \\ $$$$\mathrm{H}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{k}} \\ $$

Question Number 95782    Answers: 0   Comments: 2

it looks version 2.077 has a problem. for very long loading

$$\mathrm{it}\:\mathrm{looks}\:\mathrm{version}\:\mathrm{2}.\mathrm{077}\:\mathrm{has}\:\mathrm{a}\: \\ $$$$\mathrm{problem}.\:\:\mathrm{for}\:\mathrm{very}\:\mathrm{long}\:\mathrm{loading} \\ $$

Question Number 95780    Answers: 0   Comments: 0

Question Number 95779    Answers: 2   Comments: 0

if plane 3x+4y+tz=2 and kx+6y+5z−2=0 are parallel. find the value of k and t

$$\mathrm{if}\:\mathrm{plane}\:\mathrm{3x}+\mathrm{4y}+\mathrm{tz}=\mathrm{2}\:\mathrm{and}\: \\ $$$$\mathrm{kx}+\mathrm{6y}+\mathrm{5z}−\mathrm{2}=\mathrm{0}\:\mathrm{are}\:\mathrm{parallel}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{and}\:\mathrm{t}\: \\ $$

Question Number 95773    Answers: 4   Comments: 0

Question Number 95772    Answers: 0   Comments: 3

Question Number 95770    Answers: 0   Comments: 8

the app doesn′t work properly for me any more. I open it and most of the time the home screen doesn′t show the forum. refreshing or trying to switch to the forum ends up in an endless turning loop...

$$\mathrm{the}\:\mathrm{app}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{work}\:\mathrm{properly}\:\mathrm{for}\:\mathrm{me}\:\mathrm{any} \\ $$$$\mathrm{more}.\:\mathrm{I}\:\mathrm{open}\:\mathrm{it}\:\mathrm{and}\:\mathrm{most}\:\mathrm{of}\:\mathrm{the}\:\mathrm{time}\:\mathrm{the} \\ $$$$\mathrm{home}\:\mathrm{screen}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{show}\:\mathrm{the}\:\mathrm{forum}. \\ $$$$\mathrm{refreshing}\:\mathrm{or}\:\mathrm{trying}\:\mathrm{to}\:\mathrm{switch}\:\mathrm{to}\:\mathrm{the}\:\mathrm{forum} \\ $$$$\mathrm{ends}\:\mathrm{up}\:\mathrm{in}\:\mathrm{an}\:\mathrm{endless}\:\mathrm{turning}\:\mathrm{loop}... \\ $$

Question Number 95768    Answers: 0   Comments: 1

find x such that x≡3 (mod5) x≡5 (mod7) x≡7(mod11)

$$\mathrm{find}\:\mathrm{x}\:\mathrm{such}\:\mathrm{that}\: \\ $$$${x}\equiv\mathrm{3}\:\left(\mathrm{mod5}\right) \\ $$$${x}\equiv\mathrm{5}\:\left(\mathrm{mod7}\right) \\ $$$${x}\equiv\mathrm{7}\left(\mathrm{mod11}\right) \\ $$

Question Number 95767    Answers: 1   Comments: 0

Question Number 95766    Answers: 0   Comments: 1

Solve the equation 2^(2x) − 5x^2 + 4 = 0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{2x}} \:\:−\:\:\mathrm{5x}^{\mathrm{2}} \:\:+\:\:\mathrm{4}\:\:\:=\:\:\:\mathrm{0} \\ $$

  Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189      Pg 1190      Pg 1191      Pg 1192      Pg 1193      Pg 1194   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com