Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 119

Question Number 208241    Answers: 1   Comments: 0

Solve for p, q, r p+q+r=α p^2 +q^2 +r^2 =β pq=r

$$\mathrm{Solve}\:\mathrm{for}\:{p},\:{q},\:{r} \\ $$$${p}+{q}+{r}=\alpha \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\beta \\ $$$${pq}={r} \\ $$

Question Number 208238    Answers: 1   Comments: 0

Show that (π/4) < ∫_0 ^1 (√(1−x^4 ))dx using x = sint show that ∫_0 ^1 (√(1−x^4 ))dx<((2(√2))/3) using (∫_0 ^1 f(x)g(x)dx)^2 <∫_0 ^1 (f(x))^2 dx∫_0 ^1 (g(x))^2 dx

$$\mathrm{S}{how}\:{that} \\ $$$$\frac{\pi}{\mathrm{4}}\:<\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}\:{using}\:{x}\:=\:{sint} \\ $$$${show}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}<\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$${using}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){g}\left({x}\right){dx}\right)^{\mathrm{2}} <\int_{\mathrm{0}} ^{\mathrm{1}} \left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}\int_{\mathrm{0}} ^{\mathrm{1}} \left({g}\left({x}\right)\right)^{\mathrm{2}} {dx} \\ $$

Question Number 208235    Answers: 2   Comments: 0

Question Number 208218    Answers: 1   Comments: 4

a_n numbers series If S_(16) − S_(13) = S_(106) − S_(103) Find: ((3a_3 + 4a_4 + 5a_5 )/(2a_(12) )) = ?

$$\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:\:\mathrm{numbers}\:\mathrm{series} \\ $$$$\mathrm{If}\:\:\mathrm{S}_{\mathrm{16}} \:−\:\mathrm{S}_{\mathrm{13}} \:\:=\:\:\mathrm{S}_{\mathrm{106}} \:−\:\mathrm{S}_{\mathrm{103}} \\ $$$$\mathrm{Find}:\:\:\:\:\frac{\mathrm{3a}_{\mathrm{3}} \:+\:\mathrm{4a}_{\mathrm{4}} \:+\:\mathrm{5a}_{\mathrm{5}} }{\mathrm{2a}_{\mathrm{12}} }\:\:=\:\:? \\ $$

Question Number 208217    Answers: 3   Comments: 0

1^2 +2^2 +3^2 +5^2 +8^2 +13^2 +21^2 =?

$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} +\mathrm{13}^{\mathrm{2}} +\mathrm{21}^{\mathrm{2}} =? \\ $$

Question Number 208215    Answers: 2   Comments: 0

If (1/R) = (1/R_1 ) + (1/R_2 ) [R_1 , R_2 > 0] and R_1 + R_2 = C (Constant) then prove that R will be maximum when R_1 = R_2 .

$$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{R}}\:=\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{1}} }\:+\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{2}} }\:\left[\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} \:>\:\mathrm{0}\right]\:\mathrm{and}\: \\ $$$$\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{R}_{\mathrm{2}} \:=\:\mathrm{C}\:\left(\mathrm{Constant}\right)\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{R}\:\mathrm{will}\:\mathrm{be}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{R}_{\mathrm{1}} \:=\:\mathrm{R}_{\mathrm{2}} . \\ $$

Question Number 208205    Answers: 1   Comments: 0

∫ (x^3 . 5^(2x^2 −2) ) dx =?

$$\:\:\:\int\:\left({x}^{\mathrm{3}} .\:\mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} \:\right)\:{dx}\:=? \\ $$

Question Number 208199    Answers: 2   Comments: 0

Question Number 208194    Answers: 2   Comments: 0

I_n = ∫_(0 ) ^∞ (1/((1+x^2 )^n ))dx prove that Σ_(n=1) ^∞ (I_n /n) = π

$$\:\:\:\:\:\:\:\:{I}_{{n}} \:=\:\:\int_{\mathrm{0}\:} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }{dx} \\ $$$$\:\:{prove}\:{that}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{I}_{{n}} }{{n}}\:\:=\:\:\pi \\ $$

Question Number 208187    Answers: 1   Comments: 0

Find: 1,03^(200) = ?

$$\mathrm{Find}:\:\:\:\mathrm{1},\mathrm{03}^{\mathrm{200}} \:=\:? \\ $$

Question Number 208178    Answers: 5   Comments: 3

Question Number 208176    Answers: 1   Comments: 1

Find the value of the folloing integral. determinant ((( 𝛀=∫_0 ^( (𝛑/2)) (( 1)/(1 + (( cosx))^(1/3) )) dx = ? )))

$$ \\ $$$$\:\:\:\:\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{folloing}}\:\boldsymbol{{integral}}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\mathrm{1}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\boldsymbol{{cosx}}}}\:\boldsymbol{{dx}}\:=\:?\:\:}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 208173    Answers: 1   Comments: 1

(5/(−∞))=?

$$\frac{\mathrm{5}}{−\infty}=? \\ $$

Question Number 208167    Answers: 2   Comments: 0

y = 3 cos^2 α + 2 cos α find: max(y) = ?

$$\mathrm{y}\:=\:\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\alpha\:+\:\mathrm{2}\:\mathrm{cos}\:\alpha \\ $$$$\mathrm{find}:\:\:\:\mathrm{max}\left(\mathrm{y}\right)\:=\:? \\ $$

Question Number 208164    Answers: 2   Comments: 0

Solve for x: x^2 +x^2 (1−x^2 )+x^2 (1−x^2 )^2 +x^2 (1−x^2 )^3 +...+x^2 (1−x^2 )^(100) =1

$${Solve}\:{for}\:{x}: \\ $$$${x}^{\mathrm{2}} +{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)+{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} +{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} +...+{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{100}} =\mathrm{1} \\ $$

Question Number 208149    Answers: 3   Comments: 0

Question Number 208148    Answers: 2   Comments: 0

Question Number 208139    Answers: 1   Comments: 0

$$\:\:\:\: \\ $$

Question Number 208135    Answers: 1   Comments: 0

$$\:\:\:\downharpoonleft\underline{\:} \\ $$

Question Number 208134    Answers: 0   Comments: 0

Question Number 208140    Answers: 1   Comments: 0

∫_0 ^π (dx/(1+((sin x))^(1/3) ))=? exact result required

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{dx}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}}}=? \\ $$$$\mathrm{exact}\:\mathrm{result}\:\mathrm{required} \\ $$

Question Number 208130    Answers: 1   Comments: 0

(1/(cos x−cos 3x)) + (1/(cos x−cos 5x)) + (1/(cos x−cos 7x)) + (1/(cos x−cos 11x))=?

$$\:\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{3x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{5x}}\:+ \\ $$$$\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{7x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{11x}}=?\: \\ $$

Question Number 208129    Answers: 2   Comments: 0

±

$$\:\:\:\:\:\underbrace{\pm \cancel{} } \\ $$

Question Number 208128    Answers: 0   Comments: 0

Question Number 208122    Answers: 0   Comments: 0

Question Number 208121    Answers: 0   Comments: 2

  Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121      Pg 122      Pg 123   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com