Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 119

Question Number 210786    Answers: 1   Comments: 0

Question Number 210782    Answers: 0   Comments: 2

How to make 4 out of four 0′s ? HELP PLEASE

$$ \\ $$$$\:\:\:\mathscr{H}{ow}\:{to}\:{make}\:\mathrm{4}\:{out}\:{of}\:{four}\:\:\mathrm{0}'{s}\:? \\ $$$$\:\:\:\mathscr{HELP}\:\mathscr{PLEASE} \\ $$$$ \\ $$

Question Number 210769    Answers: 0   Comments: 1

Question Number 210767    Answers: 2   Comments: 2

Question Number 210765    Answers: 1   Comments: 0

Question Number 210761    Answers: 2   Comments: 7

Question Number 210755    Answers: 0   Comments: 0

Question Number 210754    Answers: 1   Comments: 0

Question Number 210753    Answers: 1   Comments: 0

Question Number 210737    Answers: 1   Comments: 0

f(x)=(x^2 /(x^2 +1)) then f((1/1))+f((2/1))+.....+f(((100)/1))+f((1/2)) +f((2/2))+...+f(((100)/2))+f((1/(100)))+f((2/(100))) +......+f(((100)/(100)))=?

$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:{then} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{1}}\right)+.....+{f}\left(\frac{\mathrm{100}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$+{f}\left(\frac{\mathrm{2}}{\mathrm{2}}\right)+...+{f}\left(\frac{\mathrm{100}}{\mathrm{2}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{100}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{100}}\right) \\ $$$$+......+{f}\left(\frac{\mathrm{100}}{\mathrm{100}}\right)=? \\ $$

Question Number 210729    Answers: 3   Comments: 0

Question Number 210728    Answers: 1   Comments: 0

Question Number 210723    Answers: 1   Comments: 0

the volume of the region between the planes x+y+2z=2 and 2x+y+z = 4 in the first octant is

$$\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{between}\:\mathrm{the}\: \\ $$$$\mathrm{planes}\:\mathrm{x}+\mathrm{y}+\mathrm{2z}=\mathrm{2}\:\mathrm{and}\:\mathrm{2x}+\mathrm{y}+\mathrm{z}\:=\:\mathrm{4}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{octant}\:\mathrm{is} \\ $$

Question Number 210718    Answers: 0   Comments: 1

If sin1° = a (1/(cos1°∙cos2°)) + (1/(cos2°∙cos3°)) +...+ (1/(cos44°∙cos45°)) = ?

$$\mathrm{If}\:\:\:\mathrm{sin1}°\:=\:\mathrm{a} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos1}°\centerdot\mathrm{cos2}°}\:+\:\frac{\mathrm{1}}{\mathrm{cos2}°\centerdot\mathrm{cos3}°}\:+...+\:\frac{\mathrm{1}}{\mathrm{cos44}°\centerdot\mathrm{cos45}°}\:=\:? \\ $$

Question Number 210719    Answers: 2   Comments: 0

find 63!^(36!) mod97 thanks

$${find}\:\mathrm{63}!^{\mathrm{36}!} {mod}\mathrm{97}\:\:\:{thanks} \\ $$

Question Number 210706    Answers: 0   Comments: 0

Question Number 210702    Answers: 2   Comments: 0

How many real solutions does the equation x=sin3x have?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{does}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{x}=\mathrm{sin3}{x}\:\mathrm{have}? \\ $$

Question Number 210701    Answers: 1   Comments: 0

Question Number 210695    Answers: 1   Comments: 1

Question Number 210694    Answers: 1   Comments: 0

Question Number 210689    Answers: 1   Comments: 0

Question Number 210688    Answers: 0   Comments: 1

In a convex quadrilateral ABCD, diagonals AC and BD intersect at E, while perpendicular bisectors of AB and CD intersect at F, and those of BC and DA intersect at G. Prove: (1) E, F, and G are collinear, (2) AE:EC = BF:FD, and (3) CG:GD = AF:FB.

$$ \\ $$In a convex quadrilateral ABCD, diagonals AC and BD intersect at E, while perpendicular bisectors of AB and CD intersect at F, and those of BC and DA intersect at G. Prove: (1) E, F, and G are collinear, (2) AE:EC = BF:FD, and (3) CG:GD = AF:FB.

Question Number 210687    Answers: 0   Comments: 2

Question Number 210685    Answers: 3   Comments: 0

find ∫(1/x)dx

$${find} \\ $$$$\int\frac{\mathrm{1}}{{x}}{dx} \\ $$

Question Number 210677    Answers: 1   Comments: 0

Question Number 210674    Answers: 1   Comments: 0

  Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121      Pg 122      Pg 123   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com