Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 119
Question Number 208241 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{p},\:{q},\:{r} \\ $$$${p}+{q}+{r}=\alpha \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\beta \\ $$$${pq}={r} \\ $$
Question Number 208238 Answers: 1 Comments: 0
$$\mathrm{S}{how}\:{that} \\ $$$$\frac{\pi}{\mathrm{4}}\:<\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}\:{using}\:{x}\:=\:{sint} \\ $$$${show}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{\mathrm{4}} }{dx}<\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$${using}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){g}\left({x}\right){dx}\right)^{\mathrm{2}} <\int_{\mathrm{0}} ^{\mathrm{1}} \left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}\int_{\mathrm{0}} ^{\mathrm{1}} \left({g}\left({x}\right)\right)^{\mathrm{2}} {dx} \\ $$
Question Number 208235 Answers: 2 Comments: 0
Question Number 208218 Answers: 1 Comments: 4
$$\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:\:\mathrm{numbers}\:\mathrm{series} \\ $$$$\mathrm{If}\:\:\mathrm{S}_{\mathrm{16}} \:−\:\mathrm{S}_{\mathrm{13}} \:\:=\:\:\mathrm{S}_{\mathrm{106}} \:−\:\mathrm{S}_{\mathrm{103}} \\ $$$$\mathrm{Find}:\:\:\:\:\frac{\mathrm{3a}_{\mathrm{3}} \:+\:\mathrm{4a}_{\mathrm{4}} \:+\:\mathrm{5a}_{\mathrm{5}} }{\mathrm{2a}_{\mathrm{12}} }\:\:=\:\:? \\ $$
Question Number 208217 Answers: 3 Comments: 0
$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} +\mathrm{13}^{\mathrm{2}} +\mathrm{21}^{\mathrm{2}} =? \\ $$
Question Number 208215 Answers: 2 Comments: 0
$$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{R}}\:=\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{1}} }\:+\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{2}} }\:\left[\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} \:>\:\mathrm{0}\right]\:\mathrm{and}\: \\ $$$$\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{R}_{\mathrm{2}} \:=\:\mathrm{C}\:\left(\mathrm{Constant}\right)\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{R}\:\mathrm{will}\:\mathrm{be}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{R}_{\mathrm{1}} \:=\:\mathrm{R}_{\mathrm{2}} . \\ $$
Question Number 208205 Answers: 1 Comments: 0
$$\:\:\:\int\:\left({x}^{\mathrm{3}} .\:\mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} \:\right)\:{dx}\:=? \\ $$
Question Number 208199 Answers: 2 Comments: 0
Question Number 208194 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:{I}_{{n}} \:=\:\:\int_{\mathrm{0}\:} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }{dx} \\ $$$$\:\:{prove}\:{that}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{I}_{{n}} }{{n}}\:\:=\:\:\pi \\ $$
Question Number 208187 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\mathrm{1},\mathrm{03}^{\mathrm{200}} \:=\:? \\ $$
Question Number 208178 Answers: 5 Comments: 3
Question Number 208176 Answers: 1 Comments: 1
$$ \\ $$$$\:\:\:\:\:\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{folloing}}\:\boldsymbol{{integral}}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\begin{array}{|c|}{\:\:\:\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\mathrm{1}}{\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\boldsymbol{{cosx}}}}\:\boldsymbol{{dx}}\:=\:?\:\:}\\\hline\end{array} \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 208173 Answers: 1 Comments: 1
$$\frac{\mathrm{5}}{−\infty}=? \\ $$
Question Number 208167 Answers: 2 Comments: 0
$$\mathrm{y}\:=\:\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:\alpha\:+\:\mathrm{2}\:\mathrm{cos}\:\alpha \\ $$$$\mathrm{find}:\:\:\:\mathrm{max}\left(\mathrm{y}\right)\:=\:? \\ $$
Question Number 208164 Answers: 2 Comments: 0
$${Solve}\:{for}\:{x}: \\ $$$${x}^{\mathrm{2}} +{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)+{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} +{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} +...+{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{100}} =\mathrm{1} \\ $$
Question Number 208149 Answers: 3 Comments: 0
Question Number 208148 Answers: 2 Comments: 0
Question Number 208139 Answers: 1 Comments: 0
$$\:\:\:\: \\ $$
Question Number 208135 Answers: 1 Comments: 0
$$\:\:\:\downharpoonleft\underline{\:} \\ $$
Question Number 208134 Answers: 0 Comments: 0
Question Number 208140 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{dx}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}}}=? \\ $$$$\mathrm{exact}\:\mathrm{result}\:\mathrm{required} \\ $$
Question Number 208130 Answers: 1 Comments: 0
$$\:\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{3x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{5x}}\:+ \\ $$$$\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{7x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{11x}}=?\: \\ $$
Question Number 208129 Answers: 2 Comments: 0
$$\:\:\:\:\:\underbrace{\pm \cancel{} } \\ $$
Question Number 208128 Answers: 0 Comments: 0
Question Number 208122 Answers: 0 Comments: 0
Question Number 208121 Answers: 0 Comments: 2
Pg 114 Pg 115 Pg 116 Pg 117 Pg 118 Pg 119 Pg 120 Pg 121 Pg 122 Pg 123
Terms of Service
Privacy Policy
Contact: info@tinkutara.com