Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1189

Question Number 86532    Answers: 0   Comments: 2

∫((x^7 .dx)/((1+x^3 )^((1/2)) ))

$$\int\frac{{x}^{\mathrm{7}} .{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\left(\mathrm{1}/\mathrm{2}\right)} } \\ $$

Question Number 86528    Answers: 0   Comments: 5

Question Number 86518    Answers: 0   Comments: 1

∫ (dx/(e^(2x) −5e^x ))

$$\int\:\:\frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{2x}} −\mathrm{5e}^{\mathrm{x}} } \\ $$

Question Number 86515    Answers: 0   Comments: 2

log_2 (x) + log_3 (x) = 1 x =

$$\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{x}\right)\:+\:\mathrm{log}_{\mathrm{3}} \:\left(\mathrm{x}\right)\:=\:\mathrm{1}\: \\ $$$$\mathrm{x}\:=\: \\ $$

Question Number 86507    Answers: 0   Comments: 1

If e^(cos x) −e^(−cos x) = 4, then the value of cos x is

$$\mathrm{If}\:{e}^{\mathrm{cos}\:{x}} −{e}^{−\mathrm{cos}\:{x}} =\:\mathrm{4},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{cos}\:{x}\:\mathrm{is} \\ $$

Question Number 86499    Answers: 1   Comments: 1

The digit at unit′s place in the number 17^(1995) + 11^(1995) −7^(1995) is

$$\mathrm{The}\:\mathrm{digit}\:\mathrm{at}\:\mathrm{unit}'\mathrm{s}\:\mathrm{place}\:\mathrm{in}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{17}^{\mathrm{1995}} +\:\mathrm{11}^{\mathrm{1995}} −\mathrm{7}^{\mathrm{1995}} \:\:\mathrm{is} \\ $$

Question Number 86498    Answers: 0   Comments: 0

If (1/(√(4x+1))){(((1+(√(4x+1)))/2))^n − (((1−(√(4x+1)))/2))^n } = a_0 +a_1 x+...+a_5 x^5 , then n=

$$\mathrm{If}\:\frac{\mathrm{1}}{\sqrt{\mathrm{4}{x}+\mathrm{1}}}\left\{\left(\frac{\mathrm{1}+\sqrt{\mathrm{4}{x}+\mathrm{1}}}{\mathrm{2}}\right)^{{n}} −\:\left(\frac{\mathrm{1}−\sqrt{\mathrm{4}{x}+\mathrm{1}}}{\mathrm{2}}\right)^{{n}} \right\} \\ $$$$\:\:\:\:=\:{a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+...+{a}_{\mathrm{5}} {x}^{\mathrm{5}} ,\:\mathrm{then}\:{n}= \\ $$

Question Number 86491    Answers: 2   Comments: 1

∫ ((x^2 +1)/(x^4 +1)) dx ?

$$\int\:\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{4}} +\mathrm{1}}\:\mathrm{dx}\:?\: \\ $$

Question Number 86490    Answers: 1   Comments: 1

If sin θ + cos θ=(√2) cos θ then cos θ−sin θ is equal to

$$\mathrm{If}\:\:\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta=\sqrt{\mathrm{2}}\:\mathrm{cos}\:\theta\:\mathrm{then} \\ $$$$\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 86486    Answers: 0   Comments: 5

If sin x + cos x = (2/3) find (1/(sin x)) + (1/(cos x)) = ?

$$\mathrm{If}\:\mathrm{sin}\:\mathrm{x}\:+\:\mathrm{cos}\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathrm{find}\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}}\:=\:? \\ $$

Question Number 86484    Answers: 2   Comments: 9

∫(x^6 /(1+x^(12) ))dx

$$\int\frac{{x}^{\mathrm{6}} }{\mathrm{1}+{x}^{\mathrm{12}} }{dx} \\ $$

Question Number 86480    Answers: 0   Comments: 1

∫_0 ^∞ (x e^(1−x) −⌊x⌋e^(1−⌊x⌋) )dx

$$\int_{\mathrm{0}} ^{\infty} \left({x}\:{e}^{\mathrm{1}−{x}} \:−\lfloor{x}\rfloor{e}^{\mathrm{1}−\lfloor{x}\rfloor} \right){dx} \\ $$

Question Number 86479    Answers: 1   Comments: 0

a ball is droped from a height 20 m. Given that it rebounce with a velocity of (3/4) that which it hit the ground find the time interval between the first and second rebounce.

$$\mathrm{a}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{droped}\:\mathrm{from}\:\mathrm{a}\:\mathrm{height}\:\mathrm{20}\:\mathrm{m}.\:\mathrm{Given}\:\mathrm{that}\:\mathrm{it} \\ $$$$\mathrm{rebounce}\:\mathrm{with}\:\mathrm{a}\:\mathrm{velocity}\:\mathrm{of}\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{that}\:\mathrm{which}\:\mathrm{it}\:\mathrm{hit}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{time}\:\mathrm{interval}\:\mathrm{between}\:\mathrm{the}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second}\:\mathrm{rebounce}. \\ $$

Question Number 86476    Answers: 0   Comments: 1

show that sin^(−1) α=−i ln (α±(√(α^2 −1)))−(π/2)

$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \alpha=−{i}\:\mathrm{ln}\:\left(\alpha\pm\sqrt{\alpha^{\mathrm{2}} −\mathrm{1}}\right)−\frac{\pi}{\mathrm{2}} \\ $$

Question Number 86472    Answers: 1   Comments: 0

Question Number 86461    Answers: 3   Comments: 0

Use exponential representation of sin θ and cos θ to show that a) sin^2 θ + cos^2 θ = 1 b) cos^2 θ − sin^2 θ = cos2θ c) 2 sinθ cosθ = 2sin2θ.

$$\mathrm{Use}\:\mathrm{exponential}\:\mathrm{representation}\:\mathrm{of}\:\mathrm{sin}\:\theta\:\mathrm{and}\:\mathrm{cos}\:\theta\:\mathrm{to}\:\mathrm{show}\:\mathrm{that} \\ $$$$\left.\mathrm{a}\left.\right)\:\mathrm{sin}^{\mathrm{2}} \:\theta\:+\:\mathrm{cos}^{\mathrm{2}} \:\theta\:=\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}\right)\:\mathrm{cos}^{\mathrm{2}} \theta\:−\:\mathrm{sin}^{\mathrm{2}} \theta\:=\:\mathrm{cos2}\theta \\ $$$$\left.\mathrm{c}\right)\:\mathrm{2}\:\mathrm{sin}\theta\:\mathrm{cos}\theta\:=\:\mathrm{2sin2}\theta. \\ $$

Question Number 86496    Answers: 0   Comments: 2

The number of integral terms in the expansion of (5^(1/2) + 7^(1/8) )^(1024) is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integral}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\:\:\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{2}}} +\:\mathrm{7}^{\frac{\mathrm{1}}{\mathrm{8}}} \right)^{\mathrm{1024}} \:\mathrm{is} \\ $$

Question Number 86454    Answers: 1   Comments: 0

pls check the question below

$$\:{pls}\:{check}\:{the}\: \\ $$$${question}\:{below} \\ $$

Question Number 86453    Answers: 1   Comments: 3

Question Number 86447    Answers: 0   Comments: 1

Question Number 86431    Answers: 2   Comments: 0

∫(√(x−(√(x^2 +1)) )) dx

$$\int\sqrt{{x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:}\:{dx} \\ $$

Question Number 86428    Answers: 0   Comments: 2

∫ (dx/(a cos x + b sin x))?

$$\int\:\:\frac{\mathrm{dx}}{\mathrm{a}\:\mathrm{cos}\:\mathrm{x}\:+\:\mathrm{b}\:\mathrm{sin}\:\mathrm{x}}? \\ $$

Question Number 86426    Answers: 2   Comments: 0

solve in R x^3 −5=[x]

$${solve}\:{in}\:{R} \\ $$$${x}^{\mathrm{3}} −\mathrm{5}=\left[{x}\right] \\ $$

Question Number 86416    Answers: 0   Comments: 1

(√(8=)) 68]

$$\sqrt{\mathrm{8}=} \\ $$$$\left.\mathrm{68}\right] \\ $$$$ \\ $$

Question Number 86407    Answers: 1   Comments: 1

Question Number 86406    Answers: 2   Comments: 0

let u^→ =i^→ −j^→ +k^→ and v^→ =2i^→ +j^→ +3k^→ (o,i,j,k) orthonormal 1) calculate ∣∣u^→ ∣∣ ,∣∣v^→ ∣∣ ,u^→ .v^→ 2) calculate cos(u^→ ,v^→ ) 3)calculate u^→ Λv^→ and sin(u^→ ,v^→ )

$${let}\:\:\overset{\rightarrow} {{u}}=\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}\:+\overset{\rightarrow} {{k}}\:{and}\:\overset{\rightarrow} {{v}}=\mathrm{2}\overset{\rightarrow} {{i}}+\overset{\rightarrow} {{j}}\:+\mathrm{3}\overset{\rightarrow} {{k}} \\ $$$$\left({o},{i},{j},{k}\right)\:{orthonormal} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:\mid\mid\overset{\rightarrow} {{u}}\mid\mid\:\:,\mid\mid\overset{\rightarrow} {{v}}\mid\mid\:\:,\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{cos}\left(\overset{\rightarrow} {{u}},\overset{\rightarrow} {{v}}\right) \\ $$$$\left.\mathrm{3}\right){calculate}\:\overset{\rightarrow} {{u}}\Lambda\overset{\rightarrow} {{v}}\:\:\:\:{and}\:\:{sin}\left(\overset{\rightarrow} {{u}},\overset{\rightarrow} {{v}}\right) \\ $$

  Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189      Pg 1190      Pg 1191      Pg 1192      Pg 1193   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com