Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1189
Question Number 89804 Answers: 1 Comments: 0
Question Number 89816 Answers: 0 Comments: 3
Question Number 89817 Answers: 0 Comments: 0
Question Number 89795 Answers: 1 Comments: 0
Question Number 89794 Answers: 0 Comments: 1
$${true}\:{or}\:{false} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\right).....\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\right)<\mathrm{3} \\ $$
Question Number 89781 Answers: 0 Comments: 8
Question Number 89776 Answers: 0 Comments: 2
$${what}\:{is}\:{the}\:{stability}\:{of}\:{the}\: \\ $$$${following}\:{function}\: \\ $$$$\frac{{dy}}{{dt}}\:=\:{y}^{\mathrm{3}} \:−\mathrm{2}{y}^{\mathrm{2}} \:+\:{y}\: \\ $$
Question Number 89768 Answers: 2 Comments: 0
$${t}\left({n}\right)\:−\:{t}\left({n}−\mathrm{1}\right)\:=\:{n}\:\: \\ $$$${for}\:{n}\:>\:\mathrm{0}\:{and}\:{t}\left(\mathrm{0}\right)\:=\:\mathrm{1}\: \\ $$$${find}\:{t}\left({n}\right)\: \\ $$
Question Number 89755 Answers: 1 Comments: 1
Question Number 89753 Answers: 1 Comments: 6
$$\frac{\mathrm{d}}{\mathrm{dx}}\:\left(\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{16}} {\prod}}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{k}}\right)\right)\underset{\:\mathrm{x}\:=\:\mathrm{0}} {\mid}\:=\:? \\ $$
Question Number 89749 Answers: 0 Comments: 4
Question Number 89748 Answers: 0 Comments: 4
$$\mathrm{dx}\:=\:\left(\mathrm{1}+\mathrm{2xtan}\:\mathrm{y}\right)\:\mathrm{dy}\: \\ $$
Question Number 89745 Answers: 0 Comments: 2
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\frac{\mathrm{3}\pi}{\mathrm{8}}\right)\:,\:\forall\mathrm{x}\in\:\mathbb{R} \\ $$$$\mathrm{if}\:\underset{\mathrm{0}} {\overset{\mathrm{3}\pi/\mathrm{8}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\mathrm{t}\:,\:\mathrm{then}\: \\ $$$$\underset{\pi} {\overset{\mathrm{5}\pi/\mathrm{2}} {\int}}\mathrm{f}\left(\mathrm{x}−\pi\right)\:\mathrm{dx}\:=\: \\ $$$$\mathrm{A}.\:\mathrm{2t}\:\:\:\:\:\:\:\mathrm{B}.\:\mathrm{3t}\:\:\:\:\:\:\:\mathrm{C}.\:\mathrm{4t}\:\:\:\:\:\:\:\mathrm{D}.\:\mathrm{6t} \\ $$$$\mathrm{E}.\:\mathrm{8t}\: \\ $$
Question Number 89920 Answers: 0 Comments: 1
$${x}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{x}}}\:{and}\:{y}=\frac{\mathrm{2}}{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{1}+{y}\:}}\:{find}\:{x}+{y} \\ $$
Question Number 89741 Answers: 0 Comments: 1
Question Number 89737 Answers: 0 Comments: 0
Question Number 89736 Answers: 0 Comments: 1
Question Number 89735 Answers: 0 Comments: 1
Question Number 89732 Answers: 0 Comments: 0
Question Number 89728 Answers: 1 Comments: 0
$${Find}\:{the}\:{area}\:{bounded}\:{by}\:\mathrm{3}{x}+\mathrm{4}{y}=\mathrm{12} \\ $$$${and}\:{the}\:{coordinate}\:{axes}? \\ $$
Question Number 89726 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{6}\sqrt{\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}\:{dx} \\ $$
Question Number 89719 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left({ln}\left({x}\right)\right)}{\mathrm{4}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 89718 Answers: 0 Comments: 0
$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{2}{x}+\mathrm{1}}−\sqrt{\mathrm{2}{x}−\mathrm{1}} \\ $$$${find}\:{f}^{\left({n}\right)} \:{by}\:{recurence} \\ $$
Question Number 89717 Answers: 1 Comments: 0
$${let}\:\:{f}\left({x}\right)=\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}} \\ $$$${find}\:\int\:\:\:\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx}\:\: \\ $$
Question Number 89716 Answers: 0 Comments: 0
$${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{n}\left[{x}\right]} \:{sin}\left(\frac{\left[{x}\right]}{{n}}\right){dx} \\ $$$${find}\:{nature}\:{of}\:\Sigma\:{n}^{\mathrm{2}} \:{A}_{{n}} \\ $$
Question Number 89714 Answers: 1 Comments: 1
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+\sqrt{\mathrm{2}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$
Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189 Pg 1190 Pg 1191 Pg 1192 Pg 1193
Terms of Service
Privacy Policy
Contact: info@tinkutara.com