Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1189
Question Number 97115 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:\mathrm{on}\:\mathrm{hyperbola}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{1}\right)\: \\ $$
Question Number 97114 Answers: 0 Comments: 0
$${pls}\:{find}\:{x} \\ $$$$ \\ $$$${x}^{{x}^{{x}} } +{ln}\left(\mathrm{2}{x}\right)−\mathrm{1}=\mathrm{0} \\ $$
Question Number 97109 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{3}} ×}\mathrm{dx}=? \\ $$
Question Number 97108 Answers: 4 Comments: 1
$$\left.\mathrm{1}\right){find}\:\frac{{dy}}{{dx}} \\ $$$${y}=\left({sin}\left({x}\right)\right)^{{cos}^{−\mathrm{1}} \left({x}\right)} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\underset{{x}\rightarrow\infty} {{lim}x}^{\frac{\mathrm{1}}{{x}}} \\ $$
Question Number 97091 Answers: 1 Comments: 0
$${solve}\:\int{x}^{{x}+\mathrm{1}} {dx}\:. \\ $$
Question Number 97089 Answers: 1 Comments: 0
$${solve}\:\:\int{x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right){dx}\:. \\ $$
Question Number 97088 Answers: 2 Comments: 0
Question Number 97082 Answers: 2 Comments: 0
Question Number 97073 Answers: 3 Comments: 4
$${Find}\:\:\frac{{dy}}{{dx}}\:\:{of}\:\:\:\:\mathrm{2}^{{x}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{2}{xy}\:\:\:\:,\:\:{x},\:{y}\:\in\:\mathbb{C} \\ $$
Question Number 97068 Answers: 1 Comments: 1
Question Number 97067 Answers: 2 Comments: 1
$$\mathrm{if}\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{degree}\:\mathrm{of} \\ $$$$\mathrm{x}^{\mathrm{6p}+\mathrm{1}} +\mathrm{3x}^{\mathrm{4p}−\mathrm{3}} +\mathrm{4x}^{\mathrm{8p}−\mathrm{10}} +\mathrm{8}\:\:\mathrm{polynomial}? \\ $$
Question Number 97064 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{an}\right)\:\mathrm{in}\:\mathrm{this}\:\mathrm{utility}\:\:\left(\mathrm{3xy}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$
Question Number 97059 Answers: 0 Comments: 1
Question Number 97057 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\sqrt{−\mathrm{ln}\left({x}\right)}}\:?\:\left[\:{by}\:{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$
Question Number 97065 Answers: 0 Comments: 2
Question Number 97055 Answers: 0 Comments: 0
Question Number 97051 Answers: 2 Comments: 2
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\: \\ $$$$\mathrm{dodecagon}\:\left(\mathrm{12}\:\mathrm{sides}\right)\:\mathrm{whose}\: \\ $$$$\mathrm{area}\:\mathrm{is}\:\mathrm{24}+\mathrm{12}\sqrt{\mathrm{3}}\:?\: \\ $$
Question Number 97045 Answers: 0 Comments: 4
$$\mathrm{a}\:\mathrm{committee}\:\mathrm{consisting}\:\mathrm{of} \\ $$$$\mathrm{5}\:\mathrm{men}\:\&\:\mathrm{4}\:\mathrm{women}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\: \\ $$$$\mathrm{chosen}\:\mathrm{from}\:\mathrm{8}\:\mathrm{men}\:\&\:\mathrm{4}\:\mathrm{women}. \\ $$$$\mathrm{If}\:\mathrm{one}\:\mathrm{man}\:\&\:\mathrm{one}\:\mathrm{woman}\:\mathrm{are}\:\mathrm{husband}\: \\ $$$$\&\:\mathrm{wife}\:,\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\: \\ $$$$\mathrm{the}\:\mathrm{committee}\:\mathrm{be}\:\mathrm{chosen}\:\mathrm{if} \\ $$$$\mathrm{only}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{husband}\:\&\:\mathrm{wife} \\ $$$$\mathrm{must}\:\mathrm{be}\:\mathrm{chosen}\:? \\ $$
Question Number 97041 Answers: 2 Comments: 0
$$\int\:\mathrm{sin}\:^{\mathrm{8}} \left({x}\right)\:\mathrm{cos}\:^{\mathrm{8}} \left({x}\right)\:{dx}\:=\:? \\ $$
Question Number 97033 Answers: 1 Comments: 0
Question Number 97031 Answers: 0 Comments: 0
Question Number 97019 Answers: 0 Comments: 1
Question Number 97011 Answers: 0 Comments: 0
$${Let}\:\:\Gamma\:{be}\:{the}\:{gamma}\:{function}\:\: \\ $$$$\:{Prove}\:{that}\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{Res}\left(\Gamma;−{n}\right)=\:{e} \\ $$
Question Number 97007 Answers: 0 Comments: 16
Question Number 97005 Answers: 1 Comments: 2
Question Number 97001 Answers: 1 Comments: 2
$$\mathrm{solve}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{xy}−\mathrm{xy}^{\mathrm{2}} \\ $$
Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189 Pg 1190 Pg 1191 Pg 1192 Pg 1193
Terms of Service
Privacy Policy
Contact: info@tinkutara.com