Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1188

Question Number 97226    Answers: 0   Comments: 0

let a_n the sequence wich verify a_n +a_(n+1) =(((−1)^n )/n^2 ) calculate Σ_(n=1) ^∞ a_n x^n

$$\mathrm{let}\:\:\mathrm{a}_{\mathrm{n}} \:\mathrm{the}\:\mathrm{sequence}\:\mathrm{wich}\:\mathrm{verify}\:\mathrm{a}_{\mathrm{n}} \:+\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} } \\ $$$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\ $$

Question Number 97218    Answers: 2   Comments: 0

∫_(−2) ^3 ∣x−2∣ ⌊ (x/2) ⌋ sgn (x−1) dx

$$\underset{−\mathrm{2}} {\overset{\mathrm{3}} {\int}}\:\mid{x}−\mathrm{2}\mid\:\lfloor\:\frac{{x}}{\mathrm{2}}\:\rfloor\:\mathrm{sgn}\:\left({x}−\mathrm{1}\right)\:{dx}\: \\ $$

Question Number 97206    Answers: 2   Comments: 0

Question Number 97200    Answers: 0   Comments: 8

App was updated about a week back to use new backend server for forum as we were facing problems on old server. Please update app to the latest version 2.079 or above. Thanks for ur cooperation. Note: Do not uninstall/reinstall as android removes app data on uninstalls. Backup all inapp saved equation to sdcard before uninstall.

$$\mathrm{App}\:\mathrm{was}\:\mathrm{updated}\:\mathrm{about}\:\:\mathrm{a}\:\mathrm{week} \\ $$$$\mathrm{back}\:\mathrm{to}\:\mathrm{use}\:\mathrm{new}\:\mathrm{backend}\:\mathrm{server} \\ $$$$\mathrm{for}\:\mathrm{forum}\:\mathrm{as}\:\mathrm{we}\:\mathrm{were}\:\mathrm{facing}\:\mathrm{problems}\:\mathrm{on}\:\mathrm{old} \\ $$$$\mathrm{server}. \\ $$$$\mathrm{Please}\:\mathrm{update}\:\mathrm{app}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{latest}\:\mathrm{version}\:\mathrm{2}.\mathrm{079}\:\mathrm{or}\:\mathrm{above}. \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{ur}\:\mathrm{cooperation}. \\ $$$$\mathrm{Note}:\:\mathrm{Do}\:\mathrm{not}\:\mathrm{uninstall}/\mathrm{reinstall} \\ $$$$\mathrm{as}\:\mathrm{android}\:\mathrm{removes}\:\mathrm{app}\:\mathrm{data}\:\mathrm{on} \\ $$$$\mathrm{uninstalls}.\:\mathrm{Backup}\:\mathrm{all}\:\mathrm{inapp} \\ $$$$\mathrm{saved}\:\mathrm{equation}\:\mathrm{to}\:\mathrm{sdcard}\:\mathrm{before} \\ $$$$\mathrm{uninstall}. \\ $$

Question Number 97199    Answers: 1   Comments: 0

lim_(x→0) ((sin x−tan x)/((((1+x^2 ))^(1/(3 )) −1)((√(1+sin x))−1))) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}}{\left(\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}−\mathrm{1}\right)}\:=\:? \\ $$

Question Number 97192    Answers: 1   Comments: 4

Question Number 97189    Answers: 0   Comments: 0

Question Number 97182    Answers: 0   Comments: 0

Question Number 97181    Answers: 0   Comments: 0

Question Number 97174    Answers: 0   Comments: 0

Exercise_(−) ABC is a triangle. AB=AC=2 and BC=2(√2). I is midle of [BC]. J is a point such as AJ^(→) =(2/3)AI^(→) . J is the center of gravity of the triangle. 1)a) we define the set(T) of ∀ point M of plane: AM^2 +BM^2 +CM^2 =8. Show that BM^2 +CM^2 =2IM^2 +4 and AM^2 +2IM^2 =3JM^2 +(4/3) b)deduct that AM^2 +BM^2 +CM^2 =3JM^2 +((16)/3) c)Deduct the nature of (T)

$$\underset{−} {{Exercise}} \\ $$$${ABC}\:{is}\:{a}\:{triangle}.\:{AB}={AC}=\mathrm{2}\:{and} \\ $$$${BC}=\mathrm{2}\sqrt{\mathrm{2}}.\:{I}\:{is}\:{midle}\:{of}\:\left[{BC}\right]. \\ $$$${J}\:{is}\:{a}\:{point}\:{such}\:{as}\:\overset{\rightarrow} {{AJ}}=\frac{\mathrm{2}}{\mathrm{3}}\overset{\rightarrow} {{AI}}.\:{J}\:{is} \\ $$$${the}\:{center}\:{of}\:{gravity}\:{of}\:{the}\:{triangle}. \\ $$$$\left.\mathrm{1}\left.\right){a}\right)\:{we}\:{define}\:{the}\:{set}\left({T}\right)\:{of}\:\forall\:{point}\:{M} \\ $$$${of}\:{plane}: \\ $$$${AM}^{\mathrm{2}} +{BM}^{\mathrm{2}} +{CM}^{\mathrm{2}} =\mathrm{8}. \\ $$$${Show}\:{that}\:{BM}^{\mathrm{2}} +{CM}^{\mathrm{2}} =\mathrm{2}{IM}^{\mathrm{2}} +\mathrm{4} \\ $$$${and}\:{AM}^{\mathrm{2}} +\mathrm{2}{IM}^{\mathrm{2}} =\mathrm{3}{JM}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\left.{b}\right){deduct}\:{that}\: \\ $$$${AM}^{\mathrm{2}} +{BM}^{\mathrm{2}} +{CM}^{\mathrm{2}} =\mathrm{3}{JM}^{\mathrm{2}} +\frac{\mathrm{16}}{\mathrm{3}} \\ $$$$\left.{c}\right){Deduct}\:{the}\:{nature}\:{of}\:\left({T}\right) \\ $$

Question Number 97173    Answers: 1   Comments: 0

Question Number 97157    Answers: 3   Comments: 1

Question Number 97153    Answers: 2   Comments: 0

Question Number 97143    Answers: 1   Comments: 0

Given f(x)=((ax^2 +bx+c)/x) and C_f its graph; Determine the real numbers a, b, and c such that C_f passes through the points A(1;2); B(−4;8) and has a tangent parallel to the x−axis at x=2.

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}}{\mathrm{x}}\:\mathrm{and}\:\mathcal{C}_{\mathrm{f}} \:\mathrm{its}\:\mathrm{graph}; \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{a},\:\mathrm{b},\:\mathrm{and}\:\mathrm{c}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathcal{C}_{\mathrm{f}} \:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{points}\:\mathrm{A}\left(\mathrm{1};\mathrm{2}\right);\:\mathrm{B}\left(−\mathrm{4};\mathrm{8}\right)\:\mathrm{and}\:\mathrm{has} \\ $$$$\mathrm{a}\:\mathrm{tangent}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{x}−\mathrm{axis}\:\mathrm{at}\:\mathrm{x}=\mathrm{2}. \\ $$

Question Number 97142    Answers: 2   Comments: 3

prove that cos(mx)cos(ny)=((cos(mx+ny)+cos(mx−ny))/2) ? help me sir ?

$${prove}\:{that}\:{cos}\left({mx}\right){cos}\left({ny}\right)=\frac{{cos}\left({mx}+{ny}\right)+{cos}\left({mx}−{ny}\right)}{\mathrm{2}}\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Question Number 97139    Answers: 0   Comments: 1

prove that sinh3x=3sinhx+4sinh^3 x ? help me sir ?

$${prove}\:{that}\:{sinh}\mathrm{3}{x}=\mathrm{3}{sinhx}+\mathrm{4}{sinh}^{\mathrm{3}} {x}\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Question Number 97138    Answers: 0   Comments: 0

if it is H(x,y) ,G(x,y) k class Homogeneous function using aspecific provision find the general solution to the following differential equation y H(x,y)dx+G(x,y)(ydx−xdy)=0 please sir helpe me ? no one help me ?

$${if}\:{it}\:{is}\:{H}\left({x},{y}\right)\:,{G}\left({x},{y}\right)\:{k}\:{class}\:{Homogeneous}\:{function}\:{using}\:{aspecific}\:{provision}\:{find} \\ $$$${the}\:{general}\:{solution}\:{to}\:{the}\:{following}\:{differential}\:{equation} \\ $$$${y}\:{H}\left({x},{y}\right){dx}+{G}\left({x},{y}\right)\left({ydx}−{xdy}\right)=\mathrm{0} \\ $$$$ \\ $$$${please}\:{sir}\:{helpe}\:{me}\:?\: \\ $$$${no}\:{one}\:{help}\:{me}\:? \\ $$

Question Number 97137    Answers: 1   Comments: 2

using aparticular theory ,find the general solution to the following differential equation f(x+y)dx+g(x+y)dy=0 ? help me sir please

$${using}\:{aparticular}\:{theory}\:,{find}\:{the}\:{general}\:{solution}\:{to}\: \\ $$$${the}\:{following}\:{differential}\:{equation}\: \\ $$$${f}\left({x}+{y}\right){dx}+{g}\left({x}+{y}\right){dy}=\mathrm{0}\:? \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$

Question Number 97136    Answers: 0   Comments: 3

Evaluate (3/(1! + 2! + 3!)) + (4/(2! + 3! + 4!)) + ... + ((2001)/(1999! + 2000! + 2001!))

$$\mathrm{Evaluate} \\ $$$$\:\:\frac{\mathrm{3}}{\mathrm{1}!\:+\:\mathrm{2}!\:+\:\mathrm{3}!}\:\:+\:\:\frac{\mathrm{4}}{\mathrm{2}!\:+\:\mathrm{3}!\:+\:\mathrm{4}!}\:\:+\:\:...\:+\:\:\frac{\mathrm{2001}}{\mathrm{1999}!\:\:+\:\:\mathrm{2000}!\:\:+\:\:\mathrm{2001}!} \\ $$

Question Number 97135    Answers: 0   Comments: 1

prove that: sin(16x) cot(x)=1+2cos(2x)+2cos(4x)+2cos(6x)+...+2cos(16x)

$${prove}\:{that}: \\ $$$${sin}\left(\mathrm{16}{x}\right)\:{cot}\left({x}\right)=\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+\mathrm{2}{cos}\left(\mathrm{4}{x}\right)+\mathrm{2}{cos}\left(\mathrm{6}{x}\right)+...+\mathrm{2}{cos}\left(\mathrm{16}{x}\right) \\ $$

Question Number 97134    Answers: 0   Comments: 0

find the laplace transform of t^(3/2) erf(t)

$${find}\:{the}\:{laplace}\:{transform}\:{of}\:{t}^{\frac{\mathrm{3}}{\mathrm{2}}} {erf}\left({t}\right) \\ $$

Question Number 97132    Answers: 1   Comments: 1

is the formulla of sin^3 ((π/2)+x)=cos^3 x correct?

$$\mathrm{is}\:\mathrm{the}\:\mathrm{formulla}\:\mathrm{of}\:\mathrm{sin}\:^{\mathrm{3}} \left(\frac{\pi}{\mathrm{2}}+\mathrm{x}\right)=\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\:\:\:\:\mathrm{correct}? \\ $$

Question Number 97130    Answers: 1   Comments: 0

Question Number 97129    Answers: 0   Comments: 0

Given z=x+iy z∈C z≠0 1\ A, B, and C are the images of z, iz, and (2−i)+z a\ Calculate the lengths AB, AC, and BC. b\ Deduce that the triangle ABC is isosceles and not equilateral. 2\Find z, such that ∣z∣=∣((2+i)/z)∣=∣z−1∣ 3\Given Z, Z∈C such that ((Z−1)/(Z+1))=(((z−1)/(z+1)))^2 a\Express Z in terms of z b\What can we say of the images of Z, z, and (1/z) ?

$$\mathrm{Given}\:\:\mathrm{z}=\mathrm{x}+\mathrm{iy}\:\:\mathrm{z}\in\mathbb{C}\:\:\mathrm{z}\neq\mathrm{0} \\ $$$$\mathrm{1}\backslash\:\mathrm{A},\:\mathrm{B},\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{z},\:\mathrm{iz},\:\mathrm{and}\:\left(\mathrm{2}−\mathrm{i}\right)+\mathrm{z} \\ $$$$\mathrm{a}\backslash\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{AB},\:\mathrm{AC},\:\mathrm{and}\:\mathrm{BC}. \\ $$$$\mathrm{b}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{and}\:\mathrm{not} \\ $$$$\mathrm{equilateral}. \\ $$$$\mathrm{2}\backslash\mathrm{Find}\:\mathrm{z},\:\mathrm{such}\:\mathrm{that}\:\mid\mathrm{z}\mid=\mid\frac{\mathrm{2}+\mathrm{i}}{\mathrm{z}}\mid=\mid\mathrm{z}−\mathrm{1}\mid \\ $$$$\mathrm{3}\backslash\mathrm{Given}\:\mathrm{Z},\:\mathrm{Z}\in\mathbb{C}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{Z}−\mathrm{1}}{\mathrm{Z}+\mathrm{1}}=\left(\frac{\mathrm{z}−\mathrm{1}}{\mathrm{z}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{a}\backslash\mathrm{Express}\:\mathrm{Z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{z} \\ $$$$\mathrm{b}\backslash\mathrm{What}\:\mathrm{can}\:\mathrm{we}\:\mathrm{say}\:\mathrm{of}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{Z},\:\mathrm{z},\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{z}}\:? \\ $$

Question Number 97125    Answers: 0   Comments: 0

∫{xtanx+ln∣cos x∣} dx

$$\int\left\{\mathrm{xtanx}+\mathrm{ln}\mid\mathrm{cos}\:\mathrm{x}\mid\right\}\:\mathrm{dx} \\ $$

Question Number 97117    Answers: 1   Comments: 0

lim_(h→0) [ (1/h) ∫_2 ^(2+2h) (√(t^2 +2)) dt ]

$$\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{h}}\:\underset{\mathrm{2}} {\overset{\mathrm{2}+\mathrm{2h}} {\int}}\sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{2}}\:\mathrm{dt}\:\right]\: \\ $$

  Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189      Pg 1190      Pg 1191      Pg 1192   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com