Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1188

Question Number 94416    Answers: 0   Comments: 0

A direct similitude of center,Ω, transforms point A into point A′ and point B into point B′. Prove that there existe a direct similitude of center,Ω, which transforms A and B into A′ and B′.

$$\mathrm{A}\:\mathrm{direct}\:\mathrm{similitude}\:\mathrm{of}\:\mathrm{center},\Omega,\:\mathrm{transforms}\:\mathrm{point}\:\mathrm{A}\:\mathrm{into}\:\mathrm{point}\:\mathrm{A}' \\ $$$$\mathrm{and}\:\mathrm{point}\:\mathrm{B}\:\mathrm{into}\:\mathrm{point}\:\mathrm{B}'.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{existe}\:\mathrm{a} \\ $$$$\mathrm{direct}\:\mathrm{similitude}\:\mathrm{of}\:\mathrm{center},\Omega,\:\mathrm{which}\:\mathrm{transforms}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{into}\:\mathrm{A}'\:\mathrm{and}\:\mathrm{B}'. \\ $$

Question Number 94397    Answers: 1   Comments: 0

Question Number 94406    Answers: 0   Comments: 5

Question Number 94382    Answers: 1   Comments: 2

a_(n+1) =(√(k+(√a_n ))) a_0 =(√k) how do you solve for k? Only Equation please no value for k

$${a}_{{n}+\mathrm{1}} =\sqrt{{k}+\sqrt{{a}_{{n}} }}\:\:\:\:{a}_{\mathrm{0}} =\sqrt{{k}} \\ $$$${how}\:{do}\:{you}\:{solve}\:{for}\:{k}? \\ $$$${Only}\:{Equation}\:{please}\:{no}\:{value} \\ $$$${for}\:{k} \\ $$

Question Number 94374    Answers: 0   Comments: 2

In 7yrs, Haidar senior Kani with 3yrs. In the next 4yrs Haidar again seniors Kani with 2yrs. How old is Haidar and Kani?

$$\mathrm{In}\:\mathrm{7yrs},\:\mathrm{Haidar}\:\mathrm{senior}\:\mathrm{Kani}\:\mathrm{with}\:\mathrm{3yrs}. \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{next}\:\mathrm{4yrs}\:\mathrm{Haidar}\:\mathrm{again}\:\mathrm{seniors}\:\mathrm{Kani} \\ $$$$\mathrm{with}\:\mathrm{2yrs}.\:\mathrm{How}\:\mathrm{old}\:\mathrm{is}\:\mathrm{Haidar}\:\mathrm{and}\:\mathrm{Kani}? \\ $$

Question Number 94366    Answers: 1   Comments: 9

what is the value of x if f(x+1) = x^2 −1 g(x)= 2x+7 and f(g^(−1) (x))= 3

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{if}\:\mathrm{f}\left({x}+\mathrm{1}\right)\:=\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${g}\left({x}\right)=\:\mathrm{2}{x}+\mathrm{7}\:\mathrm{and}\:{f}\left({g}^{−\mathrm{1}} \left({x}\right)\right)=\:\mathrm{3}\: \\ $$

Question Number 94360    Answers: 1   Comments: 3

Question Number 94359    Answers: 0   Comments: 1

If 32 men can reap a field in 15 days .In howmany days can 20 men reap the same fied?

$${If}\:\:\mathrm{32}\:{men}\:{can}\:{reap}\:{a}\:{field}\:{in}\:\mathrm{15}\:{days}\:.{In}\:{howmany}\:{days}\:{can}\:\mathrm{20}\:{men}\:{reap}\:{the}\:{same}\:{fied}? \\ $$

Question Number 94356    Answers: 0   Comments: 2

∫_y ^3 (3x^2 −2x+2)=40 (1/2)y=?

$$\int_{{y}} ^{\mathrm{3}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}\right)=\mathrm{40} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{y}=? \\ $$

Question Number 94354    Answers: 1   Comments: 3

by using ostrogadski method solve this integral ∫((3x^5 −x^4 +2x^3 −12x^2 −2x+1)/((x^3 −1)^2 ))dx

$${by}\:{using}\:{ostrogadski}\:{method}\:{solve}\:{this} \\ $$$${integral} \\ $$$$\int\frac{\mathrm{3}{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{\left({x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 94352    Answers: 0   Comments: 4

Question Number 94344    Answers: 1   Comments: 0

if tan^(−1) (x)=(1/2)cos^(−1) ((5/(13))) find x

$$\mathrm{if}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{5}}{\mathrm{13}}\right) \\ $$$$\mathrm{find}\:\mathrm{x}\: \\ $$

Question Number 94342    Answers: 0   Comments: 2

B

$$\mathbb{B} \\ $$

Question Number 94340    Answers: 1   Comments: 0

1) calculate U_n =∫_0 ^1 ln(x)ln(1−(x/n))dx (n>0) 2)find nature of Σ U_n and ΣnU_n

$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx}\:\:\:\:\:\:\left(\mathrm{n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\:\Sigma\:\mathrm{U}_{\mathrm{n}} \mathrm{and}\:\Sigma\mathrm{nU}_{\mathrm{n}} \\ $$

Question Number 94339    Answers: 0   Comments: 0

calculate Σ_(n=1) ^∞ H_n x^n with H_n =Σ_(k=1) ^n (1/k)

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{H}_{{n}} {x}^{{n}} \:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$

Question Number 94338    Answers: 1   Comments: 0

developp at intergr serie f(x) =(1/((x+3)(x^2 +4)))

$${developp}\:{at}\:{intergr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)} \\ $$

Question Number 94337    Answers: 3   Comments: 0

developp at integr serie f(x) =(1/((x−1)(x−2)))

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$

Question Number 94336    Answers: 2   Comments: 0

let f(x) =arctan(2x) e^(−3x) 1) determine f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\mathrm{3x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$

Question Number 94335    Answers: 2   Comments: 0

calculate Σ_(n=0) ^∞ n^((−1)^n ) x^n

$${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\left(−\mathrm{1}\right)^{{n}} } {x}^{{n}} \\ $$

Question Number 94334    Answers: 1   Comments: 0

let f(x) =((sinx)/x)if x≠0 and f(0)=1 1) findf^((n)) (x) and f^((n)) (0) 2)developp f at integr serie st x_0 =0 and x_0 =(π/2)

$${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$

Question Number 94333    Answers: 1   Comments: 0

developp at integr serie ∫_(−∞) ^x (dt/(t^4 +t^2 +1))

$${developp}\:{at}\:{integr}\:{serie}\:\int_{−\infty} ^{{x}} \:\frac{{dt}}{{t}^{\mathrm{4}} \:+{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Question Number 94332    Answers: 0   Comments: 0

developp at integr serie f(x)=(arcsinx)^2

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\left({arcsinx}\right)^{\mathrm{2}} \\ $$

Question Number 94331    Answers: 2   Comments: 0

1) calculate Σ_(n=0) ^∞ (x^n /(4n^2 −1)) with ∣x∣<1 2) find the value of Σ_(n=0) ^∞ (1/(4n^2 −1)) and Σ_(n=0) ^∞ (((−1)^n )/(4n^2 −1))

$$\left.\mathrm{1}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$ \\ $$

Question Number 94328    Answers: 2   Comments: 0

y′ + xy = x

$$\mathrm{y}'\:+\:\mathrm{xy}\:=\:\mathrm{x}\: \\ $$

Question Number 94324    Answers: 0   Comments: 0

Question Number 94319    Answers: 0   Comments: 4

  Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189      Pg 1190      Pg 1191      Pg 1192   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com