Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1188
Question Number 86640 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equations}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{i}}\right).\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:−\:\boldsymbol{\mathrm{x}}\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:+\:\boldsymbol{\mathrm{y}}\:=\:\:\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}. \\ $$$$\:\:\left(\boldsymbol{\mathrm{ii}}\right).\:\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)^{\mathrm{2}} \:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:−\:\mathrm{4}\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:+\:\mathrm{6}\boldsymbol{\mathrm{y}}\:=\:\:\boldsymbol{\mathrm{x}}. \\ $$$$\: \\ $$
Question Number 86638 Answers: 1 Comments: 0
$${I}=\int\frac{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{3}} \left({x}−\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 86634 Answers: 1 Comments: 0
Question Number 86627 Answers: 1 Comments: 3
Question Number 86626 Answers: 1 Comments: 2
$$\int\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}\:\:\mathrm{dx} \\ $$$$\mathrm{answer}\:\mathrm{quick}\:\mathrm{pls} \\ $$
Question Number 86615 Answers: 1 Comments: 2
$$\int\sqrt{{tan}\:{x}\:}{dx} \\ $$
Question Number 86614 Answers: 1 Comments: 0
$${ABC}\:{is}\:{an}\:{isocel}\:{triangle}\:{such}\:{as} \\ $$$${AB}={AC}=\mathrm{3}\:\:{and}\:{BC}=\mathrm{4} \\ $$$$\alpha\:,\:\beta\:,\:{and}\:\gamma\:{are}\:{its}\:{angles}. \\ $$$${Show}\:{that}\:{cos}\left(\frac{\alpha+\beta}{\mathrm{2}}\right)={sin}\left(\frac{\gamma}{\mathrm{2}}\right) \\ $$$${Hi}\:{sirs}... \\ $$
Question Number 86613 Answers: 0 Comments: 6
$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{ycos}\left({x}\right)+\mathrm{1}}{dxdy} \\ $$$$ \\ $$
Question Number 86611 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{{e}} \frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 86610 Answers: 0 Comments: 4
Question Number 86603 Answers: 2 Comments: 2
$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\frac{{e}^{{x}} }{\left(\mathrm{1}+{x}\right)^{{n}} } \\ $$
Question Number 86602 Answers: 0 Comments: 0
Question Number 86598 Answers: 0 Comments: 1
$$\:\mathrm{write}\:\mathrm{out}\:\mathrm{the}\:\mathrm{general}\:\mathrm{summation}\:\mathrm{formula}\:\mathrm{for} \\ $$$$\:\mathrm{the}\:\mathrm{maclaurin}\:\mathrm{series}\:\mathrm{expansion}\:\mathrm{for}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\mathrm{cos}\:{x}\:+\:\mathrm{cosh}\:{x}\right) \\ $$
Question Number 86592 Answers: 0 Comments: 1
$${prove}\:{that} \\ $$$$\mathrm{2}\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{{x}} \:\left({x}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{x}\right)!\:\left({x}\right)} \\ $$
Question Number 86591 Answers: 0 Comments: 0
$$\int_{−\mathrm{1}} ^{\mathrm{1}} \lfloor\:\mid{x}\mid+\sqrt[{\mathrm{3}}]{{x}}\:\rfloor\:{dx} \\ $$
Question Number 86586 Answers: 1 Comments: 4
Question Number 86578 Answers: 0 Comments: 2
Question Number 86576 Answers: 0 Comments: 3
$$\int\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{arc}\:\mathrm{sin}\:\left(\mathrm{x}^{\mathrm{2}} \right)\right)}{\mathrm{sin}\:\left(\mathrm{x}^{\mathrm{2}} \right)}\:\mathrm{dx}\:? \\ $$
Question Number 86560 Answers: 0 Comments: 4
$${x}\:\:=\:\:\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{4}}\:+\:\frac{\mathrm{15}}{\mathrm{32}}\:+\:\frac{\mathrm{105}}{\mathrm{384}}\:+\:... \\ $$$${x}^{\mathrm{2}} \:−\:\mathrm{1}\:\:=\:\:? \\ $$
Question Number 86558 Answers: 0 Comments: 0
$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\underset{\:\mathrm{0}} {\overset{\pi} {\int}}{e}^{\mathrm{cos}^{\mathrm{2}} {x}} \mathrm{cos}^{\mathrm{3}} \left(\mathrm{2}{n}+\mathrm{1}\right){x}\:{dx}= \\ $$
Question Number 86552 Answers: 0 Comments: 3
$${proe}\:{that} \\ $$$${f}\left({x}\right)={x}+\left[{x}\right]\: \\ $$$${increase}\:{in}\:{R} \\ $$
Question Number 86550 Answers: 1 Comments: 3
$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}\:^{−\mathrm{1}} {x}=\frac{\mathrm{ln}\:\left(−{x}^{\mathrm{2}} +\mathrm{2}{ix}+\mathrm{1}\right)−\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{2}{i}} \\ $$
Question Number 86541 Answers: 0 Comments: 1
Question Number 86540 Answers: 0 Comments: 3
$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{cos}\:\left(\frac{\mathrm{A}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{B}}{\mathrm{2}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{C}}{\mathrm{2}}\right)\:=\: \\ $$$$\mathrm{4}\:\mathrm{cos}\:\left(\frac{\pi+\mathrm{A}}{\mathrm{4}}\right)\mathrm{cos}\:\left(\frac{\pi+\mathrm{B}}{\mathrm{4}}\right)\mathrm{cos}\:\left(\frac{\pi−\mathrm{C}}{\mathrm{4}}\right) \\ $$$$\mathrm{where}\:\mathrm{A}+\mathrm{B}+\mathrm{C}\:=\:\pi \\ $$
Question Number 86537 Answers: 0 Comments: 0
$$\mathrm{help}\: \\ $$$$\mathrm{given}\:\mathrm{total}\:\mathrm{cost}=\mathrm{4x}+\mathrm{y} \\ $$$$\mathrm{p}_{\mathrm{1}} =\mathrm{25}−\mathrm{3x}−\mathrm{2y} \\ $$$$\mathrm{p}_{\mathrm{2}} =\mathrm{12}−\mathrm{x}−\mathrm{y} \\ $$$$\mathrm{total}\:\mathrm{revenue}=\mathrm{p}_{\mathrm{1}} \mathrm{x}+\mathrm{p}_{\mathrm{2}} \mathrm{y} \\ $$$$\mathrm{calculate}: \\ $$$$\left.\mathrm{a}\right).\:\mathrm{quantity}\:\mathrm{sold}\:\mathrm{for}\:\mathrm{each}\:\mathrm{item} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{to}\:\mathrm{get}\:\mathrm{maximum}\:\mathrm{profit} \\ $$$$\left.\mathrm{b}\right).\:\:\mathrm{respective}\:\mathrm{price}\:\mathrm{for}\:\mathrm{each}\:\mathrm{item} \\ $$$$\left.\mathrm{c}\right).\:\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{profit}> \\ $$
Question Number 86534 Answers: 0 Comments: 2
$${Mr}.{Tanmay}\:{can}\:{you} \\ $$$${please}\:{help}\:{me}\:{in} \\ $$$${question}\:{no}.\mathrm{86454} \\ $$
Pg 1183 Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189 Pg 1190 Pg 1191 Pg 1192
Terms of Service
Privacy Policy
Contact: info@tinkutara.com