Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1186
Question Number 90103 Answers: 0 Comments: 1
Question Number 90100 Answers: 1 Comments: 0
Question Number 90099 Answers: 0 Comments: 2
$$\:\mathrm{given}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{equation} \\ $$$$\:{r}\:=\:{a}^{\mathrm{2}} \:\mathrm{sin2}\theta\:\:\mathrm{show}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at}\: \\ $$$$\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{this}\:\mathrm{polar}\:\mathrm{equation}\:\mathrm{is}. \\ $$$$\:\theta\:=\:\left\{\frac{\pi}{\mathrm{4}},\frac{\mathrm{3}\pi}{\mathrm{4}},\frac{\mathrm{5}\pi}{\mathrm{4}},\frac{\mathrm{7}\pi}{\mathrm{4}}\right\} \\ $$
Question Number 90097 Answers: 0 Comments: 1
$$\left(\sqrt{\mathrm{3}+\sqrt{\mathrm{8}}}\right)^{\mathrm{x}} \:+\left(\sqrt{\mathrm{3}−\sqrt{\mathrm{8}}}\right)^{\mathrm{x}} \:=\:\mathrm{6} \\ $$
Question Number 90090 Answers: 1 Comments: 0
$${xy}\:\frac{{dy}}{{dx}}\:=\:{y}^{\mathrm{2}} \:+\:\left(\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$
Question Number 90083 Answers: 0 Comments: 0
Question Number 90086 Answers: 0 Comments: 7
Question Number 90087 Answers: 0 Comments: 1
$$\underset{{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{{k}} }\:=\:? \\ $$
Question Number 90080 Answers: 0 Comments: 0
Question Number 90077 Answers: 0 Comments: 3
$${lim}_{{x}\rightarrow\infty} \left(\mathrm{sin}\:\left({x}+\frac{\mathrm{1}}{{x}}\right)−{sin}\left({x}\right)\right)=? \\ $$
Question Number 90075 Answers: 0 Comments: 1
$$ \\ $$
Question Number 90073 Answers: 0 Comments: 0
Question Number 90092 Answers: 0 Comments: 1
$$\mathrm{G}\left(\sqrt{\mathrm{x}+\mathrm{5}}\right)\:=\:\mathrm{x} \\ $$$$\mathrm{G}\left(\mathrm{x}^{\mathrm{2}} \right)\:=\:\mathrm{x}^{\mathrm{a}} −\mathrm{b} \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{b}\: \\ $$
Question Number 90069 Answers: 2 Comments: 3
Question Number 90060 Answers: 0 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}+\mathrm{x}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\mathrm{3x}}}\:=\:? \\ $$
Question Number 90058 Answers: 1 Comments: 1
Question Number 90055 Answers: 0 Comments: 1
Question Number 90049 Answers: 0 Comments: 0
Question Number 90048 Answers: 1 Comments: 0
$$\mathrm{5}^{\sqrt{\mathrm{x}}} \:−\mathrm{5}^{\mathrm{x}−\mathrm{7}} \:=\:\mathrm{100} \\ $$
Question Number 90046 Answers: 0 Comments: 0
$${bhz} \\ $$
Question Number 90044 Answers: 0 Comments: 2
$${calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left(\left[\mathrm{2}{x}\right]\:−\left[\frac{\mathrm{1}}{{x}}\right]\right){dx} \\ $$
Question Number 90043 Answers: 0 Comments: 0
$${calculate}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({ax}\right)}{{x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} }{dx}\:{with}\:{a}>\mathrm{0} \\ $$
Question Number 90042 Answers: 0 Comments: 1
$${calculste}\:{I}\:=\int_{\mathrm{0}} ^{+\infty} \:\frac{{ch}\left({cos}\left(\mathrm{2}{x}\right)\right){dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${and}\:{J}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{chx}\right){dx}}{{x}^{\mathrm{2}} \:+\mathrm{4}} \\ $$$${compare}\:{I}\:{and}\:{J} \\ $$
Question Number 90041 Answers: 1 Comments: 0
$${calculste}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xarctan}\left(\mathrm{2}{x}\right)}{\mathrm{9}+\mathrm{2}{x}^{\mathrm{2}} }{dx}\: \\ $$
Question Number 90040 Answers: 0 Comments: 1
$${find}\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{ch}\left({acosx}\:+{bsinx}\right)}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}{dx} \\ $$$${a}\:{and}\:{b}\:{reals}\:{given} \\ $$
Question Number 90038 Answers: 0 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{{k}} }={S}_{{k}} \:\:\:\:\:\:\:{H}_{{q}} =\underset{{p}=\mathrm{1}} {\overset{{q}} {\sum}}\frac{\mathrm{1}}{{p}} \\ $$$${Is}\:{there}\:{a}\:{simple}\:{from}\:{for}\:{S}_{{k}} \\ $$
Pg 1181 Pg 1182 Pg 1183 Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189 Pg 1190
Terms of Service
Privacy Policy
Contact: info@tinkutara.com