Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1186

Question Number 97537    Answers: 1   Comments: 0

∫_0 ^1 ((−(√(1−x^2 )))/((yx^3 +x^2 −yx−1)))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\left({yx}^{\mathrm{3}} +{x}^{\mathrm{2}} −{yx}−\mathrm{1}\right)}{dx} \\ $$

Question Number 97531    Answers: 1   Comments: 0

5050((∫_0 ^1 (1−x^(50) )^(100) dx)/(∫_0 ^1 (1−x^(50) )^(101) dx))=

$$\mathrm{5050}\frac{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{50}} \right)^{\mathrm{100}} {dx}}{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{50}} \right)^{\mathrm{101}} {dx}}= \\ $$

Question Number 97527    Answers: 0   Comments: 0

∫((xdx)/(x!))=?

$$\int\frac{\mathrm{xdx}}{\mathrm{x}!}=? \\ $$

Question Number 97526    Answers: 1   Comments: 1

∫(dx/(1+sin x))=?

$$\int\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}=? \\ $$

Question Number 97512    Answers: 0   Comments: 2

The value of k for which the quadratic equation (1−2k)x^2 −6kx−1=0 and kx^2 −x+1=0 have atleast one roots in common are ___

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the} \\ $$$$\mathrm{quadratic}\:\mathrm{equation}\:\left(\mathrm{1}−\mathrm{2k}\right)\mathrm{x}^{\mathrm{2}} −\mathrm{6kx}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{kx}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}=\mathrm{0}\:\mathrm{have}\:\mathrm{atleast} \\ $$$$\mathrm{one}\:\mathrm{roots}\:\mathrm{in}\:\mathrm{common}\:\mathrm{are}\:\_\_\_ \\ $$

Question Number 97506    Answers: 0   Comments: 0

please prove it cos x= J_0 (x) + 2Σ_(x−1) (−1)^x J_(2n) (x)

$${please}\:{prove}\:{it} \\ $$$$ \\ $$$$\mathrm{cos}\:{x}=\:{J}_{\mathrm{0}} \left({x}\right)\:+\:\mathrm{2}\sum_{{x}−\mathrm{1}} \left(−\mathrm{1}\right)^{{x}} {J}_{\mathrm{2}{n}} \left({x}\right) \\ $$

Question Number 97501    Answers: 0   Comments: 2

The natural number n for which the expression y = 5log^2 _3 (n) − log _3 (n^(12) )+9 , has the minimum value is ___

$$\mathrm{The}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{n}\:\mathrm{for}\:\mathrm{which}\: \\ $$$$\mathrm{the}\:\mathrm{expression}\:\mathrm{y}\:=\:\mathrm{5log}^{\mathrm{2}} \:_{\mathrm{3}} \left(\mathrm{n}\right)\:− \\ $$$$\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{n}^{\mathrm{12}} \right)+\mathrm{9}\:,\:\mathrm{has}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{is}\:\_\_\_ \\ $$

Question Number 97505    Answers: 0   Comments: 0

Question Number 97497    Answers: 2   Comments: 0

Question Number 97496    Answers: 1   Comments: 0

if f(((2x+5)/(x−3)))=3x+5 find f(x) please solve it

$${if}\:\:\:\:\:\:{f}\left(\frac{\mathrm{2}{x}+\mathrm{5}}{{x}−\mathrm{3}}\right)=\mathrm{3}{x}+\mathrm{5}\:\:\:{find}\:\:\:{f}\left({x}\right) \\ $$$$ \\ $$$${please}\:{solve}\:{it} \\ $$

Question Number 97494    Answers: 1   Comments: 0

Question Number 97492    Answers: 2   Comments: 0

Question Number 97490    Answers: 1   Comments: 0

please prove it cosx= J_0 (x)+2Σ_(x−1) (−1)^x J_(2x) (x)

$${please}\:\:{prove}\:\:{it} \\ $$$$\mathrm{cos}{x}=\:{J}_{\mathrm{0}} \left({x}\right)+\mathrm{2}\sum_{{x}−\mathrm{1}} \left(−\mathrm{1}\right)^{{x}} {J}_{\mathrm{2}{x}} \left({x}\right) \\ $$

Question Number 97489    Answers: 2   Comments: 0

please prove it ∫_0 ^∞ e^(−ax^2 ) cos bx dx= (1/2)(√(π/a)).e^(−(b^2 /(4a)))

$${please}\:\:{prove}\:{it} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}^{\mathrm{2}} } \mathrm{cos}\:{bx}\:\:{dx}=\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\pi}{{a}}}.{e}^{−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}}} \\ $$

Question Number 97485    Answers: 1   Comments: 3

Question Number 97483    Answers: 1   Comments: 4

In each week the growth of a plant is two−thirds the growth of the previous week. The plant grows 12 cm in the first week. (a) Calculate the growth of the plant in (b) the limiting height of the pant

$$\mathrm{In}\:\mathrm{each}\:\mathrm{week}\:\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{a}\:\mathrm{plant}\:\mathrm{is}\:\mathrm{two}−\mathrm{thirds} \\ $$$$\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{previous}\:\mathrm{week}. \\ $$$$\mathrm{The}\:\mathrm{plant}\:\mathrm{grows}\:\mathrm{12}\:\mathrm{cm}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{week}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{growth}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plant}\:\mathrm{in}\: \\ $$$$\left(\mathrm{b}\right)\:\mathrm{the}\:\mathrm{limiting}\:\mathrm{height}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pant} \\ $$

Question Number 97479    Answers: 2   Comments: 2

Question Number 97478    Answers: 0   Comments: 0

Find the global parametrization of the curve { x^2 +y^2 +z^2 =1; x+y−z=0 }

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{global}\:\mathrm{parametrization} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\left\{\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{1};\:\mathrm{x}+\mathrm{y}−\mathrm{z}=\mathrm{0}\:\right\}\: \\ $$

Question Number 97476    Answers: 0   Comments: 0

2F1((1/2),(1/2);(1/2);z)=(1−z)^(1/2) ∗∗1 by kummer transformation 2F1((1/2),(1/2);(1/2);z)=2F1((1/2),(1/2);1+(1/2)+(1/2)−(1/2);z) 2F1((1/2),(1/2);(1/2);z)=((sin^(−1) (√(1−z)))/(√(1−z)))∗∗2 why do i get different answer in ∗∗1 and 2∗∗

$$\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};{z}\right)=\left(\mathrm{1}−{z}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \ast\ast\mathrm{1} \\ $$$${by}\:{kummer}\:{transformation} \\ $$$$\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};{z}\right)=\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}};{z}\right) \\ $$$$\mathrm{2}{F}\mathrm{1}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}};{z}\right)=\frac{{sin}^{−\mathrm{1}} \sqrt{\mathrm{1}−{z}}}{\sqrt{\mathrm{1}−{z}}}\ast\ast\mathrm{2} \\ $$$$ \\ $$$${why}\:{do}\:{i}\:{get}\:{different}\:{answer}\:{in} \\ $$$$\ast\ast\mathrm{1}\:{and}\:\mathrm{2}\ast\ast \\ $$

Question Number 97465    Answers: 2   Comments: 1

∫_0 ^∝ e^(−x^4 ) dx=(1/4) please prove it

$$\int_{\mathrm{0}} ^{\propto} {e}^{−{x}^{\mathrm{4}} } {dx}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${please}\:{prove}\:{it} \\ $$

Question Number 97463    Answers: 0   Comments: 2

Question Number 97462    Answers: 0   Comments: 1

Question Number 97460    Answers: 1   Comments: 2

Question Number 97454    Answers: 2   Comments: 0

Question Number 97439    Answers: 0   Comments: 2

∫_((√2)/2) ^1 ((x^3 /2) + (1/(6x)))(√(1+(((3x^2 )/2) −(1/(6x^2 )))^2 )) dx

$$\underset{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} {\overset{\mathrm{1}} {\int}}\:\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{6x}}\right)\sqrt{\mathrm{1}+\left(\frac{\mathrm{3x}^{\mathrm{2}} }{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{6x}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:\:\mathrm{dx} \\ $$

Question Number 97438    Answers: 1   Comments: 1

If −3≤x≤4, −2≤y≤5, 4≤z≤10 , find the greatest value of w = z−xy

$$\mathrm{If}\:−\mathrm{3}\leqslant\mathrm{x}\leqslant\mathrm{4},\:−\mathrm{2}\leqslant\mathrm{y}\leqslant\mathrm{5},\:\mathrm{4}\leqslant\mathrm{z}\leqslant\mathrm{10} \\ $$$$,\:\mathrm{find}\:\mathrm{the}\:\mathrm{greatest} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{w}\:=\:\mathrm{z}−\mathrm{xy}\: \\ $$

  Pg 1181      Pg 1182      Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189      Pg 1190   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com