Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1185

Question Number 98112    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (1/2^n^2 )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}^{\mathrm{2}} } } \\ $$

Question Number 98106    Answers: 2   Comments: 0

y′′+y = cos 3x−2sin 3x

$$\mathrm{y}''+\mathrm{y}\:=\:\mathrm{cos}\:\mathrm{3x}−\mathrm{2sin}\:\mathrm{3x} \\ $$

Question Number 98105    Answers: 2   Comments: 0

calculate ∫_3 ^(+∞) (((x+1)dx)/((x−2)^2 ( 2x+3)^3 ))

$$\mathrm{calculate}\:\int_{\mathrm{3}} ^{+\infty} \:\:\:\frac{\left(\mathrm{x}+\mathrm{1}\right)\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} \left(\:\mathrm{2x}+\mathrm{3}\right)^{\mathrm{3}} } \\ $$

Question Number 98104    Answers: 5   Comments: 1

Determine the value of x+y if { ((x^3 +y^3 =1)),(((x+y)(x+1)(y+1)=2)) :}

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}\: \\ $$$$\mathrm{if}\:\begin{cases}{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{1}}\\{\left(\mathrm{x}+\mathrm{y}\right)\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)=\mathrm{2}}\end{cases} \\ $$$$ \\ $$

Question Number 98098    Answers: 3   Comments: 0

what is the length of the chord cut off by y = 2x+1 from circle x^2 +y^2 =2

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{chord}\:\mathrm{cut} \\ $$$$\mathrm{off}\:\mathrm{by}\:\mathrm{y}\:=\:\mathrm{2x}+\mathrm{1}\:\mathrm{from}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$

Question Number 98096    Answers: 1   Comments: 0

Question Number 98091    Answers: 1   Comments: 0

what is number of positive integral solutions of 10xy+7x+3y = 2077829313

$$\mathrm{what}\:\mathrm{is}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integral}\: \\ $$$$\mathrm{solutions}\:\mathrm{of}\:\mathrm{10xy}+\mathrm{7x}+\mathrm{3y}\:=\:\mathrm{2077829313} \\ $$

Question Number 98087    Answers: 1   Comments: 0

Question Number 98077    Answers: 0   Comments: 4

Question Number 98073    Answers: 1   Comments: 2

solve (√(6−x)) = 6−x^2

$$\mathrm{solve}\:\sqrt{\mathrm{6}−\mathrm{x}}\:=\:\mathrm{6}−\mathrm{x}^{\mathrm{2}} \\ $$

Question Number 98067    Answers: 2   Comments: 0

Question Number 98060    Answers: 1   Comments: 0

show that Σ_(n=1) ^∞ arctan((2/n^2 ))=((3π)/4)

$${show}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{arctan}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)=\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$

Question Number 98058    Answers: 1   Comments: 0

If the equation x^2 −cx+d=0 has roots equal to the fourth powers of the roots of x^2 +ax+b=0, where a^2 >4b then the roots of x^2 −4bx+2b^2 −c=0 will be

$$\mathrm{If}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} −{cx}+{d}=\mathrm{0}\:\mathrm{has}\:\mathrm{roots} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{powers}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots} \\ $$$$\mathrm{of}\:{x}^{\mathrm{2}} +{ax}+{b}=\mathrm{0},\:\mathrm{where}\:{a}^{\mathrm{2}} >\mathrm{4}{b}\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} −\mathrm{4}{bx}+\mathrm{2}{b}^{\mathrm{2}} −{c}=\mathrm{0}\:\mathrm{will}\:\mathrm{be} \\ $$

Question Number 98057    Answers: 2   Comments: 0

The number of real solutions of 3^x +4^x =5^x is ____.

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{3}^{{x}} +\mathrm{4}^{{x}} =\mathrm{5}^{{x}} \:\mathrm{is}\:\_\_\_\_. \\ $$

Question Number 98056    Answers: 0   Comments: 3

The number of real roots of the quadratic equation (x−4)^2 +(x−5)^2 +(x−6)^2 =0 is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic} \\ $$$$\mathrm{equation}\:\left({x}−\mathrm{4}\right)^{\mathrm{2}} +\left({x}−\mathrm{5}\right)^{\mathrm{2}} +\left({x}−\mathrm{6}\right)^{\mathrm{2}} =\mathrm{0}\:\mathrm{is} \\ $$

Question Number 98039    Answers: 1   Comments: 0

10000×((10)/(100))×((20)/(100))×((30)/(100))=

$$\mathrm{10000}×\frac{\mathrm{10}}{\mathrm{100}}×\frac{\mathrm{20}}{\mathrm{100}}×\frac{\mathrm{30}}{\mathrm{100}}= \\ $$$$ \\ $$

Question Number 98035    Answers: 0   Comments: 4

Question Number 98030    Answers: 0   Comments: 1

Question Number 98027    Answers: 0   Comments: 1

One card is randomly selected from a pack of 52 playing cards. Determine the probability that is a picture card.

$$\mathrm{One}\:\mathrm{card}\:\mathrm{is}\:\mathrm{randomly}\:\mathrm{selected} \\ $$$$\mathrm{from}\:\mathrm{a}\:\mathrm{pack}\:\mathrm{of}\:\mathrm{52}\:\mathrm{playing}\:\mathrm{cards}. \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{picture}\:\mathrm{card}.\: \\ $$

Question Number 98022    Answers: 1   Comments: 0

Derive the relation between an Arithmetic Mean and a Geometric Mean ((x_1 x_2 ...x_n ))^(1/n) ≤((x_1 +x_2 +∙∙∙+x_n )/n) ∀n∈N^∗ , ∀(x_1 ,x_2 ,...x_n )∈(R_+ ^∗ )^n

$$\mathcal{D}\mathrm{erive}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{an}\:\mathcal{A}\mathrm{rithmetic}\:\mathcal{M}\mathrm{ean} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathcal{G}\mathrm{eometric}\:\mathcal{M}\mathrm{ean} \\ $$$$\sqrt[{\mathrm{n}}]{\mathrm{x}_{\mathrm{1}} \mathrm{x}_{\mathrm{2}} ...\mathrm{x}_{\mathrm{n}} }\leqslant\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\centerdot\centerdot\centerdot+\mathrm{x}_{\mathrm{n}} }{\mathrm{n}}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} ,\:\forall\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,...\mathrm{x}_{\mathrm{n}} \right)\in\left(\mathbb{R}_{+} ^{\ast} \right)^{\mathrm{n}} \\ $$

Question Number 98020    Answers: 1   Comments: 0

What is the area of the region bounded by x^2 +y^2 ≤ 9 ; x+y ≤ 3 and y ≤ x

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\leqslant\:\mathrm{9}\:;\:\mathrm{x}+\mathrm{y}\:\leqslant\:\mathrm{3}\:\mathrm{and}\:\mathrm{y}\:\leqslant\:\mathrm{x}\: \\ $$

Question Number 98018    Answers: 1   Comments: 0

the vector equations of two lines l_1 and l_2 are given by l_1 :r=5i−j+k+λ(−3i+2j) l_2 :r=2i+3j+2k+μ(2j+k) find thd position vdctor of intersection of thf linds l_1 and l_2 thd cartesian equatkon of the plane π, containing the lines l_(1 ) and l_2 the sine of the anhle between the plane π and the line, l_3 :r=i−5j−2k+s(2i+2j−k)

$${the}\:{vector}\:{equations}\:{of}\:{two}\:{lines}\:{l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} \:{are}\:{given}\:{by} \\ $$$${l}_{\mathrm{1}} :{r}=\mathrm{5}{i}−{j}+{k}+\lambda\left(−\mathrm{3}{i}+\mathrm{2}{j}\right) \\ $$$${l}_{\mathrm{2}} :{r}=\mathrm{2}{i}+\mathrm{3}{j}+\mathrm{2}{k}+\mu\left(\mathrm{2}{j}+{k}\right) \\ $$$${find} \\ $$$${thd}\:{position}\:{vdctor}\:{of}\:{intersection}\:{of}\:{thf}\:{linds}\:{l}_{\mathrm{1}} \:{and}\:{l}_{\mathrm{2}} \: \\ $$$${thd}\:{cartesian}\:{equatkon}\:{of}\:{the}\:{plane}\:\pi,\:{containing}\:{the}\:{lines}\:{l}_{\mathrm{1}\:} {and}\:{l}_{\mathrm{2}} \\ $$$${the}\:{sine}\:{of}\:{the}\:{anhle}\:{between}\:{the}\:{plane}\:\pi\:{and}\:{the}\:{line},\:{l}_{\mathrm{3}} :{r}={i}−\mathrm{5}{j}−\mathrm{2}{k}+{s}\left(\mathrm{2}{i}+\mathrm{2}{j}−{k}\right) \\ $$

Question Number 98016    Answers: 1   Comments: 3

∫_0 ^1 ((ln^2 (x))/(x^2 +1)) dx ?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:?\: \\ $$

Question Number 98008    Answers: 0   Comments: 1

Question Number 98004    Answers: 0   Comments: 1

lim_(n→∞) [sin(n)+4^n ×(3/n^2 )×((n+1)/(n^2 −4))]

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{sin}\left(\mathrm{n}\right)+\mathrm{4}^{\mathrm{n}} ×\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} }×\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{4}}\right] \\ $$

Question Number 98003    Answers: 4   Comments: 0

prove that E=mc^2

$${prove}\:{that}\: \\ $$$${E}={mc}^{\mathrm{2}} \:\: \\ $$

  Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com