Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1185
Question Number 91534 Answers: 0 Comments: 3
$$\int_{\mathrm{1}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 91521 Answers: 0 Comments: 8
$${given}\:{that}\:{the}\: \\ $$$${composite} \\ $$$${function}\:{f}^{\mathrm{2}} \left({x}\right)\:=\:\mathrm{64}{x}+\mathrm{45}\: \\ $$$${find}\:{f}\left({x}\right)\: \\ $$
Question Number 91509 Answers: 0 Comments: 2
$${does}\:{anyone}\:{know}\:{Glauss}'\:{law}\:{for}\:{magnetism}?\:{tanks} \\ $$
Question Number 91508 Answers: 0 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{number}\:\mathrm{that}\:\mathrm{divides} \\ $$$$\mathrm{59}\:\mathrm{and}\:\mathrm{54}\:\mathrm{leaving}\:\mathrm{remainders}\:\mathrm{3}\:\mathrm{and} \\ $$$$\mathrm{5}\:\mathrm{respectively}. \\ $$
Question Number 91507 Answers: 0 Comments: 1
$$\sqrt[{\mathrm{3}}]{\frac{−{a}^{\mathrm{6}} ×{b}^{\mathrm{3}} ×{c}^{\mathrm{21}} }{{c}^{\mathrm{9}} ×{a}^{\mathrm{12}} }}\:=\: \\ $$
Question Number 91500 Answers: 0 Comments: 1
$${v}=\pi\int_{\mathrm{1}} ^{\mathrm{4}} \left[\left(\frac{\mathrm{1}}{\mathrm{4}}.{x}^{\mathrm{2}} \right)^{\mathrm{2}} {dx}\right. \\ $$
Question Number 91497 Answers: 0 Comments: 1
$${v}=\pi\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{\mathrm{2}} {dx} \\ $$
Question Number 91496 Answers: 0 Comments: 1
$$\mathrm{The}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}=\mathrm{3}\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}}\:\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=−\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{adjacent}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parallelogram}. \\ $$$$\mathrm{Then}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{its}\:\mathrm{diagonal}\:\mathrm{is} \\ $$
Question Number 91494 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral}\:\underset{\:\mathrm{1}} {\overset{\mathrm{3}} {\int}}\:\sqrt{\mathrm{3}+{x}^{\mathrm{3}} }\:{dx} \\ $$$$\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}.... \\ $$
Question Number 91493 Answers: 1 Comments: 1
$$\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\mathrm{log}\:\left(\frac{\mathrm{4}+\mathrm{3}\:\mathrm{sin}\:{x}}{\mathrm{4}+\mathrm{3}\:\mathrm{cos}\:{x}}\right){dx}\:= \\ $$
Question Number 91484 Answers: 0 Comments: 2
Question Number 91491 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} +\mathrm{1}\:=\:\mathrm{2}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{2}{x}−\mathrm{1}} \\ $$$${x}\:=? \\ $$
Question Number 91479 Answers: 1 Comments: 4
$$\:\underset{−\pi/\mathrm{2}\:} {\overset{\pi/\mathrm{2}} {\int}}\:\sqrt{\mathrm{cos}\:{x}−\mathrm{cos}^{\mathrm{3}} {x}}\:\mathrm{dx}=... \\ $$
Question Number 91476 Answers: 0 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{slope}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangent}\: \\ $$$$\mathrm{line}\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}: \\ $$$$\mathrm{y}^{\mathrm{4}} +\mathrm{3y}−\mathrm{4x}^{\mathrm{3}} =\mathrm{5x}+\mathrm{1}\:\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{P}\:\left(\mathrm{1},\:−\mathrm{2}\right) \\ $$
Question Number 91474 Answers: 0 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{3x}+\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:,\:\mathrm{different},\:\mathrm{and}\:\mathrm{product} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right). \\ $$
Question Number 91473 Answers: 1 Comments: 0
Question Number 91471 Answers: 1 Comments: 0
$$\mid\mathrm{2x}−\mathrm{7}\mid>\mathrm{3} \\ $$
Question Number 91470 Answers: 0 Comments: 2
$$\mid\mathrm{x}−\mathrm{3}\mid<\mathrm{0}.\mathrm{1} \\ $$
Question Number 91469 Answers: 0 Comments: 3
$$−\mathrm{5}<\frac{\mathrm{4}−\mathrm{3x}}{\mathrm{2}}<\mathrm{l} \\ $$
Question Number 91468 Answers: 0 Comments: 0
Question Number 91464 Answers: 0 Comments: 12
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{3}\:\:−\:\:\mathrm{2x}\right)^{−\mathrm{7}} \\ $$
Question Number 91465 Answers: 1 Comments: 1
Question Number 91460 Answers: 1 Comments: 0
$${one}\:{of}\:{the}\:{conditions}\:{of}\:{the}\:{inflection} \\ $$$${point}\:{is}\:{inflection}\:{tangent}. \\ $$$${what}\:{is}\:{inflection}\:{tangent}? \\ $$
Question Number 91452 Answers: 2 Comments: 1
$$\:\:\:\sqrt[{\mathrm{4}}]{−\mathrm{1}}\:=? \\ $$
Question Number 91448 Answers: 0 Comments: 3
$${prove}\:{that}\:\mathrm{1}+{x}^{\mathrm{111}} +{x}^{\mathrm{222}} +{x}^{\mathrm{333}} +{x}^{\mathrm{444}} \:\:{divides}\:\mathrm{1}+\:{x}^{\mathrm{111}} +{x}^{\mathrm{222}} +{x}^{\mathrm{333}} +.......+{x}^{\mathrm{999}} \\ $$
Question Number 91446 Answers: 0 Comments: 1
Pg 1180 Pg 1181 Pg 1182 Pg 1183 Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189
Terms of Service
Privacy Policy
Contact: info@tinkutara.com