Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1185

Question Number 98848    Answers: 0   Comments: 0

Σ_(n=1) ^∞ Σ_(k=1) ^∞ (((−1)^(n+k+1) (1+k)^2 )/(n(n+k+1)^4 ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+{k}+\mathrm{1}} \left(\mathrm{1}+{k}\right)^{\mathrm{2}} }{{n}\left({n}+{k}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$

Question Number 98844    Answers: 3   Comments: 0

Please explain: Σ_(1 ≤ i < j ≤ n) ij = Σ_(j = 2) ^n ((j(j − 1)j)/2) I want to know how L.H.S = R.H.S

$$\mathrm{Please}\:\mathrm{explain}:\:\:\:\:\:\:\underset{\mathrm{1}\:\leqslant\:\boldsymbol{\mathrm{i}}\:<\:\boldsymbol{\mathrm{j}}\:\leqslant\:\boldsymbol{\mathrm{n}}} {\sum}\boldsymbol{\mathrm{ij}}\:\:\:\:=\:\:\:\underset{\boldsymbol{\mathrm{j}}\:\:=\:\:\mathrm{2}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\frac{\boldsymbol{\mathrm{j}}\left(\boldsymbol{\mathrm{j}}\:−\:\mathrm{1}\right)\boldsymbol{\mathrm{j}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{I}}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{how}\:\mathrm{L}.\mathrm{H}.\mathrm{S}\:\:=\:\:\mathrm{R}.\mathrm{H}.\mathrm{S} \\ $$

Question Number 98843    Answers: 0   Comments: 1

I′ve got a question: What differences 2.083 and 2.084 versions with?

$$\boldsymbol{{I}}'\boldsymbol{{ve}}\:\boldsymbol{{got}}\:\boldsymbol{{a}}\:\boldsymbol{{question}}: \\ $$$$\boldsymbol{{What}}\:\boldsymbol{{differences}}\:\mathrm{2}.\mathrm{083}\:\boldsymbol{{and}}\:\mathrm{2}.\mathrm{084}\:\boldsymbol{{versions}}\:\boldsymbol{{with}}? \\ $$

Question Number 98842    Answers: 2   Comments: 1

let f(x) be a dolvnomial of degree 4 such that f(1)=1 , f(2)=2 ,f(3)=3,f(4)=4 then f(6)=?

$${let}\:{f}\left({x}\right)\:{be}\:{a}\:{dolvnomial}\:{of}\:{degree}\:\mathrm{4}\: \\ $$$${such}\:{that}\:{f}\left(\mathrm{1}\right)=\mathrm{1}\:,\:{f}\left(\mathrm{2}\right)=\mathrm{2}\:,{f}\left(\mathrm{3}\right)=\mathrm{3},{f}\left(\mathrm{4}\right)=\mathrm{4} \\ $$$${then}\:{f}\left(\mathrm{6}\right)=? \\ $$

Question Number 98833    Answers: 1   Comments: 1

Question Number 98831    Answers: 1   Comments: 1

Question Number 98826    Answers: 0   Comments: 2

Given ∫_0 ^∞ (dx/(a^2 +x^2 )) = (π/(2a)) find ∫_0 ^∞ (dx/((a^2 +x^2 )^3 )) ?

$${Given}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{dx}}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:=\:\frac{\pi}{\mathrm{2}{a}} \\ $$$${find}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{dx}}{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:? \\ $$

Question Number 98823    Answers: 0   Comments: 2

Question Number 98821    Answers: 1   Comments: 0

∫ _0 ^∞ (dx/(a^2 +x^2 )) = ?

$$\int\overset{\infty} {\:}_{\mathrm{0}} \frac{{dx}}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 98818    Answers: 0   Comments: 0

Question Number 98816    Answers: 0   Comments: 0

prove that (V^( μ) )_(;μ) =((((√(−g))V^( μ) )_(;μ) )/(√(−g)))

$${prove}\:{that} \\ $$$$ \\ $$$$\left({V}^{\:\mu} \right)_{;\mu} =\frac{\left(\sqrt{−{g}}{V}^{\:\mu} \right)_{;\mu} }{\sqrt{−{g}}} \\ $$

Question Number 98815    Answers: 1   Comments: 0

what is heisenberg uncertainty principle?

$${what}\:{is}\:{heisenberg}\:{uncertainty}\:{principle}? \\ $$$$ \\ $$

Question Number 98808    Answers: 1   Comments: 0

Question Number 98806    Answers: 0   Comments: 1

for a is integer number such that ∣∣x−1∣ −2∣ ≤ a exactly has 2013 solution

$$\mathrm{for}\:{a}\:\mathrm{is}\:\mathrm{integer}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mid\mid{x}−\mathrm{1}\mid\:−\mathrm{2}\mid\:\leqslant\:{a}\:\:\mathrm{exactly}\:\mathrm{has}\:\mathrm{2013} \\ $$$$\mathrm{solution} \\ $$

Question Number 98788    Answers: 2   Comments: 0

lim_(n→∞) (1/n)[ (n+1)(n+2)...(n+n)_ ^ ]^(1/n)

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\left[\:\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)...\left(\mathrm{n}+\mathrm{n}\right)_{} ^{} \right]^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$

Question Number 98776    Answers: 0   Comments: 0

∫_0 ^∞ (((x−1))/(ln(F(x)(√5)+cos(πx)(ϕ)^(−x) −1)(√(F(x)(√5)+cos(πx)(ϕ)^(−x) −1))))dx F(x)=Fib(x)=xth Extended fibonacci number f:R→R ϕ=((1+(√5))/2)

$$\int_{\mathrm{0}} ^{\infty} \frac{\left({x}−\mathrm{1}\right)}{{ln}\left({F}\left({x}\right)\sqrt{\mathrm{5}}+{cos}\left(\pi{x}\right)\left(\varphi\right)^{−{x}} −\mathrm{1}\right)\sqrt{{F}\left({x}\right)\sqrt{\mathrm{5}}+{cos}\left(\pi{x}\right)\left(\varphi\right)^{−{x}} −\mathrm{1}}}{dx} \\ $$$$ \\ $$$${F}\left({x}\right)={Fib}\left({x}\right)={xth}\:{Extended}\:{fibonacci}\:{number} \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\varphi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Question Number 98773    Answers: 2   Comments: 0

if x is a selected number of the number from 20−99, then what is probalility x^3 −x is divided by 12?

$$\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{selected}\:\mathrm{number}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{from}\:\mathrm{20}−\mathrm{99},\:\mathrm{then}\:\mathrm{what} \\ $$$$\mathrm{is}\:\mathrm{probalility}\:\mathrm{x}^{\mathrm{3}} −\mathrm{x}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\mathrm{12}?\: \\ $$

Question Number 98770    Answers: 0   Comments: 2

Question Number 98768    Answers: 2   Comments: 0

lim_(x→0) (((√(x+1)) sin x+ln(1+x^2 )−x)/(((1+x^2 ))^(1/(3 )) −1))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}+\mathrm{1}}\:\mathrm{sin}\:\mathrm{x}+\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)−\mathrm{x}}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{1}} \\ $$

Question Number 98761    Answers: 0   Comments: 5

(√(x+(√x) )) −(√(x−(√x))) = m(√(x/(x+(√x)))) m is a real parameter

$$\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}\:}\:−\sqrt{\mathrm{x}−\sqrt{\mathrm{x}}}\:=\:\mathrm{m}\sqrt{\frac{\mathrm{x}}{\mathrm{x}+\sqrt{\mathrm{x}}}} \\ $$$$\mathrm{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{parameter} \\ $$

Question Number 98750    Answers: 0   Comments: 0

Question Number 98744    Answers: 0   Comments: 2

∫_0 ^π ∫_0 ^(2sinθ) (1+rsinθ)r dr dθ

$$\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\mathrm{2}{sin}\theta} \left(\mathrm{1}+{rsin}\theta\right){r}\:{dr}\:{d}\theta \\ $$

Question Number 98728    Answers: 0   Comments: 5

Currently working on enhancing this app to draw shapes. So posting a math problem realted to drawing.^ Ref. Frame1 X-Y Frame 2: Axis translated by (h,k) and rotated about point (u,v). Consider a point (x_1 ,y_1 ) on X−Y axis. 1. What will be the postion of the point on X−Y axis after it is translated and plotted in frame 2. 2. A point is moved by distance dx,dy in X−Y. How much distane will it moved in the new frame.

$$\mathrm{Currently}\:\mathrm{working}\:\mathrm{on}\:\mathrm{enhancing} \\ $$$$\mathrm{this}\:\mathrm{app}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{shapes}. \\ $$$$\mathrm{So}\:\mathrm{posting}\:\mathrm{a}\:\:\mathrm{math}\:\mathrm{problem}\:\mathrm{realted} \\ $$$$\mathrm{to}\:\mathrm{drawing}\bar {.} \\ $$$$\mathrm{Ref}.\:\mathrm{Frame1}\:\mathrm{X}-\mathrm{Y} \\ $$$$\mathrm{Frame}\:\mathrm{2}: \\ $$$$\mathrm{Axis}\:\mathrm{translated}\:\mathrm{by}\:\left({h},{k}\right)\:\mathrm{and} \\ $$$$\mathrm{rotated}\:\mathrm{about}\:\mathrm{point}\:\left({u},{v}\right). \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{point}\:\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:\mathrm{on}\:\mathrm{X}−\mathrm{Y}\:\mathrm{axis}. \\ $$$$\mathrm{1}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{postion}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{X}−\mathrm{Y}\:\mathrm{axis}\:\mathrm{after}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{translated}\:\mathrm{and}\:\mathrm{plotted}\:\mathrm{in}\:\mathrm{frame}\:\mathrm{2}. \\ $$$$\mathrm{2}.\:\mathrm{A}\:\mathrm{point}\:\mathrm{is}\:\mathrm{moved}\:\mathrm{by}\:\mathrm{distance} \\ $$$${dx},{dy}\:\mathrm{in}\:\mathrm{X}−\mathrm{Y}.\:\mathrm{How}\:\mathrm{much}\:\mathrm{distane} \\ $$$$\mathrm{will}\:\mathrm{it}\:\mathrm{moved}\:\mathrm{in}\:\mathrm{the}\:\mathrm{new}\:\mathrm{frame}. \\ $$

Question Number 98723    Answers: 0   Comments: 4

Version 2.084 has fixes for all crashes which were reported on playstore in last week. If anyone is facing crashes please update to v2.084 and see if the problem is solved. If the problem is still present, please send us an email as the problem may be specifuc to device model.

$$\mathrm{Version}\:\mathrm{2}.\mathrm{084}\:\mathrm{has}\:\mathrm{fixes}\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{crashes}\:\mathrm{which}\:\mathrm{were}\:\mathrm{reported}\:\mathrm{on} \\ $$$$\mathrm{playstore}\:\mathrm{in}\:\mathrm{last}\:\mathrm{week}. \\ $$$$\mathrm{If}\:\mathrm{anyone}\:\mathrm{is}\:\mathrm{facing}\:\mathrm{crashes}\:\mathrm{please} \\ $$$$\mathrm{update}\:\mathrm{to}\:\mathrm{v2}.\mathrm{084}\:\mathrm{and}\:\mathrm{see}\:\mathrm{if}\:\mathrm{the}\: \\ $$$$\mathrm{problem}\:\mathrm{is}\:\mathrm{solved}. \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{still}\:\mathrm{present},\:\mathrm{please} \\ $$$$\mathrm{send}\:\mathrm{us}\:\mathrm{an}\:\mathrm{email}\:\mathrm{as}\:\mathrm{the}\:\mathrm{problem} \\ $$$$\mathrm{may}\:\mathrm{be}\:\mathrm{specifuc}\:\mathrm{to}\:\mathrm{device}\:\mathrm{model}. \\ $$

Question Number 98722    Answers: 3   Comments: 0

let f(x) =arctan((3/x)) 1) calculste f^((n)) (x) and f^((n)) (1) 2) developp f at integr seri at point x_0 =1

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\frac{\mathrm{3}}{\mathrm{x}}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculste}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{seri}\:\mathrm{at}\:\mathrm{point}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1} \\ $$

Question Number 98721    Answers: 2   Comments: 0

calculate ∫_0 ^∞ (dx/(x^4 +x^2 +1)) 1) by using residue theorem 2) by using complex decomposition

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{by}\:\mathrm{using}\:\mathrm{residue}\:\mathrm{theorem} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{by}\:\mathrm{using}\:\mathrm{complex}\:\mathrm{decomposition} \\ $$

  Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189   

Terms of Service

Privacy Policy

Contact: [email protected]