Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1185

Question Number 97142    Answers: 2   Comments: 3

prove that cos(mx)cos(ny)=((cos(mx+ny)+cos(mx−ny))/2) ? help me sir ?

$${prove}\:{that}\:{cos}\left({mx}\right){cos}\left({ny}\right)=\frac{{cos}\left({mx}+{ny}\right)+{cos}\left({mx}−{ny}\right)}{\mathrm{2}}\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Question Number 97139    Answers: 0   Comments: 1

prove that sinh3x=3sinhx+4sinh^3 x ? help me sir ?

$${prove}\:{that}\:{sinh}\mathrm{3}{x}=\mathrm{3}{sinhx}+\mathrm{4}{sinh}^{\mathrm{3}} {x}\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Question Number 97138    Answers: 0   Comments: 0

if it is H(x,y) ,G(x,y) k class Homogeneous function using aspecific provision find the general solution to the following differential equation y H(x,y)dx+G(x,y)(ydx−xdy)=0 please sir helpe me ? no one help me ?

$${if}\:{it}\:{is}\:{H}\left({x},{y}\right)\:,{G}\left({x},{y}\right)\:{k}\:{class}\:{Homogeneous}\:{function}\:{using}\:{aspecific}\:{provision}\:{find} \\ $$$${the}\:{general}\:{solution}\:{to}\:{the}\:{following}\:{differential}\:{equation} \\ $$$${y}\:{H}\left({x},{y}\right){dx}+{G}\left({x},{y}\right)\left({ydx}−{xdy}\right)=\mathrm{0} \\ $$$$ \\ $$$${please}\:{sir}\:{helpe}\:{me}\:?\: \\ $$$${no}\:{one}\:{help}\:{me}\:? \\ $$

Question Number 97137    Answers: 1   Comments: 2

using aparticular theory ,find the general solution to the following differential equation f(x+y)dx+g(x+y)dy=0 ? help me sir please

$${using}\:{aparticular}\:{theory}\:,{find}\:{the}\:{general}\:{solution}\:{to}\: \\ $$$${the}\:{following}\:{differential}\:{equation}\: \\ $$$${f}\left({x}+{y}\right){dx}+{g}\left({x}+{y}\right){dy}=\mathrm{0}\:? \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$

Question Number 97136    Answers: 0   Comments: 3

Evaluate (3/(1! + 2! + 3!)) + (4/(2! + 3! + 4!)) + ... + ((2001)/(1999! + 2000! + 2001!))

$$\mathrm{Evaluate} \\ $$$$\:\:\frac{\mathrm{3}}{\mathrm{1}!\:+\:\mathrm{2}!\:+\:\mathrm{3}!}\:\:+\:\:\frac{\mathrm{4}}{\mathrm{2}!\:+\:\mathrm{3}!\:+\:\mathrm{4}!}\:\:+\:\:...\:+\:\:\frac{\mathrm{2001}}{\mathrm{1999}!\:\:+\:\:\mathrm{2000}!\:\:+\:\:\mathrm{2001}!} \\ $$

Question Number 97135    Answers: 0   Comments: 1

prove that: sin(16x) cot(x)=1+2cos(2x)+2cos(4x)+2cos(6x)+...+2cos(16x)

$${prove}\:{that}: \\ $$$${sin}\left(\mathrm{16}{x}\right)\:{cot}\left({x}\right)=\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+\mathrm{2}{cos}\left(\mathrm{4}{x}\right)+\mathrm{2}{cos}\left(\mathrm{6}{x}\right)+...+\mathrm{2}{cos}\left(\mathrm{16}{x}\right) \\ $$

Question Number 97134    Answers: 0   Comments: 0

find the laplace transform of t^(3/2) erf(t)

$${find}\:{the}\:{laplace}\:{transform}\:{of}\:{t}^{\frac{\mathrm{3}}{\mathrm{2}}} {erf}\left({t}\right) \\ $$

Question Number 97132    Answers: 1   Comments: 1

is the formulla of sin^3 ((π/2)+x)=cos^3 x correct?

$$\mathrm{is}\:\mathrm{the}\:\mathrm{formulla}\:\mathrm{of}\:\mathrm{sin}\:^{\mathrm{3}} \left(\frac{\pi}{\mathrm{2}}+\mathrm{x}\right)=\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\:\:\:\:\mathrm{correct}? \\ $$

Question Number 97130    Answers: 1   Comments: 0

Question Number 97129    Answers: 0   Comments: 0

Given z=x+iy z∈C z≠0 1\ A, B, and C are the images of z, iz, and (2−i)+z a\ Calculate the lengths AB, AC, and BC. b\ Deduce that the triangle ABC is isosceles and not equilateral. 2\Find z, such that ∣z∣=∣((2+i)/z)∣=∣z−1∣ 3\Given Z, Z∈C such that ((Z−1)/(Z+1))=(((z−1)/(z+1)))^2 a\Express Z in terms of z b\What can we say of the images of Z, z, and (1/z) ?

$$\mathrm{Given}\:\:\mathrm{z}=\mathrm{x}+\mathrm{iy}\:\:\mathrm{z}\in\mathbb{C}\:\:\mathrm{z}\neq\mathrm{0} \\ $$$$\mathrm{1}\backslash\:\mathrm{A},\:\mathrm{B},\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{z},\:\mathrm{iz},\:\mathrm{and}\:\left(\mathrm{2}−\mathrm{i}\right)+\mathrm{z} \\ $$$$\mathrm{a}\backslash\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{AB},\:\mathrm{AC},\:\mathrm{and}\:\mathrm{BC}. \\ $$$$\mathrm{b}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{and}\:\mathrm{not} \\ $$$$\mathrm{equilateral}. \\ $$$$\mathrm{2}\backslash\mathrm{Find}\:\mathrm{z},\:\mathrm{such}\:\mathrm{that}\:\mid\mathrm{z}\mid=\mid\frac{\mathrm{2}+\mathrm{i}}{\mathrm{z}}\mid=\mid\mathrm{z}−\mathrm{1}\mid \\ $$$$\mathrm{3}\backslash\mathrm{Given}\:\mathrm{Z},\:\mathrm{Z}\in\mathbb{C}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{Z}−\mathrm{1}}{\mathrm{Z}+\mathrm{1}}=\left(\frac{\mathrm{z}−\mathrm{1}}{\mathrm{z}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{a}\backslash\mathrm{Express}\:\mathrm{Z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{z} \\ $$$$\mathrm{b}\backslash\mathrm{What}\:\mathrm{can}\:\mathrm{we}\:\mathrm{say}\:\mathrm{of}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{Z},\:\mathrm{z},\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{z}}\:? \\ $$

Question Number 97125    Answers: 0   Comments: 0

∫{xtanx+ln∣cos x∣} dx

$$\int\left\{\mathrm{xtanx}+\mathrm{ln}\mid\mathrm{cos}\:\mathrm{x}\mid\right\}\:\mathrm{dx} \\ $$

Question Number 97117    Answers: 1   Comments: 0

lim_(h→0) [ (1/h) ∫_2 ^(2+2h) (√(t^2 +2)) dt ]

$$\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{h}}\:\underset{\mathrm{2}} {\overset{\mathrm{2}+\mathrm{2h}} {\int}}\sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{2}}\:\mathrm{dt}\:\right]\: \\ $$

Question Number 97115    Answers: 1   Comments: 0

find the points on hyperbola x^2 −y^2 =2 closest to point (0,1)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{points}\:\mathrm{on}\:\mathrm{hyperbola}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{1}\right)\: \\ $$

Question Number 97114    Answers: 0   Comments: 0

pls find x x^x^x +ln(2x)−1=0

$${pls}\:{find}\:{x} \\ $$$$ \\ $$$${x}^{{x}^{{x}} } +{ln}\left(\mathrm{2}{x}\right)−\mathrm{1}=\mathrm{0} \\ $$

Question Number 97109    Answers: 2   Comments: 0

∫_0 ^(π/2) ((sin^3 x)/(sin^3 x+cos^3 ×))dx=?

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{3}} ×}\mathrm{dx}=? \\ $$

Question Number 97108    Answers: 4   Comments: 1

1)find (dy/dx) y=(sin(x))^(cos^(−1) (x)) 2)lim_(x→∞) x^(1/x)

$$\left.\mathrm{1}\right){find}\:\frac{{dy}}{{dx}} \\ $$$${y}=\left({sin}\left({x}\right)\right)^{{cos}^{−\mathrm{1}} \left({x}\right)} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\underset{{x}\rightarrow\infty} {{lim}x}^{\frac{\mathrm{1}}{{x}}} \\ $$

Question Number 97091    Answers: 1   Comments: 0

solve ∫x^(x+1) dx .

$${solve}\:\int{x}^{{x}+\mathrm{1}} {dx}\:. \\ $$

Question Number 97089    Answers: 1   Comments: 0

solve ∫x^x (1+ln x)dx .

$${solve}\:\:\int{x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right){dx}\:. \\ $$

Question Number 97088    Answers: 2   Comments: 0

Question Number 97082    Answers: 2   Comments: 0

Question Number 97073    Answers: 3   Comments: 4

Find (dy/dx) of 2^x + y^2 = 2xy , x, y ∈ C

$${Find}\:\:\frac{{dy}}{{dx}}\:\:{of}\:\:\:\:\mathrm{2}^{{x}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{2}{xy}\:\:\:\:,\:\:{x},\:{y}\:\in\:\mathbb{C} \\ $$

Question Number 97068    Answers: 1   Comments: 1

Question Number 97067    Answers: 2   Comments: 1

if p is the natural number then what is the degree of x^(6p+1) +3x^(4p−3) +4x^(8p−10) +8 polynomial?

$$\mathrm{if}\:\mathrm{p}\:\mathrm{is}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{degree}\:\mathrm{of} \\ $$$$\mathrm{x}^{\mathrm{6p}+\mathrm{1}} +\mathrm{3x}^{\mathrm{4p}−\mathrm{3}} +\mathrm{4x}^{\mathrm{8p}−\mathrm{10}} +\mathrm{8}\:\:\mathrm{polynomial}? \\ $$

Question Number 97064    Answers: 0   Comments: 1

find the value of (an) in this utility (3xy^2 )^3

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{an}\right)\:\mathrm{in}\:\mathrm{this}\:\mathrm{utility}\:\:\left(\mathrm{3xy}^{\mathrm{2}} \right)^{\mathrm{3}} \\ $$

Question Number 97059    Answers: 0   Comments: 1

Question Number 97057    Answers: 2   Comments: 0

∫_0 ^1 (dx/(√(−ln(x)))) ? [ by Gamma function ]

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\sqrt{−\mathrm{ln}\left({x}\right)}}\:?\:\left[\:{by}\:{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$

  Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com