Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1185

Question Number 97721    Answers: 1   Comments: 3

Question Number 97892    Answers: 1   Comments: 0

Question Number 97707    Answers: 3   Comments: 0

Question Number 97694    Answers: 1   Comments: 7

Question Number 97683    Answers: 3   Comments: 3

Evaluate ∫_0 ^1 (1/(√(16 + 9x^2 ))) dx

$$\:\mathrm{Evaluate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\sqrt{\mathrm{16}\:+\:\mathrm{9}{x}^{\mathrm{2}} }}\:{dx} \\ $$

Question Number 97680    Answers: 0   Comments: 1

Question Number 97675    Answers: 1   Comments: 0

Question Number 97671    Answers: 0   Comments: 1

Question Number 97660    Answers: 2   Comments: 1

Question Number 97658    Answers: 0   Comments: 1

The value of cos ((2π)/7) +cos ((4π)/7)+cos ((6π)/7) is

$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\:+\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{6}\pi}{\mathrm{7}}\:\:\mathrm{is} \\ $$

Question Number 97657    Answers: 0   Comments: 1

If cos α+cos β = 0 = sin α+sin β, then cos 2α+cos 2β =

$$\mathrm{If}\:\:\mathrm{cos}\:\alpha+\mathrm{cos}\:\beta\:=\:\mathrm{0}\:=\:\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta, \\ $$$$\mathrm{then}\:\:\mathrm{cos}\:\mathrm{2}\alpha+\mathrm{cos}\:\mathrm{2}\beta\:= \\ $$

Question Number 97656    Answers: 1   Comments: 1

Maximum value of 3 cos θ + 4 sin θ is

$$\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3}\:\mathrm{cos}\:\theta\:+\:\mathrm{4}\:\mathrm{sin}\:\theta\:\mathrm{is} \\ $$

Question Number 97649    Answers: 1   Comments: 3

Question Number 97648    Answers: 1   Comments: 1

Determine all function f:R/{0,1}→R satisfying the functional relation f(x) + f((1/(1−x))) = ((2(1−2x))/(x(1−x))) , x≠0, x≠1

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{function}\:\mathrm{f}:\mathrm{R}/\left\{\mathrm{0},\mathrm{1}\right\}\rightarrow\mathrm{R} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{functional}\:\mathrm{relation} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}\right)\:=\:\frac{\mathrm{2}\left(\mathrm{1}−\mathrm{2x}\right)}{\mathrm{x}\left(\mathrm{1}−\mathrm{x}\right)}\:,\:\mathrm{x}\neq\mathrm{0},\:\mathrm{x}\neq\mathrm{1} \\ $$

Question Number 97709    Answers: 0   Comments: 4

Question Number 97638    Answers: 0   Comments: 0

Question Number 97637    Answers: 0   Comments: 1

Given p,q∈R_+ ^∗ −{−1}/(1/p)+(1/q)=1 show that; ∀a,b ∈R ab≤(a^p /p)+(b^q /q)

$$\mathrm{Given}\:\mathrm{p},\mathrm{q}\in\mathbb{R}_{+} ^{\ast} −\left\{−\mathrm{1}\right\}/\frac{\mathrm{1}}{\mathrm{p}}+\frac{\mathrm{1}}{\mathrm{q}}=\mathrm{1}\:\mathrm{show}\:\mathrm{that}; \\ $$$$\forall\mathrm{a},\mathrm{b}\:\in\mathbb{R}\:\mathrm{ab}\leqslant\frac{\mathrm{a}^{\mathrm{p}} }{\mathrm{p}}+\frac{\mathrm{b}^{\mathrm{q}} }{\mathrm{q}} \\ $$

Question Number 97629    Answers: 1   Comments: 0

Question Number 97628    Answers: 1   Comments: 0

Question Number 97627    Answers: 2   Comments: 0

give ∫_0 ^∞ ((arctan(x))/((1+x^2 )^2 ))dx at form of serie

$$\mathrm{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie} \\ $$

Question Number 97626    Answers: 0   Comments: 2

solve y^(′′) −2y^′ +y =x^2 with y^′ (0) =y(0) =−1

$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{2y}^{'} \:+\mathrm{y}\:\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{with}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{y}\left(\mathrm{0}\right)\:=−\mathrm{1} \\ $$

Question Number 97625    Answers: 1   Comments: 0

solve x^2 y^(′′) −(x+1)y^′ =x^2 sinx

$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{y}^{''} −\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} \:\:=\mathrm{x}^{\mathrm{2}} \mathrm{sinx} \\ $$

Question Number 97624    Answers: 2   Comments: 0

calculate ∫_2 ^∞ (dx/((x+1)^3 (x^2 +1)^4 ))

$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{\infty} \:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} } \\ $$

Question Number 97622    Answers: 0   Comments: 0

let f(x) =arctan(x^2 −3) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie 3) calculate ∫_0 ^1 f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 97620    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((sin(πx^2 ))/(x^4 −x^2 +1))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\pi\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$

Question Number 97619    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((cos(3x))/((x^2 +3)^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{3x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

  Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184      Pg 1185      Pg 1186      Pg 1187      Pg 1188      Pg 1189   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com