Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1185
Question Number 94797 Answers: 1 Comments: 0
Question Number 94786 Answers: 0 Comments: 1
$${x},\:{y}\:\in\mathbb{N}\backslash\left\{\mathrm{0},\:\mathrm{1}\right\}\:\wedge\:{x}\leqslant{y} \\ $$$$\mathrm{find}\:{z}\in\mathbb{N}\:\mathrm{with}\:{z}!={x}!{y}! \\ $$
Question Number 94782 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{physical}\:\mathrm{quantities}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$$$\:\:\mathrm{v}\:\:=\:\:\sqrt{\frac{\mathrm{P}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{x}}}\:,\:\:\mathrm{where}\:\:\mathrm{P}\:\mathrm{is}\:\mathrm{the}\:\mathrm{pressure}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{dimention}\:\mathrm{of}\:\:\:\mathrm{n}\:\:\mathrm{and}\:\:\mathrm{x}. \\ $$
Question Number 94780 Answers: 0 Comments: 1
$$\mathrm{x}!\left(\mathrm{x}−\mathrm{4}\right)!=\mathrm{12}\left(\mathrm{2x}−\mathrm{7}\right)! \\ $$$$\mathrm{x}=? \\ $$
Question Number 94776 Answers: 0 Comments: 0
Question Number 94774 Answers: 2 Comments: 1
Question Number 94773 Answers: 1 Comments: 0
Question Number 94772 Answers: 0 Comments: 0
Question Number 94769 Answers: 2 Comments: 0
Question Number 94768 Answers: 1 Comments: 0
Question Number 94767 Answers: 1 Comments: 0
Question Number 94764 Answers: 2 Comments: 0
Question Number 94765 Answers: 0 Comments: 0
Question Number 94756 Answers: 0 Comments: 2
$$\left.{s}\left.{olution}:\:\mathrm{Q1}\right){a}\right)\:{n}=\frac{{ln}\left({m}/{m}_{\mathrm{0}} \right)}{{ln}\mathrm{0}.\mathrm{5}}\:=\:\frac{{ln}\left(\mathrm{12}/\mathrm{75}\right)}{{ln}\mathrm{0}.\mathrm{5}}\:=\mathrm{2}.\mathrm{64} \\ $$$${N}=\mathrm{N}_{\mathrm{0}} \left(\mathrm{0}.\mathrm{5}\right)^{{n}} \:=\:\mathrm{6}.\mathrm{02}×\mathrm{10}^{\mathrm{23}} \left(\mathrm{0}.\mathrm{5}\right)^{\mathrm{2}.\mathrm{64}} =\:\mathrm{9}.\mathrm{66}×\mathrm{10}^{\mathrm{22}} \\ $$$${A}=\lambda{N}=\mathrm{1}.\mathrm{5}×\mathrm{10}^{−\mathrm{4}} \:×\:\mathrm{9}.\mathrm{66}×\mathrm{10}^{\mathrm{22}} =\mathrm{1}.\mathrm{45}×\mathrm{10}^{\mathrm{19}} \:{Bq} \\ $$
Question Number 94752 Answers: 0 Comments: 1
$${Find}\:{the}\:{volume}\:{of}\:{the}\:{region}\:{bounded}\:{above}\:{by}\:{the}\:{surface}\:{z}={x} \\ $$$${and}\:{below}\:{by}\:{the}\:{region}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{y}=\mathrm{0}\:? \\ $$$${pleas}\:{sir}\:{can}\:{you}\:{help}\:{me}\:{becouse}\:{im}\:{very}\:{nedd}\:? \\ $$
Question Number 94742 Answers: 0 Comments: 1
Question Number 94739 Answers: 2 Comments: 2
Question Number 94735 Answers: 0 Comments: 9
$$\int\frac{\mathrm{2t}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{4}} \right)\left(\mathrm{1}+\mathrm{t}\right)}\mathrm{dt}=? \\ $$
Question Number 94753 Answers: 1 Comments: 0
Question Number 94730 Answers: 2 Comments: 0
Question Number 94723 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{{x}^{\mathrm{2}} } {\int}}\:\sqrt{\mathrm{4}+{t}^{\mathrm{3}} \:}\:{dt}}{{x}^{\mathrm{2}} }\:?\: \\ $$
Question Number 94718 Answers: 0 Comments: 4
$$\int\:\sqrt{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\:= \\ $$$$\int\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}+\sqrt{\mathrm{cot}\:\mathrm{x}}}{\mathrm{2}}\:\mathrm{dx}\:+\:\int\:\frac{\sqrt{\mathrm{tan}\:\mathrm{x}}−\sqrt{\mathrm{cot}\:\mathrm{x}}}{\mathrm{2}}\:\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\int\:\frac{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}{\sqrt{\mathrm{sin}\:\mathrm{2x}}}\:\mathrm{dx}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\int\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\sqrt{\mathrm{sin}\:\mathrm{2x}}}\:\mathrm{dx} \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\int\:\frac{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}{\sqrt{\mathrm{1}−\left(\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} }}\:\mathrm{dx}\:+\: \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\int\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\sqrt{\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{dx}\: \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\int\:\frac{\mathrm{dt}}{\sqrt{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\int\:\frac{−\mathrm{du}}{\sqrt{\mathrm{u}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}\:}\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{t}\right)\:−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{ln}\left(\mathrm{u}+\sqrt{\mathrm{u}^{\mathrm{2}} −\mathrm{1}}\right)\:+\mathrm{c} \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}\right)− \\ $$$$\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{sin}\:\mathrm{2x}}\right)\:+\:\mathrm{c}\: \\ $$$$\mathrm{where}\:\mathrm{t}\:=\:\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}\:;\: \\ $$$$\mathrm{u}\:=\:\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\: \\ $$
Question Number 94710 Answers: 1 Comments: 2
Question Number 94708 Answers: 1 Comments: 1
Question Number 94706 Answers: 2 Comments: 0
Question Number 94705 Answers: 0 Comments: 1
$$\mathrm{a}\:\mathrm{set}\:\mathrm{X}\:\mathrm{had}\:\mathrm{one}\:\mathrm{more}\:\mathrm{subset}\:\mathrm{than}\:\mathrm{set}\:\mathrm{Y}. \\ $$$$\mathrm{If}\:\mathrm{X}\:\mathrm{has}\:\mathrm{8}\:\mathrm{more}\:\mathrm{subsets}\:\mathrm{than}\:\mathrm{Y}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{if}\:\mathrm{element}\:\mathrm{in}\:\mathrm{the}\:\mathrm{set}\:\mathrm{X}. \\ $$
Pg 1180 Pg 1181 Pg 1182 Pg 1183 Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189
Terms of Service
Privacy Policy
Contact: info@tinkutara.com