Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1185
Question Number 97368 Answers: 3 Comments: 11
Question Number 97361 Answers: 1 Comments: 6
$$\int\frac{\mathrm{xdx}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{3}}=? \\ $$
Question Number 97355 Answers: 0 Comments: 1
Question Number 97353 Answers: 5 Comments: 0
Question Number 97346 Answers: 1 Comments: 0
Question Number 97335 Answers: 0 Comments: 2
Question Number 97323 Answers: 1 Comments: 0
$${Mr}\:{Peter}\:{has}\:\mathrm{4}\:{children}.\:{x}\:{are}\:{in}\: \\ $$$${class}\:{C}\:{and}\:{y}\:{are}\:{in}\:{class}\:{D}.\:{x}\geqslant\mathrm{1}\:{and} \\ $$$${y}\geqslant\mathrm{1}.\:{Show}\:{that}\:{the}\:{number}\:{of}\:{possibility}\: \\ $$$${to}\:{choose}\:{at}\:{random}\:{and}\:{simultaneous} \\ $$$$\mathrm{2}\:{children}\:{in}\:{same}\:{class}\:{verify}\:{this} \\ $$$${equation}\:{p}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{6} \\ $$
Question Number 97322 Answers: 1 Comments: 0
$$\int\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\centerdot\mathrm{cos}\:^{\mathrm{5}} \mathrm{xdx}=? \\ $$
Question Number 97319 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{5},\mathrm{6},\mathrm{11},\mathrm{17},\mathrm{28},\mathrm{45},\mathrm{73},\mathrm{x},\mathrm{y},\mathrm{z} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\mathrm{z}?\_\_ \\ $$$$\left(\mathrm{a}\right)\:\mathrm{118},\mathrm{192},\mathrm{309} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{117},\mathrm{191},\mathrm{310} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{117},\mathrm{191},\mathrm{308} \\ $$$$\left(\mathrm{d}\right)\:\mathrm{118},\mathrm{192},\mathrm{310} \\ $$$$\left(\mathrm{e}\right)\:\mathrm{118},\mathrm{191},\mathrm{309} \\ $$
Question Number 97314 Answers: 0 Comments: 0
Question Number 97307 Answers: 2 Comments: 2
Question Number 97306 Answers: 0 Comments: 2
$$\mathrm{if}\:\:\:\:\:\:\:\:\:\mathrm{sin14}=\mathrm{x} \\ $$$$\mathrm{then} \\ $$$$\mathrm{cos}^{\mathrm{2}} \mathrm{22}−\mathrm{cos}^{\mathrm{2}} \mathrm{8}=? \\ $$
Question Number 97305 Answers: 1 Comments: 0
Question Number 97303 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{G}}\mathrm{iven}\:\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} \:=\:\mathrm{0}\:,\:\mathrm{y}_{\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{2}} +\mathrm{y}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{x}_{\mathrm{1}} \mathrm{y}_{\mathrm{1}} +\:\mathrm{x}_{\mathrm{2}} \mathrm{y}_{\mathrm{2}} \:+\:\mathrm{x}_{\mathrm{3}} \mathrm{y}_{\mathrm{3}} \:=\:\mathrm{0}\:.\:\mathrm{The}\:\mathrm{value} \\ $$$$\mathrm{of}\:\frac{\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} ^{\mathrm{2}} }\:+\:\frac{\mathrm{y}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{y}_{\mathrm{1}} ^{\mathrm{2}} \:+\mathrm{y}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{y}_{\mathrm{3}} ^{\mathrm{2}} }\:=\:?\: \\ $$
Question Number 97283 Answers: 0 Comments: 0
Question Number 97275 Answers: 1 Comments: 14
$$\mathrm{Trial}\:\mathrm{version}\:\mathrm{with}\:\mathrm{additional} \\ $$$$\mathrm{colors}\:\mathrm{is}\:\mathrm{now}\:\mathrm{available}. \\ $$
Question Number 97272 Answers: 0 Comments: 0
Question Number 97271 Answers: 1 Comments: 2
$${hello}\:{every}\:{one} \\ $$$${why}\:{do}\:{planets}\:{of}\:{the}\:{solar}\:{system} \\ $$$${revolve}\:{around}\:{the}\:{sun}\:{in}\:{an}\:{eliptical} \\ $$$${not}\:{circular}\:{orbit} \\ $$
Question Number 97270 Answers: 1 Comments: 3
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{real}}\:\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{z}}\:\boldsymbol{\mathrm{giving}} \\ $$$$\boldsymbol{\mathrm{answer}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{form}}\:\left(\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}},\boldsymbol{\mathrm{z}}\right)\:\begin{cases}{\boldsymbol{\mathrm{x}}\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\boldsymbol{\mathrm{z}}\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}\right)=\:\mathrm{4}}\\{\boldsymbol{\mathrm{y}}\left(\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}\right)+\boldsymbol{\mathrm{x}}\left(\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{z}}\right)\:=\:−\mathrm{4}}\\{\boldsymbol{\mathrm{z}}\left(\boldsymbol{\mathrm{z}}+\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{y}}\left(\boldsymbol{\mathrm{z}}−\boldsymbol{\mathrm{x}}\right)\:=\:\mathrm{5}}\end{cases} \\ $$
Question Number 97250 Answers: 1 Comments: 0
Question Number 97239 Answers: 0 Comments: 3
$$\int\:\frac{\mathrm{sec}\:^{\mathrm{3}} {x}\:{dx}}{\sqrt{\mathrm{tan}\:{x}}}\:?\: \\ $$
Question Number 97238 Answers: 0 Comments: 1
Question Number 97236 Answers: 3 Comments: 3
Question Number 97235 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:\mathrm{dx}\:?\: \\ $$
Question Number 97231 Answers: 0 Comments: 0
$$\mathrm{developp}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:−\mathrm{3cosx}\:+\mathrm{2}} \\ $$
Question Number 97230 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\:\mathrm{developp}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ln}\left(\mathrm{sinx}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{ln}\left(\mathrm{cosx}\:+\mathrm{sinx}\right) \\ $$$$\left.\mathrm{3}\right)\mathrm{developp}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{seri}\:\mathrm{e}\:\mathrm{h}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\mathrm{cosx}\:+\mathrm{2sinx}\right) \\ $$
Pg 1180 Pg 1181 Pg 1182 Pg 1183 Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189
Terms of Service
Privacy Policy
Contact: info@tinkutara.com