Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1185
Question Number 98368 Answers: 1 Comments: 0
$$\mathrm{If}\:\overset{\rightarrow} {{G}}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{then} \\ $$$$\overset{\rightarrow} {{GA}}+\overset{\rightarrow} {{GB}}+\overset{\rightarrow} {{GC}}\:= \\ $$
Question Number 98367 Answers: 1 Comments: 2
$$\mathrm{show}\:\mathrm{that}\:\varphi\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} −\mathrm{x}^{−\mathrm{1}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{explicit}\: \\ $$$$\mathrm{solution}\:\mathrm{to}\:\mathrm{linear}\:\mathrm{equation}\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:−\:\frac{\mathrm{2y}}{\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$
Question Number 98355 Answers: 1 Comments: 1
Question Number 98342 Answers: 1 Comments: 2
Question Number 98338 Answers: 2 Comments: 0
$$\int{cos}\left({x}^{\mathrm{18}} \right)\:{dx} \\ $$$$ \\ $$
Question Number 98325 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{curvature}\:\mathrm{vector}\:\mathrm{and} \\ $$$$\mathrm{its}\:\mathrm{magnitude}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point}\: \\ $$$$\overset{\rightarrow} {\mathrm{r}}\:=\:\left(\theta\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\:\overset{\rightarrow} {\mathrm{r}}=\:\left(\mathrm{acos}\:\theta,\mathrm{asin}\:\theta,\mathrm{a}\theta\right) \\ $$$$.\mathrm{Show}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{the} \\ $$$$\bot\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{the}\:\mathrm{tangent}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{curve}\:\mathrm{that}\:\mathrm{completely}\:\mathrm{lies} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{hyperbolic}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} =\:\mathrm{a}^{\mathrm{2}} \\ $$
Question Number 98320 Answers: 1 Comments: 0
Question Number 98311 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx}\: \\ $$
Question Number 98310 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{by}\:\mathrm{using}\:\mathrm{serie}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$
Question Number 98309 Answers: 1 Comments: 0
$$\mathrm{let}\:{f}\left({x}\right)\:=\:\mathrm{ln}\left(\:\mathrm{1}\:+\:\mathrm{cosh}\:\mathrm{2}{x}\right) \\ $$$$\mathrm{show}\:\mathrm{that}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\mathrm{2}{x}\:−\:\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{hence}\:\mathrm{deduce}\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{with}\:\mathrm{the}\:\mathrm{asympotes}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{curve}. \\ $$
Question Number 98306 Answers: 2 Comments: 1
Question Number 98305 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$
Question Number 98280 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{Let}}\:\:\left\{\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} \right\}\:\:\boldsymbol{\mathrm{be}}\:\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{sequence}}\:\boldsymbol{\mathrm{such}}\:\boldsymbol{\mathrm{that}}\:\:\:\boldsymbol{\mathrm{a}}_{\mathrm{1}} \:=\:\:\mathrm{2}, \\ $$$$\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}\:\:+\:\:\mathrm{1}} \:\:=\:\:\frac{\mathrm{3}\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} \:+\:\:\mathrm{4}}{\mathrm{2}\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} \:\:+\:\:\mathrm{3}},\:\:\:\:\:\boldsymbol{\mathrm{n}}\:\geqslant\:\mathrm{1},\:\:\:\:\:\boldsymbol{\mathrm{find}}\:\:\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} \\ $$
Question Number 98278 Answers: 1 Comments: 0
Question Number 98275 Answers: 1 Comments: 1
Question Number 98270 Answers: 2 Comments: 0
$${prove} \\ $$$${Fg}={G}\frac{{m}_{\mathrm{1}} {m}_{\mathrm{2}} }{{r}^{\mathrm{2}} } \\ $$
Question Number 98271 Answers: 2 Comments: 5
$$\mathcal{G}\mathrm{ivenU}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}−\mathrm{x}}\mathrm{dx}\:\:\mathrm{n}\in\mathbb{N},\:\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{2}^{\mathrm{n}+\mathrm{2}} \mathrm{n}!\left(\mathrm{n}+\mathrm{1}\right)}{\left(\mathrm{2n}+\mathrm{3}\right)!} \\ $$
Question Number 98268 Answers: 0 Comments: 7
$${let}\:{p}\left({x}\right)\:{be}\:{a}\:{polynomial}\:{function}\:{of} \\ $$$$\left({n}−\mathrm{1}\right)^{{th}} \:{degree}\:{and} \\ $$$${p}\left({k}\right)={k}\:{for}\:{k}=\mathrm{1},\mathrm{2},\mathrm{3},...,{n} \\ $$$${find}\:{p}\left(\mathrm{0}\right)\:{and}\:{p}\left({n}+\mathrm{1}\right). \\ $$$${example}:\:{n}=\mathrm{10} \\ $$
Question Number 98267 Answers: 2 Comments: 0
$$\forall\:{a},{b}>\mathrm{0}\:,\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$${prove}\:{that} \\ $$$$\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\left(\frac{{b}}{{a}^{\mathrm{2}} +\mathrm{1}}+\frac{{a}}{{b}^{\mathrm{2}} +\mathrm{1}}\right)\geqslant\frac{\mathrm{8}}{\mathrm{3}} \\ $$
Question Number 98259 Answers: 2 Comments: 4
Question Number 98256 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{log}\left({x}\right)}{\sqrt{{x}}\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 98255 Answers: 1 Comments: 1
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{initial}\:\mathrm{values} \\ $$$$\mathrm{DEs}\:\mathrm{20y}''\:+\:\mathrm{4y}'\:+\mathrm{y}\:=\:\mathrm{0} \\ $$$$;\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{3}.\mathrm{2}\:\mathrm{and}\:\mathrm{y}'\left(\mathrm{0}\right)\:=\:\mathrm{0}\: \\ $$
Question Number 98250 Answers: 0 Comments: 1
$$\mathrm{Let}\:\mathrm{A}=\begin{pmatrix}{\mathrm{2}\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\mathrm{3}}\end{pmatrix}\:.\:\mathrm{Find}\:\mathrm{a}\:\mathrm{non}\:\mathrm{singular}\:\mathrm{matrix} \\ $$$$\mathrm{P}\:\mathrm{such}\:\mathrm{that}\:\mathrm{P}^{−\mathrm{1}} \mathrm{AP}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diagonal}\:\mathrm{matrix}. \\ $$
Question Number 98249 Answers: 0 Comments: 0
$$\mathrm{explicit}\:\mathrm{A}\left(\theta\right)\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{ln}\left(\mathrm{lnx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2xcos}\theta\:+\mathrm{1}}\mathrm{dx}\:\:\:\mathrm{with}\:−\pi<\theta<\pi \\ $$
Question Number 98248 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{ln}\left(\mathrm{lnx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 98246 Answers: 1 Comments: 0
$$\int\frac{{x}}{{sin}^{\mathrm{2}} \left({x}−\mathrm{3}\right)}{dx} \\ $$
Pg 1180 Pg 1181 Pg 1182 Pg 1183 Pg 1184 Pg 1185 Pg 1186 Pg 1187 Pg 1188 Pg 1189
Terms of Service
Privacy Policy
Contact: info@tinkutara.com