Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1180

Question Number 99194    Answers: 1   Comments: 0

Question Number 99193    Answers: 1   Comments: 4

Question Number 99175    Answers: 2   Comments: 0

A man and a woman have 3 boys and 3 girls. (i) in how many ways will they sit in a row such that the 3 boys and 3 girls are inbetween the man and woman. (ii) Say the man decides of the 3 boys and 3 girls he has 2 of the kids should help him out in a project, in how many ways can this be done, if heyoungest boy and oldest girl can′t join.

$$\:\:\mathrm{A}\:\mathrm{man}\:\mathrm{and}\:\mathrm{a}\:\mathrm{woman}\:\mathrm{have}\:\mathrm{3}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{3}\:\mathrm{girls}.\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{will}\:\mathrm{they}\:\mathrm{sit}\:\mathrm{in}\:\mathrm{a}\:\mathrm{row}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{the}\:\mathrm{3}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{3}\:\mathrm{girls}\:\mathrm{are}\:\mathrm{inbetween}\:\mathrm{the}\:\mathrm{man}\:\mathrm{and}\:\mathrm{woman}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Say}\:\mathrm{the}\:\mathrm{man}\:\mathrm{decides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{3}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{3}\:\mathrm{girls}\:\mathrm{he}\:\mathrm{has}\:\mathrm{2}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{kids}\:\mathrm{should}\:\mathrm{help}\:\mathrm{him}\:\mathrm{out}\:\mathrm{in}\:\mathrm{a}\:\mathrm{project}, \\ $$$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{done},\:\mathrm{if}\:\mathrm{heyoungest}\:\mathrm{boy}\:\mathrm{and}\:\mathrm{oldest} \\ $$$$\mathrm{girl}\:\mathrm{can}'\mathrm{t}\:\mathrm{join}. \\ $$

Question Number 99171    Answers: 0   Comments: 3

Question Number 99168    Answers: 1   Comments: 0

Question Number 99159    Answers: 0   Comments: 2

Question Number 99154    Answers: 4   Comments: 0

Question Number 99146    Answers: 1   Comments: 0

1) explicit f(a) =∫_1 ^(√3) arctan((a/x))dx with a>0 2) calculate ∫_1 ^(√3) arctan((2/x))dx and ∫_1 ^(√3) arctan((3/x))dx

$$\left.\mathrm{1}\right)\:\mathrm{explicit}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\:\mathrm{arctan}\left(\frac{\mathrm{a}}{\mathrm{x}}\right)\mathrm{dx}\:\:\mathrm{with}\:\mathrm{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx}\:\mathrm{and}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\:\mathrm{arctan}\left(\frac{\mathrm{3}}{\mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 99142    Answers: 1   Comments: 0

If 4 dice are thrown together, then the probability that the sum of the numbers appearing on them is 13, is

$$\mathrm{If}\:\mathrm{4}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{thrown}\:\mathrm{together},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers} \\ $$$$\mathrm{appearing}\:\mathrm{on}\:\mathrm{them}\:\mathrm{is}\:\mathrm{13},\:\mathrm{is} \\ $$

Question Number 99141    Answers: 1   Comments: 0

The probability that in a random arrangement of the letters of the word ′UNIVERSITY′ the two I′ do not come together is

$$\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{in}\:\mathrm{a}\:\mathrm{random} \\ $$$$\mathrm{arrangement}\:\mathrm{of}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word} \\ $$$$'\mathrm{UNIVERSITY}'\:\mathrm{the}\:\mathrm{two}\:\mathrm{I}'\:\mathrm{do}\:\mathrm{not}\:\mathrm{come} \\ $$$$\mathrm{together}\:\mathrm{is} \\ $$

Question Number 99139    Answers: 1   Comments: 0

One ticket is selected at random from 100 tickets numbered 00, 01, 02, ..., 99 Suppose A and B are the sum and product of the digit found on the ticket. Then P (A = 7/B= 0) is given by

$$\mathrm{One}\:\mathrm{ticket}\:\mathrm{is}\:\mathrm{selected}\:\mathrm{at}\:\mathrm{random}\:\mathrm{from} \\ $$$$\mathrm{100}\:\mathrm{tickets}\:\mathrm{numbered}\:\mathrm{00},\:\mathrm{01},\:\mathrm{02},\:...,\:\mathrm{99} \\ $$$$\mathrm{Suppose}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{and}\: \\ $$$$\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digit}\:\mathrm{found}\:\mathrm{on}\:\mathrm{the}\:\mathrm{ticket}. \\ $$$$\mathrm{Then}\:{P}\:\left({A}\:=\:\mathrm{7}/{B}=\:\mathrm{0}\right)\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$

Question Number 99138    Answers: 1   Comments: 0

If A and B are independent events and P(C)=0, then

$$\mathrm{If}\:{A}\:\mathrm{and}\:{B}\:\mathrm{are}\:\mathrm{independent}\:\mathrm{events}\:\mathrm{and} \\ $$$${P}\left({C}\right)=\mathrm{0},\:\mathrm{then} \\ $$

Question Number 99137    Answers: 0   Comments: 0

If m rupee coins and n ten paise coins are placed in a line, then the probability that the extreme coins are ten paise coins is

$$\mathrm{If}\:{m}\:\mathrm{rupee}\:\mathrm{coins}\:\mathrm{and}\:{n}\:\mathrm{ten}\:\mathrm{paise}\:\mathrm{coins} \\ $$$$\mathrm{are}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{line},\:\mathrm{then}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{extreme}\:\mathrm{coins}\:\mathrm{are}\:\mathrm{ten}\:\mathrm{paise}\:\mathrm{coins} \\ $$$$\mathrm{is} \\ $$

Question Number 99136    Answers: 0   Comments: 0

Three persons A, B, C are to speak at a function along with five others. If they all speak in random order, the probqbility that A speaks before B and B speaks before C is

$$\mathrm{Three}\:\mathrm{persons}\:{A},\:{B},\:{C}\:\:\mathrm{are}\:\mathrm{to}\:\mathrm{speak}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{along}\:\mathrm{with}\:\mathrm{five}\:\mathrm{others}.\:\mathrm{If}\:\mathrm{they} \\ $$$$\mathrm{all}\:\mathrm{speak}\:\mathrm{in}\:\mathrm{random}\:\mathrm{order},\:\mathrm{the}\:\mathrm{probqbility} \\ $$$$\mathrm{that}\:{A}\:\mathrm{speaks}\:\mathrm{before}\:{B}\:\mathrm{and}\:{B}\:\mathrm{speaks}\: \\ $$$$\mathrm{before}\:{C}\:\mathrm{is} \\ $$

Question Number 99133    Answers: 0   Comments: 0

Equilibrate it using oxydation′s number (NH_4 )_2 Cr_2 O_7 →N_2 +H_2 O+Cr_(2 ) O_7

$${Equilibrate}\:{it}\:{using}\:{oxydation}'{s} \\ $$$${number} \\ $$$$\left({NH}_{\mathrm{4}} \right)_{\mathrm{2}} {Cr}_{\mathrm{2}} {O}_{\mathrm{7}} \rightarrow{N}_{\mathrm{2}} +{H}_{\mathrm{2}} {O}+{Cr}_{\mathrm{2}\:\:} {O}_{\mathrm{7}} \\ $$

Question Number 99123    Answers: 2   Comments: 1

Question Number 99120    Answers: 0   Comments: 2

prove that: ∫_(−(1/2)) ^∞ e^(−(4x^6 +12x^5 +15x^4 +10x^3 +4x^2 +x)) dx =((e)^(1/8) /3)[((Γ((1/6))^((−1)/2) )/(2(2)^(1/3) ))1F2(_(1/3,2/3) ^(1/6) ∣((−1)/(69/2)) ) +((Γ(5/6))/(128(4)^(1/3) ))1F2(_(4/3,5/3) ^(5/6) ∣((−1)/(69/2))) −((√π)/(16))12(_(2/3,4/3) ^(1/2) ∣((−1)/(69/2)))

$${prove}\:{that}: \\ $$$$\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\infty} {e}^{−\left(\mathrm{4}{x}^{\mathrm{6}} +\mathrm{12}{x}^{\mathrm{5}} +\mathrm{15}{x}^{\mathrm{4}} +\mathrm{10}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +{x}\right)} {dx} \\ $$$$=\frac{\sqrt[{\mathrm{8}}]{{e}}}{\mathrm{3}}\left[\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{6}}\right)^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{2}}}\mathrm{1}{F}\mathrm{2}\left(_{\mathrm{1}/\mathrm{3},\mathrm{2}/\mathrm{3}} ^{\mathrm{1}/\mathrm{6}} \mid\frac{−\mathrm{1}}{\mathrm{69}/\mathrm{2}}\:\right)\:+\frac{\Gamma\left(\mathrm{5}/\mathrm{6}\right)}{\mathrm{128}\sqrt[{\mathrm{3}}]{\mathrm{4}}}\mathrm{1}{F}\mathrm{2}\left(_{\mathrm{4}/\mathrm{3},\mathrm{5}/\mathrm{3}} ^{\mathrm{5}/\mathrm{6}} \mid\frac{−\mathrm{1}}{\mathrm{69}/\mathrm{2}}\right)\:−\frac{\sqrt{\pi}}{\mathrm{16}}\mathrm{12}\left(_{\mathrm{2}/\mathrm{3},\mathrm{4}/\mathrm{3}} ^{\mathrm{1}/\mathrm{2}} \mid\frac{−\mathrm{1}}{\mathrm{69}/\mathrm{2}}\right)\:\right. \\ $$

Question Number 99118    Answers: 4   Comments: 0

Question Number 99117    Answers: 1   Comments: 0

let a,b,c ∈R determine the minimum value ((3a)/(b+c))+((4b)/(a+c))+((5c)/(a+b))

$${let}\:{a},{b},{c}\:\in\mathbb{R}\:{determine}\:{the}\:{minimum} \\ $$$${value} \\ $$$$ \\ $$$$\frac{\mathrm{3}{a}}{{b}+{c}}+\frac{\mathrm{4}{b}}{{a}+{c}}+\frac{\mathrm{5}{c}}{{a}+{b}} \\ $$

Question Number 99114    Answers: 1   Comments: 0

calculate: ∫(√x)sinh^(−1) (x)dx where sinh^(−1) (x) is the inverse hyperbolic sine function

$${calculate}: \\ $$$$\int\sqrt{{x}}{sinh}^{−\mathrm{1}} \left({x}\right){dx} \\ $$$${where}\:{sinh}^{−\mathrm{1}} \left({x}\right)\:{is}\:{the}\:{inverse}\:{hyperbolic}\: \\ $$$${sine}\:{function} \\ $$$$ \\ $$$$ \\ $$

Question Number 99113    Answers: 2   Comments: 0

solve y^(′′) +5y^′ −3y =x^2 sin(3x) with y(0) =0 and y^′ (0)=−1

$$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{5y}^{'} \:−\mathrm{3y}\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{3x}\right)\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)\:=\mathrm{0}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)=−\mathrm{1} \\ $$

Question Number 99102    Answers: 0   Comments: 21

Question Number 99097    Answers: 0   Comments: 1

Hello verry nice day for all of you god bless You pleas Can you use black Color shen You post Quation or Give answer is verry hard to read withe other colors

$${Hello}\: \\ $$$${verry}\:{nice}\:{day}\:{for}\:{all}\:{of}\:{you}\:{god}\:{bless}\:{You} \\ $$$${pleas}\:{Can}\:{you}\:{use}\:{black}\:{Color}\:{shen}\:{You}\:{post}\:{Quation}\: \\ $$$${or}\:{Give}\:{answer}\:{is}\:{verry}\:{hard}\:{to}\:{read}\:{withe}\:{other}\:{colors} \\ $$

Question Number 99095    Answers: 1   Comments: 0

Question Number 99094    Answers: 1   Comments: 0

find ((9+9((9+9((9+9((9+...))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) − (√(8−(√(8−(√(8+(√(8−(√(8−(√(8−(√(8−(√)))))))...))))))))

$$\mathrm{find}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\mathrm{9}\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\mathrm{9}\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\mathrm{9}\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+...}}}}− \\ $$$$\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}+\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{}}}}...}}}}\: \\ $$

Question Number 99089    Answers: 1   Comments: 0

((9+((9+((9+((9+...))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) −(√(8−(√(8−(√(8−(√(8−...))))))))

$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+...}}}}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−...}}}} \\ $$

  Pg 1175      Pg 1176      Pg 1177      Pg 1178      Pg 1179      Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com