Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1180

Question Number 98943    Answers: 2   Comments: 0

let f(x) =(1/((1+x^2 )^3 )) developp f at integr serie

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$

Question Number 98942    Answers: 3   Comments: 2

calculate ∫ ((x+1−(√(2x+3)))/(x−2 +(√(x+1)))) dx

$$\mathrm{calculate}\:\int\:\frac{\mathrm{x}+\mathrm{1}−\sqrt{\mathrm{2x}+\mathrm{3}}}{\mathrm{x}−\mathrm{2}\:+\sqrt{\mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$

Question Number 98940    Answers: 2   Comments: 1

if (1/((1+x)^n )) =Σ_(m=0) ^∞ a_m x^m determinate a_m

$$\mathrm{if}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} }\:=\sum_{\mathrm{m}=\mathrm{0}} ^{\infty} \:\mathrm{a}_{\mathrm{m}} \mathrm{x}^{\mathrm{m}} \:\:\:\:\mathrm{determinate}\:\mathrm{a}_{\mathrm{m}} \\ $$

Question Number 98932    Answers: 0   Comments: 0

Question Number 98929    Answers: 0   Comments: 6

Find[]the[]integral[]of[] ∫(dt/(√((1+t^(10) ))))

$${Find}\left[\right]{the}\left[\right]{integral}\left[\right]{of}\left[\right] \\ $$$$ \\ $$$$\int\frac{{dt}}{\sqrt{\left(\mathrm{1}+{t}^{\mathrm{10}} \right)}} \\ $$

Question Number 98925    Answers: 1   Comments: 1

If the curve shown below has the equation, y=(x−p)(x^3 −bx−c) then find q/p in terms of b and c.

$${If}\:{the}\:{curve}\:{shown}\:{below}\:{has}\:{the}\: \\ $$$${equation},\:\:{y}=\left({x}−{p}\right)\left({x}^{\mathrm{3}} −{bx}−{c}\right) \\ $$$${then}\:{find}\:\:{q}/{p}\:\:{in}\:{terms}\:{of}\:{b}\:{and}\:{c}. \\ $$

Question Number 98924    Answers: 0   Comments: 0

Prove that if a+ bi is a root to pz^2 + qz + r = 0 , where a,b,p,q,r ∈R then a−bi is also a root to that equation.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{a}+\:{bi}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{to} \\ $$$$\:{pz}^{\mathrm{2}} \:+\:{qz}\:+\:{r}\:=\:\mathrm{0}\:,\:\mathrm{where}\:{a},{b},{p},{q},{r}\:\in\mathbb{R} \\ $$$$\mathrm{then}\:{a}−{bi}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{root}\:\mathrm{to}\:\mathrm{that}\:\mathrm{equation}. \\ $$

Question Number 98938    Answers: 2   Comments: 0

Question Number 98919    Answers: 0   Comments: 1

Question Number 98914    Answers: 3   Comments: 2

2x+3y=5 (x^2 +y^2 )_(min) =?

$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \underset{{min}} {\right)}=? \\ $$

Question Number 98913    Answers: 0   Comments: 3

solve f ′(x)=f(f(x))

$${solve} \\ $$$${f}\:'\left({x}\right)={f}\left({f}\left({x}\right)\right) \\ $$

Question Number 98907    Answers: 1   Comments: 0

Question Number 98895    Answers: 2   Comments: 0

Is (dy/dx) if y^3 +x^3 −2x=1 ?

$${Is}\:\frac{{dy}}{{dx}}\:{if}\:{y}^{\mathrm{3}} +{x}^{\mathrm{3}} −\mathrm{2}{x}=\mathrm{1}\:?\: \\ $$

Question Number 99173    Answers: 1   Comments: 0

Question Number 98887    Answers: 0   Comments: 0

Question Number 98885    Answers: 0   Comments: 2

find the range f(x)=log_4 log_2 log_(1/2) (x)

$${find}\:{the}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)={log}_{\mathrm{4}} {log}_{\mathrm{2}} {log}_{\frac{\mathrm{1}}{\mathrm{2}}} \left({x}\right) \\ $$

Question Number 98884    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((lnx)/((x+1)^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$

Question Number 98883    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/(x^8 +x^4 +1))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{8}} \:+\mathrm{x}^{\mathrm{4}} +\mathrm{1}} \\ $$

Question Number 98880    Answers: 0   Comments: 0

Given the sequence (u_n )_(n∈N^∗ ) defined by { (((1/2^n ) if n≡0mod(3))),(((1/3^n )+1 if n≡1mod(3))),((((u_(n−1) +u_(n+2) )/2) if n≡2mod(3))) :} a\Determine the first−8^(th) terms of (u_n )_(n∈N^∗ ) b\Show that the sequences (v_n )_(n∈N) , (w_n )_(n∈N) , and (z_n )_(n∈N) where v_n =u_(3n) , w_n =u_(3n+1) and z_n =u_(3n+2 ) are convervent and find their respective limits c\Deduce the nature of (u_n )_(n∈N^∗ )

$$\mathcal{G}\mathrm{iven}\:\mathrm{the}\:\mathrm{sequence}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}^{\ast} } \:\mathrm{defined}\:\mathrm{by}\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\mathrm{if}\:\mathrm{n}\equiv\mathrm{0mod}\left(\mathrm{3}\right)}\\{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }+\mathrm{1}\:\:\:\mathrm{if}\:\mathrm{n}\equiv\mathrm{1mod}\left(\mathrm{3}\right)}\\{\frac{\mathrm{u}_{\mathrm{n}−\mathrm{1}} +\mathrm{u}_{\mathrm{n}+\mathrm{2}} }{\mathrm{2}}\:\mathrm{if}\:\mathrm{n}\equiv\mathrm{2mod}\left(\mathrm{3}\right)}\end{cases} \\ $$$$\mathrm{a}\backslash\mathcal{D}\mathrm{etermine}\:\mathrm{the}\:\mathrm{first}−\mathrm{8}^{\mathrm{th}} \:\mathrm{terms}\:\mathrm{of}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}^{\ast} } \\ $$$$\mathrm{b}\backslash\mathcal{S}\mathrm{how}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequences}\:\left(\mathrm{v}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} ,\:\left(\mathrm{w}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} ,\:\mathrm{and}\:\left(\mathrm{z}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \\ $$$$\mathrm{where}\:\mathrm{v}_{\mathrm{n}} =\mathrm{u}_{\mathrm{3n}} ,\:\mathrm{w}_{\mathrm{n}} =\mathrm{u}_{\mathrm{3n}+\mathrm{1}} \:\mathrm{and}\:\mathrm{z}_{\mathrm{n}} =\mathrm{u}_{\mathrm{3n}+\mathrm{2}\:} \mathrm{are}\:\mathrm{convervent} \\ $$$$\mathrm{and}\:\mathrm{find}\:\mathrm{their}\:\mathrm{respective}\:\mathrm{limits} \\ $$$$\mathrm{c}\backslash\mathcal{D}\mathrm{educe}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}^{\ast} } \\ $$

Question Number 98859    Answers: 2   Comments: 1

Question Number 98858    Answers: 3   Comments: 12

lim_(x→0) (√(x+(√(x+(√(x+(√(x.......))))))))

$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}.......}}}} \\ $$$$ \\ $$

Question Number 98857    Answers: 0   Comments: 0

Question Number 98848    Answers: 0   Comments: 0

Σ_(n=1) ^∞ Σ_(k=1) ^∞ (((−1)^(n+k+1) (1+k)^2 )/(n(n+k+1)^4 ))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+{k}+\mathrm{1}} \left(\mathrm{1}+{k}\right)^{\mathrm{2}} }{{n}\left({n}+{k}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$

Question Number 98844    Answers: 3   Comments: 0

Please explain: Σ_(1 ≤ i < j ≤ n) ij = Σ_(j = 2) ^n ((j(j − 1)j)/2) I want to know how L.H.S = R.H.S

$$\mathrm{Please}\:\mathrm{explain}:\:\:\:\:\:\:\underset{\mathrm{1}\:\leqslant\:\boldsymbol{\mathrm{i}}\:<\:\boldsymbol{\mathrm{j}}\:\leqslant\:\boldsymbol{\mathrm{n}}} {\sum}\boldsymbol{\mathrm{ij}}\:\:\:\:=\:\:\:\underset{\boldsymbol{\mathrm{j}}\:\:=\:\:\mathrm{2}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\frac{\boldsymbol{\mathrm{j}}\left(\boldsymbol{\mathrm{j}}\:−\:\mathrm{1}\right)\boldsymbol{\mathrm{j}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{I}}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{how}\:\mathrm{L}.\mathrm{H}.\mathrm{S}\:\:=\:\:\mathrm{R}.\mathrm{H}.\mathrm{S} \\ $$

Question Number 98843    Answers: 0   Comments: 1

I′ve got a question: What differences 2.083 and 2.084 versions with?

$$\boldsymbol{{I}}'\boldsymbol{{ve}}\:\boldsymbol{{got}}\:\boldsymbol{{a}}\:\boldsymbol{{question}}: \\ $$$$\boldsymbol{{What}}\:\boldsymbol{{differences}}\:\mathrm{2}.\mathrm{083}\:\boldsymbol{{and}}\:\mathrm{2}.\mathrm{084}\:\boldsymbol{{versions}}\:\boldsymbol{{with}}? \\ $$

Question Number 98842    Answers: 2   Comments: 1

let f(x) be a dolvnomial of degree 4 such that f(1)=1 , f(2)=2 ,f(3)=3,f(4)=4 then f(6)=?

$${let}\:{f}\left({x}\right)\:{be}\:{a}\:{dolvnomial}\:{of}\:{degree}\:\mathrm{4}\: \\ $$$${such}\:{that}\:{f}\left(\mathrm{1}\right)=\mathrm{1}\:,\:{f}\left(\mathrm{2}\right)=\mathrm{2}\:,{f}\left(\mathrm{3}\right)=\mathrm{3},{f}\left(\mathrm{4}\right)=\mathrm{4} \\ $$$${then}\:{f}\left(\mathrm{6}\right)=? \\ $$

  Pg 1175      Pg 1176      Pg 1177      Pg 1178      Pg 1179      Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com