Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1180

Question Number 99113    Answers: 2   Comments: 0

solve y^(′′) +5y^′ −3y =x^2 sin(3x) with y(0) =0 and y^′ (0)=−1

$$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{5y}^{'} \:−\mathrm{3y}\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{3x}\right)\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)\:=\mathrm{0}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)=−\mathrm{1} \\ $$

Question Number 99102    Answers: 0   Comments: 21

Question Number 99097    Answers: 0   Comments: 1

Hello verry nice day for all of you god bless You pleas Can you use black Color shen You post Quation or Give answer is verry hard to read withe other colors

$${Hello}\: \\ $$$${verry}\:{nice}\:{day}\:{for}\:{all}\:{of}\:{you}\:{god}\:{bless}\:{You} \\ $$$${pleas}\:{Can}\:{you}\:{use}\:{black}\:{Color}\:{shen}\:{You}\:{post}\:{Quation}\: \\ $$$${or}\:{Give}\:{answer}\:{is}\:{verry}\:{hard}\:{to}\:{read}\:{withe}\:{other}\:{colors} \\ $$

Question Number 99095    Answers: 1   Comments: 0

Question Number 99094    Answers: 1   Comments: 0

find ((9+9((9+9((9+9((9+...))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) − (√(8−(√(8−(√(8+(√(8−(√(8−(√(8−(√(8−(√)))))))...))))))))

$$\mathrm{find}\:\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\mathrm{9}\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\mathrm{9}\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\mathrm{9}\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+...}}}}− \\ $$$$\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}+\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{}}}}...}}}}\: \\ $$

Question Number 99089    Answers: 1   Comments: 0

((9+((9+((9+((9+...))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) ))^(1/(3 )) −(√(8−(√(8−(√(8−(√(8−...))))))))

$$\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+\sqrt[{\mathrm{3}\:\:}]{\mathrm{9}+...}}}}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−\sqrt{\mathrm{8}−...}}}} \\ $$

Question Number 99077    Answers: 2   Comments: 2

Question Number 99072    Answers: 2   Comments: 0

Question Number 99058    Answers: 0   Comments: 6

Find a number that becomes N times smaller if the first digit is removed in the following cases: 1) N=17 2) N=27 3)N=37 4)N=47.

$${Find}\:{a}\:{number}\:{that}\:{becomes}\:{N}\:{times} \\ $$$${smaller}\:{if}\:{the}\:{first}\:{digit}\:{is}\:{removed} \\ $$$${in}\:{the}\:{following}\:{cases}: \\ $$$$\left.\mathrm{1}\right)\:{N}=\mathrm{17} \\ $$$$\left.\mathrm{2}\right)\:{N}=\mathrm{27} \\ $$$$\left.\mathrm{3}\right){N}=\mathrm{37} \\ $$$$\left.\mathrm{4}\right){N}=\mathrm{47}. \\ $$

Question Number 99057    Answers: 0   Comments: 0

Find a perfect number that starts with 31415.

$${Find}\:{a}\:{perfect}\:{number}\:{that}\:{starts} \\ $$$${with}\:\mathrm{31415}. \\ $$

Question Number 99055    Answers: 1   Comments: 4

What is the domain of f(x)=arcosh(((1+x^2 )/(1−x^2 ))) ?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{arcosh}\left(\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\right)\:? \\ $$

Question Number 99050    Answers: 1   Comments: 2

5^(5−3x) + 2^(x+5) = 5^(7−3x) −2^(x+6)

$$\mathrm{5}^{\mathrm{5}−\mathrm{3}{x}} \:+\:\mathrm{2}^{{x}+\mathrm{5}} \:=\:\mathrm{5}^{\mathrm{7}−\mathrm{3}{x}} \:−\mathrm{2}^{{x}+\mathrm{6}} \: \\ $$

Question Number 99045    Answers: 1   Comments: 0

{ ((x^2 +y^2 = 10)),((x^2 −5xy+6y^2 = 0)) :} find x &y

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{10}}\\{\mathrm{x}^{\mathrm{2}} −\mathrm{5xy}+\mathrm{6y}^{\mathrm{2}} \:=\:\mathrm{0}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{x}\:\&\mathrm{y}\: \\ $$

Question Number 99044    Answers: 3   Comments: 0

∫(1/(x^2 +1))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}=? \\ $$

Question Number 99025    Answers: 2   Comments: 4

Question Number 99023    Answers: 0   Comments: 3

Question Number 99011    Answers: 1   Comments: 2

Question Number 99007    Answers: 2   Comments: 0

Let I_y = ∫_(−2) ^2 [y^3 cos ((y/2)) + (1/2)]((√(4−y^2 )) ) dy then I_y = ???

$$\mathrm{Let}\:{I}_{{y}} \:=\:\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{y}^{\mathrm{3}} \:\mathrm{cos}\:\left(\frac{{y}}{\mathrm{2}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\right]\left(\sqrt{\mathrm{4}−{y}^{\mathrm{2}} }\:\right)\:{dy}\: \\ $$$$\mathrm{then}\:{I}_{{y}} \:=\:??? \\ $$

Question Number 99005    Answers: 2   Comments: 0

Σ_(m = 1) ^∞ Σ_(n = 1) ^∞ (1/(mn(m+n))) ?

$$\underset{\mathrm{m}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{mn}\left(\mathrm{m}+\mathrm{n}\right)}\:?\: \\ $$

Question Number 99003    Answers: 3   Comments: 0

Given 5x−3y=6 . find min value of (x−1)^2 +(y+1)^2 ?

$${Given}\:\mathrm{5}{x}−\mathrm{3}{y}=\mathrm{6}\:.\:{find}\:{min}\:{value} \\ $$$${of}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}+\mathrm{1}\right)^{\mathrm{2}} \:? \\ $$

Question Number 98993    Answers: 1   Comments: 0

Use the laplace tranform to solve (d^2 y/dx^2 ) + 5(dy/dx) + 6y = e^(−x) for y = 0, and (dy/dx) = 1 when x = 0

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{tranform}\:\mathrm{to}\:\mathrm{solve}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{5}\frac{{dy}}{{dx}}\:+\:\mathrm{6}{y}\:=\:{e}^{−{x}} \\ $$$$\mathrm{for}\:\:{y}\:=\:\mathrm{0},\:\mathrm{and}\:\frac{{dy}}{{dx}}\:=\:\mathrm{1}\:\mathrm{when}\:{x}\:=\:\mathrm{0} \\ $$

Question Number 98988    Answers: 1   Comments: 0

Find the tangent at the poles for the polar equation r = a sin 2θ.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{for}\:\mathrm{the}\:\mathrm{polar} \\ $$$$\mathrm{equation}\:{r}\:=\:{a}\:\mathrm{sin}\:\mathrm{2}\theta. \\ $$

Question Number 98986    Answers: 1   Comments: 0

Is the sequence u_n =cos(((nπ)/(20))) divergent?

$$\mathrm{Is}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{u}_{\mathrm{n}} =\mathrm{cos}\left(\frac{\mathrm{n}\pi}{\mathrm{20}}\right)\:\mathrm{divergent}? \\ $$

Question Number 98984    Answers: 0   Comments: 0

Question Number 98983    Answers: 0   Comments: 2

let a,b,c be positive real numbers such that ab+bc+ac=3 prove the inquality ((a(b^2 +c^2 ))/(a^2 +bc))+((b(c^2 +a^2 ))/(b^2 +ac))+((c(b^2 +a^2 ))/(c^2 +ab))≥3

$${let}\:{a},{b},{c}\:{be}\:{positive}\:{real}\:{numbers}\:{such} \\ $$$${that}\:{ab}+{bc}+{ac}=\mathrm{3}\: \\ $$$${prove}\:{the}\:{inquality} \\ $$$$ \\ $$$$\frac{{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{bc}}+\frac{{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} +{ac}}+\frac{{c}\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{c}^{\mathrm{2}} +{ab}}\geqslant\mathrm{3} \\ $$

Question Number 98968    Answers: 0   Comments: 1

if x^x^x^x^(2020) = 2020. Solve for x

$$\mathrm{if}\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{2020}} } } } =\:\mathrm{2020}.\:\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$ \\ $$

  Pg 1175      Pg 1176      Pg 1177      Pg 1178      Pg 1179      Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com