Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1180
Question Number 98984 Answers: 0 Comments: 0
Question Number 98983 Answers: 0 Comments: 2
$${let}\:{a},{b},{c}\:{be}\:{positive}\:{real}\:{numbers}\:{such} \\ $$$${that}\:{ab}+{bc}+{ac}=\mathrm{3}\: \\ $$$${prove}\:{the}\:{inquality} \\ $$$$ \\ $$$$\frac{{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}{{a}^{\mathrm{2}} +{bc}}+\frac{{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} +{ac}}+\frac{{c}\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{c}^{\mathrm{2}} +{ab}}\geqslant\mathrm{3} \\ $$
Question Number 98968 Answers: 0 Comments: 1
$$\mathrm{if}\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{x}^{\mathrm{2020}} } } } =\:\mathrm{2020}.\:\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x} \\ $$$$ \\ $$
Question Number 98967 Answers: 1 Comments: 0
$${solve}: \\ $$$$\left(\frac{\int_{\mathrm{2}} ^{\mathrm{6}} {x}\sqrt{\mathrm{1}+\mathrm{9}\lfloor{x}\rfloor^{\mathrm{2}} }{dx}}{\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left\{\frac{\mathrm{1}}{{x}}\right\}\lceil\frac{\mathrm{1}}{{x}}\rceil{dx}}\right)\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{{n}} \frac{\prod_{{j}=\mathrm{1}} ^{{n}} \left(\frac{\mathrm{3}}{\mathrm{2}}−{j}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right){n}!}\right) \\ $$
Question Number 98955 Answers: 2 Comments: 2
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\centerdot\centerdot\centerdot}}}} \\ $$
Question Number 98953 Answers: 2 Comments: 0
$$\mathcal{G}\mathrm{iven}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{find}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term}. \\ $$
Question Number 98952 Answers: 0 Comments: 1
$$\mathrm{Without}\:\mathrm{using}\:\mathrm{L}'\mathrm{H}\hat {\mathrm{o}pital}'\mathrm{s}\:\mathrm{rule}\:\mathrm{or}\:\mathrm{Maclaurin}'\mathrm{s}\:\mathrm{expansion} \\ $$$$\mathrm{series},\:\mathrm{find}\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{xe}^{\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}−\mathrm{1}}{\mathrm{x}} \\ $$
Question Number 98951 Answers: 0 Comments: 1
$$\int{tan}^{\frac{\mathrm{1}}{\mathrm{5}}} {x}.{cotx}.{secxdx} \\ $$
Question Number 98945 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\int_{\mathrm{0}} ^{\mathrm{n}} \left(\mathrm{1}−\frac{\mathrm{t}}{\mathrm{n}}\right)^{\mathrm{n}} \mathrm{arctan}\left(\mathrm{nt}\right)\mathrm{dt} \\ $$
Question Number 98944 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\frac{\mathrm{cosx}\:+\mathrm{1}}{\mathrm{cos}\left(\mathrm{2x}\right)−\mathrm{3}}\:\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 98943 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$
Question Number 98942 Answers: 3 Comments: 2
$$\mathrm{calculate}\:\int\:\frac{\mathrm{x}+\mathrm{1}−\sqrt{\mathrm{2x}+\mathrm{3}}}{\mathrm{x}−\mathrm{2}\:+\sqrt{\mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$
Question Number 98940 Answers: 2 Comments: 1
$$\mathrm{if}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} }\:=\sum_{\mathrm{m}=\mathrm{0}} ^{\infty} \:\mathrm{a}_{\mathrm{m}} \mathrm{x}^{\mathrm{m}} \:\:\:\:\mathrm{determinate}\:\mathrm{a}_{\mathrm{m}} \\ $$
Question Number 98932 Answers: 0 Comments: 0
Question Number 98929 Answers: 0 Comments: 6
$${Find}\left[\right]{the}\left[\right]{integral}\left[\right]{of}\left[\right] \\ $$$$ \\ $$$$\int\frac{{dt}}{\sqrt{\left(\mathrm{1}+{t}^{\mathrm{10}} \right)}} \\ $$
Question Number 98925 Answers: 1 Comments: 1
$${If}\:{the}\:{curve}\:{shown}\:{below}\:{has}\:{the}\: \\ $$$${equation},\:\:{y}=\left({x}−{p}\right)\left({x}^{\mathrm{3}} −{bx}−{c}\right) \\ $$$${then}\:{find}\:\:{q}/{p}\:\:{in}\:{terms}\:{of}\:{b}\:{and}\:{c}. \\ $$
Question Number 98924 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{a}+\:{bi}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{to} \\ $$$$\:{pz}^{\mathrm{2}} \:+\:{qz}\:+\:{r}\:=\:\mathrm{0}\:,\:\mathrm{where}\:{a},{b},{p},{q},{r}\:\in\mathbb{R} \\ $$$$\mathrm{then}\:{a}−{bi}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{root}\:\mathrm{to}\:\mathrm{that}\:\mathrm{equation}. \\ $$
Question Number 98938 Answers: 2 Comments: 0
Question Number 98919 Answers: 0 Comments: 1
Question Number 98914 Answers: 3 Comments: 2
$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5} \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \underset{{min}} {\right)}=? \\ $$
Question Number 98913 Answers: 0 Comments: 3
$${solve} \\ $$$${f}\:'\left({x}\right)={f}\left({f}\left({x}\right)\right) \\ $$
Question Number 98907 Answers: 1 Comments: 0
Question Number 98895 Answers: 2 Comments: 0
$${Is}\:\frac{{dy}}{{dx}}\:{if}\:{y}^{\mathrm{3}} +{x}^{\mathrm{3}} −\mathrm{2}{x}=\mathrm{1}\:?\: \\ $$
Question Number 99173 Answers: 1 Comments: 0
Question Number 98887 Answers: 0 Comments: 0
Question Number 98885 Answers: 0 Comments: 2
$${find}\:{the}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)={log}_{\mathrm{4}} {log}_{\mathrm{2}} {log}_{\frac{\mathrm{1}}{\mathrm{2}}} \left({x}\right) \\ $$
Pg 1175 Pg 1176 Pg 1177 Pg 1178 Pg 1179 Pg 1180 Pg 1181 Pg 1182 Pg 1183 Pg 1184
Terms of Service
Privacy Policy
Contact: info@tinkutara.com