Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1180

Question Number 97901    Answers: 2   Comments: 2

Question Number 97888    Answers: 1   Comments: 2

how to prove ((the volumn of dimensional sphare)) formula V_N (R)=(π^(N/2) /(Γ((N/2)+1))) R^N

$${how}\:{to}\:{prove}\:\left(\left({the}\:{volumn}\:{of}\right.\right. \\ $$$$\left.{d}\left.{imensional}\:{sphare}\right)\right)\:{formula} \\ $$$${V}_{{N}} \left({R}\right)=\frac{\pi^{{N}/\mathrm{2}} }{\Gamma\left(\frac{{N}}{\mathrm{2}}+\mathrm{1}\right)}\:{R}^{{N}} \\ $$$$ \\ $$

Question Number 97891    Answers: 0   Comments: 6

Question Number 97885    Answers: 2   Comments: 2

hello every one how do they calculated the universe old wich is 13.8 billion years

$${hello}\:{every}\:{one} \\ $$$${how}\:{do}\:{they}\:{calculated}\:{the}\:{universe}\:{old} \\ $$$${wich}\:{is}\:\mathrm{13}.\mathrm{8}\:{billion}\:{years} \\ $$

Question Number 97868    Answers: 2   Comments: 0

3y′ = 2x+y−1

$$\mathrm{3y}'\:=\:\mathrm{2x}+\mathrm{y}−\mathrm{1}\: \\ $$

Question Number 97866    Answers: 5   Comments: 4

Question Number 97858    Answers: 1   Comments: 1

Question Number 97847    Answers: 1   Comments: 0

(x^2 +x) (d^2 y/dx^2 ) + (1−2x^2 ) (dy/dx) + (x^2 −x−1)y = x^2 −x−1

$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}\right)\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:+\:\left(\mathrm{1}−\mathrm{2x}^{\mathrm{2}} \right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1}\right)\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1} \\ $$

Question Number 97840    Answers: 0   Comments: 1

lim_(γ→0) (arc sin ((k cos γ)/(√(1+k^2 ))) − arc sin (k/(√(1+k^2 )))) =?

$$\underset{\gamma\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{arc}\:\mathrm{sin}\:\frac{\mathrm{k}\:\mathrm{cos}\:\gamma}{\sqrt{\mathrm{1}+\mathrm{k}^{\mathrm{2}} }}\:−\:\mathrm{arc}\:\mathrm{sin}\:\frac{\mathrm{k}}{\sqrt{\mathrm{1}+\mathrm{k}^{\mathrm{2}} }}\right)\:=? \\ $$

Question Number 97839    Answers: 3   Comments: 1

calculate A_n =∫_0 ^((nπ)/4) (dx/(3cos^4 x +3sin^4 x−1))

$$\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{n}\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{3cos}^{\mathrm{4}} \mathrm{x}\:+\mathrm{3sin}^{\mathrm{4}} \mathrm{x}−\mathrm{1}} \\ $$

Question Number 97833    Answers: 0   Comments: 10

Hello members of maths editor i want to say something concerning this forum. Well it is my own point of view: This forum is a place where people from all over the world come to interact together. A place where people from different back grounds, class and qualification speak a common language − mathematics. I in particular thank Tinkutara′s team for such a great platform. But i notice some people literally don′t show respect to others, like persuading others to answer thier questions, others show no appreciation for the given answers while others give rude comments with no reason behind them. please i just want to urge the Maths editor users to show more respect for others since we don′t know the identity or qualification of people who post and solve questions here. we remain one family as God guides us through our endervous.

$$\:\mathrm{Hello}\:\mathrm{members}\:\mathrm{of}\:\mathrm{maths}\:\mathrm{editor}\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{say} \\ $$$$\mathrm{something}\:\mathrm{concerning}\:\mathrm{this}\:\mathrm{forum}.\:\mathrm{Well}\:\mathrm{it} \\ $$$$\mathrm{is}\:\mathrm{my}\:\mathrm{own}\:\mathrm{point}\:\mathrm{of}\:\mathrm{view}:\:\mathrm{This}\:\mathrm{forum}\:\mathrm{is}\:\mathrm{a}\:\mathrm{place}\:\mathrm{where} \\ $$$$\mathrm{people}\:\mathrm{from}\:\mathrm{all}\:\mathrm{over}\:\mathrm{the}\:\mathrm{world}\:\mathrm{come}\:\mathrm{to}\:\mathrm{interact}\:\mathrm{together}. \\ $$$$\mathrm{A}\:\mathrm{place}\:\mathrm{where}\:\mathrm{people}\:\mathrm{from}\:\mathrm{different}\:\mathrm{back}\:\mathrm{grounds}, \\ $$$$\mathrm{class}\:\mathrm{and}\:\mathrm{qualification}\:\mathrm{speak}\:\mathrm{a}\:\mathrm{common}\:\mathrm{language}\:−\: \\ $$$$\mathrm{mathematics}.\:\mathrm{I}\:\mathrm{in}\:\mathrm{particular}\:\mathrm{thank}\:\mathrm{Tinkutara}'\mathrm{s}\:\mathrm{team}\:\mathrm{for} \\ $$$$\mathrm{such}\:\mathrm{a}\:\mathrm{great}\:\mathrm{platform}.\:\mathrm{But}\:\mathrm{i}\:\mathrm{notice}\:\mathrm{some}\:\mathrm{people}\:\mathrm{literally} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{show}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{others},\:\mathrm{like}\:\mathrm{persuading}\:\mathrm{others} \\ $$$$\mathrm{to}\:\mathrm{answer}\:\mathrm{thier}\:\mathrm{questions},\:\mathrm{others}\:\mathrm{show}\:\mathrm{no}\: \\ $$$$\mathrm{appreciation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{given}\:\mathrm{answers}\:\mathrm{while}\:\mathrm{others}\:\mathrm{give}\:\mathrm{rude} \\ $$$$\mathrm{comments}\:\mathrm{with}\:\mathrm{no}\:\mathrm{reason}\:\mathrm{behind}\:\mathrm{them}. \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{just}\:\mathrm{want}\:\mathrm{to}\:\mathrm{urge}\:\mathrm{the}\:\mathrm{Maths}\:\mathrm{editor}\:\mathrm{users}\:\mathrm{to}\:\mathrm{show} \\ $$$$\mathrm{more}\:\mathrm{respect}\:\mathrm{for}\:\mathrm{others}\:\mathrm{since}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{or} \\ $$$$\mathrm{qualification}\:\mathrm{of}\:\mathrm{people}\:\mathrm{who}\:\mathrm{post}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{questions}\:\mathrm{here}. \\ $$$$\mathrm{we}\:\mathrm{remain}\:\mathrm{one}\:\mathrm{family}\:\mathrm{as}\:\mathrm{God}\:\mathrm{guides}\:\mathrm{us}\:\mathrm{through}\:\mathrm{our}\:\mathrm{endervous}. \\ $$

Question Number 97827    Answers: 0   Comments: 1

Question Number 97823    Answers: 4   Comments: 2

If x and y are integers , prove that x^3 −7x divisible by 3

$$\mathrm{If}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{integers}\:,\:\mathrm{prove} \\ $$$$\mathrm{that}\:{x}^{\mathrm{3}} −\mathrm{7}{x}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\: \\ $$

Question Number 97818    Answers: 1   Comments: 0

if y^2 = ax^2 + bx + c Show that: y (d^3 y/dx^3 ) + 3 (dy/dx) (d^2 y/dx^2 ) = 0

$$\boldsymbol{\mathrm{if}}\:\:\:\:\:\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:=\:\:\boldsymbol{\mathrm{ax}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{bx}}\:+\:\:\boldsymbol{\mathrm{c}} \\ $$$$\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}:\:\:\:\:\:\:\boldsymbol{\mathrm{y}}\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{3}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{3}} }\:\:+\:\:\mathrm{3}\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:\:\:=\:\:\:\mathrm{0} \\ $$

Question Number 97808    Answers: 0   Comments: 1

Question Number 97807    Answers: 0   Comments: 0

Given (u_n )_(n∈N) , suppose (u_(2n) )_(n∈N) and (u_(2n+1) )_(n∈N) converge towards the same limit, L. Show that (u_n )_(n∈N) equally converges to L.

$$\mathcal{G}\mathrm{iven}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} ,\:\mathrm{suppose}\:\left(\mathrm{u}_{\mathrm{2n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{and}\:\left(\mathrm{u}_{\mathrm{2n}+\mathrm{1}} \right)_{\mathrm{n}\in\mathbb{N}} \\ $$$$\mathrm{converge}\:\mathrm{towards}\:\mathrm{the}\:\mathrm{same}\:\mathrm{limit},\:\mathrm{L}. \\ $$$$\mathcal{S}\mathrm{how}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{equally}\:\mathrm{converges}\:\mathrm{to}\:\mathrm{L}. \\ $$

Question Number 97803    Answers: 1   Comments: 0

The annual salaries of employees in a large company are approximately normally disributed with a mean of $50,000 and a standard deviation of $20,000. a. what percent of people earn less than $40,000? b. what percent of people earn between $45,000 and $65,000? c. what percent of people earn more than $70,000?

$$\mathrm{The}\:\mathrm{annual}\:\mathrm{salaries}\:\mathrm{of}\:\mathrm{employees}\:\mathrm{in}\:\mathrm{a}\:\mathrm{large} \\ $$$$\mathrm{company}\:\mathrm{are}\:\mathrm{approximately}\:\mathrm{normally}\: \\ $$$$\mathrm{disributed}\:\mathrm{with}\:\mathrm{a}\:\mathrm{mean}\:\mathrm{of}\:\$\mathrm{50},\mathrm{000}\:\mathrm{and}\:\mathrm{a}\:\mathrm{standard} \\ $$$$\mathrm{deviation}\:\mathrm{of}\:\$\mathrm{20},\mathrm{000}. \\ $$$$\mathrm{a}.\:\mathrm{what}\:\mathrm{percent}\:\mathrm{of}\:\mathrm{people}\:\mathrm{earn}\:\mathrm{less}\:\mathrm{than} \\ $$$$\$\mathrm{40},\mathrm{000}? \\ $$$$\mathrm{b}.\:\mathrm{what}\:\mathrm{percent}\:\mathrm{of}\:\mathrm{people}\:\mathrm{earn}\:\mathrm{between} \\ $$$$\$\mathrm{45},\mathrm{000}\:\mathrm{and}\:\$\mathrm{65},\mathrm{000}? \\ $$$$\mathrm{c}.\:\mathrm{what}\:\mathrm{percent}\:\mathrm{of}\:\mathrm{people}\:\mathrm{earn}\:\mathrm{more}\:\mathrm{than} \\ $$$$\$\mathrm{70},\mathrm{000}? \\ $$

Question Number 97800    Answers: 3   Comments: 0

1) findf(a)= ∫_0 ^1 (√(x^2 −x+a))dx with a>(1/2) 2)explicite g(a) =∫_0 ^1 (dx/(√(x^2 −x+a))) 3) calculate ∫_0 ^1 (dx/(√(x^2 −x +3)))

$$\left.\mathrm{1}\right)\:\mathrm{findf}\left(\mathrm{a}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{a}}\mathrm{dx}\:\:\:\:\:\mathrm{with}\:\mathrm{a}>\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\mathrm{explicite}\:\mathrm{g}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{a}}}\: \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{3}}} \\ $$

Question Number 97799    Answers: 0   Comments: 1

solve y^′ cosx +y sinx =cosx +sinx

$$\mathrm{solve}\:\mathrm{y}^{'} \mathrm{cosx}\:+\mathrm{y}\:\mathrm{sinx}\:=\mathrm{cosx}\:+\mathrm{sinx} \\ $$

Question Number 97798    Answers: 0   Comments: 0

solve y′′−y =xsin(2x)

$$\mathrm{solve}\:\mathrm{y}''−\mathrm{y}\:=\mathrm{xsin}\left(\mathrm{2x}\right) \\ $$

Question Number 97797    Answers: 3   Comments: 0

solve y^(′′) −y = x

$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{y}\:=\:\mathrm{x} \\ $$

Question Number 97795    Answers: 1   Comments: 0

calculate Σ_(n=1) ^∞ (((−1)^(n−1) )/([(√n)])) [..] meant the floor

$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\left[\sqrt{\mathrm{n}}\right]} \\ $$$$\left[..\right]\:\mathrm{meant}\:\mathrm{the}\:\mathrm{floor} \\ $$

Question Number 97794    Answers: 1   Comments: 3

solve y^(′′) +y =(1/(cosx))

$$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{y}\:=\frac{\mathrm{1}}{\mathrm{cosx}} \\ $$

Question Number 97784    Answers: 1   Comments: 0

If f(x)=((( x)^(1/2) )^(1/2) )^⋰ find: (dy/dx)

$${If}\:{f}\left({x}\right)=\left(\left(\left(\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\iddots} \\ $$$${find}:\:\frac{{dy}}{{dx}} \\ $$

Question Number 97782    Answers: 2   Comments: 1

Evaluate: ∫ ((sinx)/(1 +sin^2 x))dx

$${Evaluate}: \\ $$$$\int\:\frac{{sinx}}{\mathrm{1}\:+{sin}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 97781    Answers: 1   Comments: 0

Given the sequences (u_n )_(n∈N) and (v_n )_(n∈N) defined by u_n =Σ_(k=0) ^n (1/(k!)) and v_n =u_n +(1/(n(n!))) a\ Show that (u_n )_n is of Cauchy. Deduce that (u_n )_n converges. b\ Show that (u_n )_n and (v_n )_n are adjacent c\ Show that their common limit is not a rational number.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{sequences}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{and}\:\left(\mathrm{v}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \mathrm{defined} \\ $$$$\mathrm{by}\:\mathrm{u}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{k}!}\:\mathrm{and}\:\mathrm{v}_{\mathrm{n}} =\mathrm{u}_{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}!\right)} \\ $$$$\mathrm{a}\backslash\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{is}\:\mathrm{of}\:\mathrm{Cauchy}.\:\mathcal{D}\mathrm{educe}\:\mathrm{that} \\ $$$$\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{converges}. \\ $$$$\mathrm{b}\backslash\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{and}\:\left(\mathrm{v}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{are}\:\mathrm{adjacent} \\ $$$$\mathrm{c}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{their}\:\mathrm{common}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{rational} \\ $$$$\mathrm{number}. \\ $$

  Pg 1175      Pg 1176      Pg 1177      Pg 1178      Pg 1179      Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com