Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1180

Question Number 98189    Answers: 1   Comments: 0

let ξ(x) =Σ_(n=1) ^∞ (1/n^x ) calculate lim_(x→1^+ ) (x−1)ξ(x)

$$\mathrm{let}\:\xi\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{x}} } \\ $$$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \:\:\:\left(\mathrm{x}−\mathrm{1}\right)\xi\left(\mathrm{x}\right) \\ $$

Question Number 98188    Answers: 1   Comments: 0

let f(x) =((arctan(2x))/(x+3)) 1) calculate f^((n)) (x) snd f^((n)) (0) 2) developp f at integr serie

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{x}+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{snd}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$

Question Number 98187    Answers: 3   Comments: 0

find arctan(x)+arctany at form of arctan

$$\mathrm{find}\:\mathrm{arctan}\left(\mathrm{x}\right)+\mathrm{arctany}\:\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{arctan} \\ $$

Question Number 98186    Answers: 0   Comments: 0

solve xy^((3)) +x^2 y^((2)) +x^3 y^((1)) +x^4 y =e^(−2x)

$$\mathrm{solve}\:\mathrm{xy}^{\left(\mathrm{3}\right)} \:+\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\left(\mathrm{2}\right)} \:+\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\left(\mathrm{1}\right)} \:+\mathrm{x}^{\mathrm{4}} \mathrm{y}\:=\mathrm{e}^{−\mathrm{2x}} \\ $$

Question Number 98185    Answers: 1   Comments: 0

developp at fourier serie g(x) =(2/(3+sin^2 x))

$$\mathrm{developp}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\frac{\mathrm{2}}{\mathrm{3}+\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$

Question Number 98184    Answers: 1   Comments: 0

let f(x) =∫_0 ^∞ ((cos(xt))/((t^2 +4)^2 ))dt find ∫_0 ^1 f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{xt}\right)}{\left(\mathrm{t}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }\mathrm{dt}\:\:\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 98183    Answers: 0   Comments: 0

solve xy^(′′) −(3/(x+1))y^′ =xsin(x)

$$\mathrm{solve}\:\mathrm{xy}^{''} \:−\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}\mathrm{y}^{'} \:=\mathrm{xsin}\left(\mathrm{x}\right) \\ $$

Question Number 98182    Answers: 2   Comments: 0

find ∫ x^2 (√((2−x)/(2+x)))dx

$$\mathrm{find}\:\int\:\mathrm{x}^{\mathrm{2}} \sqrt{\frac{\mathrm{2}−\mathrm{x}}{\mathrm{2}+\mathrm{x}}}\mathrm{dx} \\ $$

Question Number 98181    Answers: 0   Comments: 0

calculate ∫_0 ^π ln(x^2 −2xcosθ +1)dθ

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)\mathrm{d}\theta \\ $$

Question Number 98180    Answers: 0   Comments: 0

solve xy^(′′) +(x^3 +1)y =3e^(2x)

$$\mathrm{solve}\:\:\mathrm{xy}^{''} \:+\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\mathrm{y}\:=\mathrm{3e}^{\mathrm{2x}} \\ $$

Question Number 98179    Answers: 2   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (1−x^2 )^3 ))

$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$

Question Number 98178    Answers: 0   Comments: 0

calculate Σ_(p=0) ^n (z+1)^p with z root of x^2 −x+1=0

$$\mathrm{calculate}\:\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{n}} \:\left(\mathrm{z}+\mathrm{1}\right)^{\mathrm{p}} \\ $$$$\mathrm{with}\:\mathrm{z}\:\mathrm{root}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$

Question Number 98290    Answers: 0   Comments: 1

Question Number 98166    Answers: 0   Comments: 0

lim_(x→∞) [cos(2π((x/(x+1)))^a )]^x^2 a∈R

$$\underset{{x}\rightarrow\infty} {{lim}}\left[{cos}\left(\mathrm{2}\pi\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{{a}} \right)\right]^{{x}^{\mathrm{2}} } \\ $$$${a}\in\mathbb{R} \\ $$

Question Number 98151    Answers: 2   Comments: 0

∫e^(x^5 +8x^2 ) dx =((√π)/(4(√2)))e^x^5 erfi(2(√2)x)−((5(√π))/(4(128)(√2)))(super−erf_((hyper)) (2(√2)x))+c where[super−erf_((hyper)) (t)] is super−function in D_2 and [D_n ]

$$\int{e}^{{x}^{\mathrm{5}} +\mathrm{8}{x}^{\mathrm{2}} } {dx} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{4}\sqrt{\mathrm{2}}}{e}^{{x}^{\mathrm{5}} } {erfi}\left(\mathrm{2}\sqrt{\mathrm{2}}{x}\right)−\frac{\mathrm{5}\sqrt{\pi}}{\mathrm{4}\left(\mathrm{128}\right)\sqrt{\mathrm{2}}}\left({super}−{erf}_{\left({hyper}\right)} \left(\mathrm{2}\sqrt{\mathrm{2}}{x}\right)\right)+{c} \\ $$$$ \\ $$$${where}\left[{super}−{erf}_{\left({hyper}\right)} \left({t}\right)\right]\:{is}\:{super}−{function} \\ $$$${in}\:{D}_{\mathrm{2}} \:{and}\:\left[{D}_{{n}} \right] \\ $$

Question Number 98149    Answers: 1   Comments: 1

Question Number 98148    Answers: 0   Comments: 0

Question Number 98142    Answers: 0   Comments: 0

A man arrives at a bus stop in between 12:00pm and 12:15pm. Assuming a bus arrives the bus stop every 15 minutes, find the probability of him getting a bus in less than 5 minutes.

$$\mathcal{A}\:\mathrm{man}\:\mathrm{arrives}\:\mathrm{at}\:\mathrm{a}\:\mathrm{bus}\:\mathrm{stop}\:\mathrm{in}\:\mathrm{between}\:\mathrm{12}:\mathrm{00pm}\:\mathrm{and} \\ $$$$\mathrm{12}:\mathrm{15pm}.\:\mathrm{Assuming}\:\mathrm{a}\:\mathrm{bus}\:\mathrm{arrives}\:\mathrm{the}\:\mathrm{bus}\:\mathrm{stop}\:\mathrm{every} \\ $$$$\mathrm{15}\:\mathrm{minutes},\:\mathrm{find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{him}\:\mathrm{getting}\:\mathrm{a}\:\mathrm{bus}\:\mathrm{in} \\ $$$$\mathrm{less}\:\mathrm{than}\:\mathrm{5}\:\mathrm{minutes}. \\ $$

Question Number 98137    Answers: 3   Comments: 0

Question Number 98135    Answers: 0   Comments: 2

how to split x^2 +xy+y^2 into ((√3)/2)(x+y)^2 +(1/2)(x−y)^2 ?

$${how}\:{to}\:{split}\:{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} \:{into} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}+{y}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left({x}−{y}\right)^{\mathrm{2}} \:? \\ $$

Question Number 98293    Answers: 2   Comments: 0

Question Number 98130    Answers: 0   Comments: 0

Question Number 98119    Answers: 0   Comments: 1

Find the shortest distance between the skew lines ((x−3)/3) = ((8−y)/1) = ((z−3)/1) and ((x+3)/(−3)) = ((y+7)/2) = ((z−6)/4) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{skew}\:\mathrm{lines}\:\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}}\:=\:\frac{\mathrm{8}−\mathrm{y}}{\mathrm{1}}\:=\:\frac{\mathrm{z}−\mathrm{3}}{\mathrm{1}}\:\mathrm{and}\: \\ $$$$\frac{\mathrm{x}+\mathrm{3}}{−\mathrm{3}}\:=\:\frac{\mathrm{y}+\mathrm{7}}{\mathrm{2}}\:=\:\frac{\mathrm{z}−\mathrm{6}}{\mathrm{4}}\:. \\ $$

Question Number 98118    Answers: 1   Comments: 0

calculate Σ_(n=1) ^∞ (ξ(2n)−1)x^(2n) ξ(x)=Σ_(n=1) ^∞ (1/n^x )

$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\left(\xi\left(\mathrm{2n}\right)−\mathrm{1}\right)\mathrm{x}^{\mathrm{2n}} \\ $$$$\xi\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{x}} } \\ $$

Question Number 98116    Answers: 0   Comments: 0

prove the compact form of multivariable Taylor series (T∗B)=Σ_(n=1,n=2..n_d =0) ^∞ ((Π_(i=0) ^n_d (x_i −d_i ))/(Π_(i=0) ^n_d (n_i )!)) Π_(i=0) ^n_d (∂/∂x_i )f

$${prove}\:{the}\:{compact}\:{form}\:{of}\:{multivariable} \\ $$$${Taylor}\:{series} \\ $$$$ \\ $$$$\left({T}\ast{B}\right)=\underset{{n}=\mathrm{1},{n}=\mathrm{2}..{n}_{{d}} =\mathrm{0}} {\overset{\infty} {\sum}}\frac{\prod_{\mathrm{i}=\mathrm{0}} ^{{n}_{{d}} } \left({x}_{\mathrm{i}} −{d}_{\mathrm{i}} \right)}{\prod_{\mathrm{i}=\mathrm{0}} ^{{n}_{{d}} } \left({n}_{\mathrm{i}} \right)!}\:\underset{\mathrm{i}=\mathrm{0}} {\overset{{n}_{{d}} } {\prod}}\frac{\partial}{\partial{x}_{\mathrm{i}} }{f} \\ $$

Question Number 98114    Answers: 1   Comments: 0

1 lim_(x→∞) ^3 (√(5x^3 )) = ? 2 lim_(x→∞) (1 + (n/(x + 𝛂)))^x ;𝛂 is constant

$$\mathrm{1}\:\:\:\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\:^{\mathrm{3}} \sqrt{\mathrm{5}\boldsymbol{{x}}^{\mathrm{3}} }\:=\:? \\ $$$$\mathrm{2}\:\:\underset{\boldsymbol{{x}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\left(\mathrm{1}\:+\:\frac{\boldsymbol{{n}}}{\boldsymbol{{x}}\:+\:\boldsymbol{\alpha}}\right)^{\boldsymbol{{x}}} ;\boldsymbol{\alpha}\:\boldsymbol{{is}}\:\boldsymbol{{constant}} \\ $$

  Pg 1175      Pg 1176      Pg 1177      Pg 1178      Pg 1179      Pg 1180      Pg 1181      Pg 1182      Pg 1183      Pg 1184   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com