Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1180
Question Number 97638 Answers: 0 Comments: 0
Question Number 97637 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{p},\mathrm{q}\in\mathbb{R}_{+} ^{\ast} −\left\{−\mathrm{1}\right\}/\frac{\mathrm{1}}{\mathrm{p}}+\frac{\mathrm{1}}{\mathrm{q}}=\mathrm{1}\:\mathrm{show}\:\mathrm{that}; \\ $$$$\forall\mathrm{a},\mathrm{b}\:\in\mathbb{R}\:\mathrm{ab}\leqslant\frac{\mathrm{a}^{\mathrm{p}} }{\mathrm{p}}+\frac{\mathrm{b}^{\mathrm{q}} }{\mathrm{q}} \\ $$
Question Number 97629 Answers: 1 Comments: 0
Question Number 97628 Answers: 1 Comments: 0
Question Number 97627 Answers: 2 Comments: 0
$$\mathrm{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie} \\ $$
Question Number 97626 Answers: 0 Comments: 2
$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{2y}^{'} \:+\mathrm{y}\:\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{with}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{y}\left(\mathrm{0}\right)\:=−\mathrm{1} \\ $$
Question Number 97625 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{y}^{''} −\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} \:\:=\mathrm{x}^{\mathrm{2}} \mathrm{sinx} \\ $$
Question Number 97624 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{\infty} \:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Question Number 97622 Answers: 0 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 97620 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\pi\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx} \\ $$
Question Number 97619 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{3x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 97617 Answers: 0 Comments: 0
$$\mathrm{give}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie} \\ $$
Question Number 97616 Answers: 1 Comments: 0
$$\mathrm{give}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}} }{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx}\:\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie} \\ $$
Question Number 97615 Answers: 0 Comments: 0
Question Number 97606 Answers: 1 Comments: 0
$${given}\:{that}\:{the}\:{polynomial}\:{p}\left({x}\right)=\left(\mathrm{3}{x}+\mathrm{2}\right)\left({x}−\mathrm{1}\right){q}\left({x}\right)−\mathrm{2}{x}−\mathrm{4} \\ $$$${of}\:{degree}\:\mathrm{3}\:{is}\:{exactly}\:{divisible}\:{by}\:{x}−\mathrm{2}\:{and}\: \\ $$$${that}\:{p}\left(−\mathrm{1}\right)=−\mathrm{12}.\:{find}\:{q}\left({x}\right). \\ $$
Question Number 97600 Answers: 1 Comments: 0
Question Number 97597 Answers: 0 Comments: 3
$${Notification}\:{test}\:... \\ $$
Question Number 97591 Answers: 1 Comments: 0
$$\int\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{4}}{dx} \\ $$
Question Number 97590 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{integration} \\ $$$$\int\sqrt{{sin}\left({x}\right)}{dx} \\ $$
Question Number 97577 Answers: 2 Comments: 1
$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{4}{x}\:\mathrm{ln}{x}}{{x}−\mathrm{1}}\:=?? \\ $$
Question Number 97576 Answers: 2 Comments: 0
$$\:\mathrm{Show}\:\mathrm{that}\:{RE}\left[\frac{\mathrm{1}}{\mathrm{1}−{z}}\right]=\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{where}\:{z}\:=\:\mathrm{cos}\:\theta\:+\:{i}\:\mathrm{sin}\theta \\ $$$$ \\ $$
Question Number 97569 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \sqrt{{tan}\left({x}\right)}\sqrt{\mathrm{1}−{tan}\left({x}\right)}\:{dx} \\ $$
Question Number 97564 Answers: 1 Comments: 0
Question Number 97563 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\mathrm{x}} \mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}. \\ $$$$\mathrm{Discuss}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{this}\: \\ $$$$\mathrm{generalised}\:\mathrm{intergral}. \\ $$$$\mathrm{Please}\:\mathrm{help} \\ $$
Question Number 97557 Answers: 1 Comments: 0
Question Number 97555 Answers: 0 Comments: 8
Pg 1175 Pg 1176 Pg 1177 Pg 1178 Pg 1179 Pg 1180 Pg 1181 Pg 1182 Pg 1183 Pg 1184
Terms of Service
Privacy Policy
Contact: info@tinkutara.com