Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1171

Question Number 100032    Answers: 1   Comments: 1

Given f((x/(x+1))) = x^2 . find minimum value of function h(x)=f(x)−(3/(x−1))

$$\mathrm{Given}\:\mathrm{f}\left(\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\right)\:=\:\mathrm{x}^{\mathrm{2}} \:.\:\mathrm{find}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{function}\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}\right)−\frac{\mathrm{3}}{\mathrm{x}−\mathrm{1}} \\ $$

Question Number 100036    Answers: 1   Comments: 0

f(x)= (((√(1+sin 2x))−(√(1−2sin x)))/x) g(x) = 2x+ (√(2x)) . find lim_(x→0) g(f(x))

$$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}−\sqrt{\mathrm{1}−\mathrm{2sin}\:\mathrm{x}}}{\mathrm{x}} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{2x}+\:\sqrt{\mathrm{2x}}\:.\:\mathrm{find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right) \\ $$

Question Number 100027    Answers: 1   Comments: 2

lim_(x→0) xsin ((1/x)) ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{xsin}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:?\: \\ $$

Question Number 100026    Answers: 1   Comments: 0

∫_0 ^(π/2) e^(−sec^2 θ) dθ

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{e}^{−\mathrm{sec}^{\mathrm{2}} \theta} \mathrm{d}\theta \\ $$

Question Number 100017    Answers: 1   Comments: 0

(d^2 y/dx^2 ) + y = sec 3x

$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:+\:\mathrm{y}\:=\:\mathrm{sec}\:\mathrm{3x}\: \\ $$

Question Number 100002    Answers: 0   Comments: 0

Question Number 100000    Answers: 2   Comments: 1

1+(1/(32))+(1/(243))+(1/(1024))+...∞

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{243}}+\frac{\mathrm{1}}{\mathrm{1024}}+...\infty \\ $$

Question Number 99997    Answers: 0   Comments: 2

Question Number 99995    Answers: 0   Comments: 0

(√(1(√(3(√(5(√(7(√9)))))))))...∞

$$\sqrt{\mathrm{1}\sqrt{\mathrm{3}\sqrt{\mathrm{5}\sqrt{\mathrm{7}\sqrt{\mathrm{9}}}}}}...\infty \\ $$

Question Number 99994    Answers: 1   Comments: 0

1+(1/(16))+(1/(81))+(1/(256))+.....∞

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{81}}+\frac{\mathrm{1}}{\mathrm{256}}+.....\infty \\ $$

Question Number 99992    Answers: 2   Comments: 0

y(1+x^3 )dy−x^2 dx = 0 ; y(2)=3

$$\mathrm{y}\left(\mathrm{1}+\mathrm{x}^{\mathrm{3}} \right)\mathrm{dy}−\mathrm{x}^{\mathrm{2}} \mathrm{dx}\:=\:\mathrm{0}\:;\:\mathrm{y}\left(\mathrm{2}\right)=\mathrm{3}\: \\ $$

Question Number 99989    Answers: 2   Comments: 0

(D^2 −4D+4)y = xe^(2x)

$$\left(\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{4}\right)\mathrm{y}\:=\:{xe}^{\mathrm{2}{x}} \\ $$

Question Number 99986    Answers: 1   Comments: 0

Explain Einstein′s theory of Gravitation and explain why photons don′t fit Newton′s model but Einstein′s.

$$\mathrm{Explain}\:\mathrm{Einstein}'\mathrm{s}\:\mathrm{theory}\:\mathrm{of}\:\mathrm{Gravitation}\: \\ $$$$\mathrm{and}\:\mathrm{explain}\:\mathrm{why}\:\mathrm{photons}\:\mathrm{don}'\mathrm{t}\:\mathrm{fit}\:\mathrm{Newton}'\mathrm{s} \\ $$$$\mathrm{model}\:\mathrm{but}\:\mathrm{Einstein}'\mathrm{s}. \\ $$

Question Number 99985    Answers: 0   Comments: 0

A certain wire has length 4.5 cm and mass 12.3 g, with an electrical resistance of 1.1 mΩ. this wire falls through a horizontal magnetic field with flux density of 0.35 T. As his wire falls its ends slide smoothly between two rails connected by a wire with negligible internal resistance. Calculate the magnitude of the terminal energy resistance, neglecting the resistance of the rails.

$$\mathrm{A}\:\mathrm{certain}\:\mathrm{wire}\:\mathrm{has}\:\mathrm{length}\:\mathrm{4}.\mathrm{5}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{mass}\:\mathrm{12}.\mathrm{3}\:\mathrm{g},\:\:\mathrm{with}\:\mathrm{an} \\ $$$$\mathrm{electrical}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{1}.\mathrm{1}\:\mathrm{m}\Omega.\:\mathrm{this}\:\mathrm{wire}\:\mathrm{falls}\:\mathrm{through}\:\mathrm{a}\:\mathrm{horizontal} \\ $$$$\mathrm{magnetic}\:\mathrm{field}\:\:\mathrm{with}\:\mathrm{flux}\:\mathrm{density}\:\mathrm{of}\:\mathrm{0}.\mathrm{35}\:\mathrm{T}.\:\mathrm{As}\:\mathrm{his}\:\mathrm{wire}\:\mathrm{falls}\:\mathrm{its}\:\mathrm{ends} \\ $$$$\mathrm{slide}\:\mathrm{smoothly}\:\mathrm{between}\:\mathrm{two}\:\mathrm{rails}\:\mathrm{connected}\:\mathrm{by}\:\mathrm{a}\:\mathrm{wire}\:\mathrm{with}\:\mathrm{negligible} \\ $$$$\mathrm{internal}\:\mathrm{resistance}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{terminal}\:\mathrm{energy} \\ $$$$\mathrm{resistance},\:\mathrm{neglecting}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rails}. \\ $$

Question Number 99982    Answers: 0   Comments: 2

Question Number 99980    Answers: 0   Comments: 6

New enhacement

$$\mathrm{New}\:\mathrm{enhacement} \\ $$

Question Number 99975    Answers: 1   Comments: 0

((1/2))^(((1/3))^((1/4)....∞) ) =?

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}....\infty} } =? \\ $$

Question Number 99972    Answers: 0   Comments: 1

Question Number 99968    Answers: 0   Comments: 1

lim_(x→0^+ ) (sin x)^(1/(ln(x))) =?

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\mathrm{sin}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{x}\right)}} \:=?\: \\ $$

Question Number 99962    Answers: 1   Comments: 0

A particle Q moves in a plane and its polar coordinate (r,θ) are described by r = at^2 and θ = (1/3)t^4 find its speed at t = 2s

$$\mathrm{A}\:\mathrm{particle}\:{Q}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{its}\:\mathrm{polar}\:\mathrm{coordinate}\:\left({r},\theta\right) \\ $$$$\mathrm{are}\:\mathrm{described}\:\mathrm{by}\:{r}\:=\:{at}^{\mathrm{2}} \:\mathrm{and}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{4}} \:\mathrm{find}\:\mathrm{its} \\ $$$$\mathrm{speed}\:\mathrm{at}\:{t}\:=\:\mathrm{2s} \\ $$

Question Number 99960    Answers: 2   Comments: 1

Given y(√x)+x(√y) = 2. find the value of (dy/dx) ∣_((1,1)) = ?

$$\mathrm{Given}\:\mathrm{y}\sqrt{\mathrm{x}}+\mathrm{x}\sqrt{\mathrm{y}}\:=\:\mathrm{2}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:\mid_{\left(\mathrm{1},\mathrm{1}\right)} \:=\:?\: \\ $$

Question Number 99951    Answers: 1   Comments: 1

lim_(x→−∞) x^2 (√(x^2 +4x)) + x^3 ?

$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{4x}}\:+\:\mathrm{x}^{\mathrm{3}} \:? \\ $$

Question Number 99947    Answers: 1   Comments: 2

lim_(x→∞) x(5^(1/x) −1) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)\:=? \\ $$

Question Number 99941    Answers: 1   Comments: 0

Question Number 99938    Answers: 2   Comments: 2

lim_(x→1^+ ) (((√(x^2 −1))+(√x)−1)/(√(x−1))) ?

$$\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}+\sqrt{\mathrm{x}}−\mathrm{1}}{\sqrt{\mathrm{x}−\mathrm{1}}}\:?\: \\ $$

Question Number 99936    Answers: 2   Comments: 3

lim_(x→0) (((1+x)^k −1)/x)=? help me

$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{k}} −\mathrm{1}}{\mathrm{x}}=? \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$

  Pg 1166      Pg 1167      Pg 1168      Pg 1169      Pg 1170      Pg 1171      Pg 1172      Pg 1173      Pg 1174      Pg 1175   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com