Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1171

Question Number 99923    Answers: 0   Comments: 2

Eliminate arbitrary constant a and b from z = (x−a)^2 +(y−b)^2 to form the partial differential equation.

$$\mathrm{Eliminate}\:\mathrm{arbitrary}\:\mathrm{constant}\: \\ $$$${a}\:\mathrm{and}\:{b}\:\mathrm{from}\:\mathrm{z}\:=\:\left(\mathrm{x}−{a}\right)^{\mathrm{2}} +\left(\mathrm{y}−{b}\right)^{\mathrm{2}} \\ $$$$\mathrm{to}\:\mathrm{form}\:\mathrm{the}\:\mathrm{partial}\:\mathrm{differential} \\ $$$$\mathrm{equation}.\: \\ $$

Question Number 99920    Answers: 3   Comments: 0

calculate Π_(n=2) ^∞ ((n^3 −1)/(n^3 +1))

$$\mathrm{calculate}\:\prod_{\mathrm{n}=\mathrm{2}} ^{\infty} \frac{\mathrm{n}^{\mathrm{3}} −\mathrm{1}}{\mathrm{n}^{\mathrm{3}} +\mathrm{1}} \\ $$

Question Number 99919    Answers: 1   Comments: 0

f_n is fibonacci sequence 1) find lim_(n→+∞) (f_(n+1) /(fn)) 2)prove that Σ f_n is convergente

$$\mathrm{f}_{\mathrm{n}} \mathrm{is}\:\mathrm{fibonacci}\:\mathrm{sequence} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\frac{\mathrm{f}_{\mathrm{n}+\mathrm{1}} }{{fn}} \\ $$$$\left.\mathrm{2}\right){prove}\:{th}\mathrm{a}{t}\:\Sigma\:\mathrm{f}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{convergente} \\ $$

Question Number 99916    Answers: 1   Comments: 0

can anyone recommend a good textbook from which i can learn calculus..^

$$\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{anyone}}\:\boldsymbol{\mathrm{recommend}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{good}}\:\boldsymbol{\mathrm{textbook}} \\ $$$$\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{learn}}\:\boldsymbol{\mathrm{calculus}}.\hat {.} \\ $$

Question Number 99905    Answers: 0   Comments: 5

Question Number 99900    Answers: 0   Comments: 0

An insulated wire of diameter 1.22 mm carries a steady current of 5.4 A. The insulation material is 1.22 mm thick and has a? coeffiecient of thermal conductivity of 0.23 W/Km. the electrical resistivity of the material of the wire is 5.2 ×10^(−7) Ωm. find the temperature difference between the inner and outer surface of the insulated material when steady state is reached.

$$\mathrm{An}\:\mathrm{insulated}\:\mathrm{wire}\:\mathrm{of}\:\mathrm{diameter}\:\mathrm{1}.\mathrm{22}\:\mathrm{mm}\:\mathrm{carries}\:\mathrm{a}\:\mathrm{steady}\:\mathrm{current} \\ $$$$\mathrm{of}\:\mathrm{5}.\mathrm{4}\:\mathrm{A}.\:\mathrm{The}\:\mathrm{insulation}\:\mathrm{material}\:\mathrm{is}\:\mathrm{1}.\mathrm{22}\:\mathrm{mm}\:\mathrm{thick}\:\mathrm{and}\:\mathrm{has}\:\mathrm{a}? \\ $$$$\mathrm{coeffiecient}\:\mathrm{of}\:\mathrm{thermal}\:\mathrm{conductivity}\:\mathrm{of}\:\mathrm{0}.\mathrm{23}\:\mathrm{W}/\mathrm{Km}.\:\mathrm{the}\:\mathrm{electrical} \\ $$$$\mathrm{resistivity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{material}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wire}\:\mathrm{is}\:\mathrm{5}.\mathrm{2}\:×\mathrm{10}^{−\mathrm{7}} \Omega\mathrm{m}.\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\mathrm{temperature}\:\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{inner}\:\mathrm{and}\:\mathrm{outer}\:\mathrm{surface}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{insulated}\:\mathrm{material}\:\mathrm{when}\:\mathrm{steady}\:\mathrm{state}\:\mathrm{is}\:\mathrm{reached}. \\ $$

Question Number 99895    Answers: 1   Comments: 0

Σ_(n=0) ^∞ (1/((3n+1)^3 ))=((13)/(27)) 𝛇(3) +((2𝛑^3 )/(81(√3)))

$$\:\:\:\:\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{3}\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{13}}{\mathrm{27}}\:\boldsymbol{\zeta}\left(\mathrm{3}\right)\:+\frac{\mathrm{2}\boldsymbol{\pi}^{\mathrm{3}} }{\mathrm{81}\sqrt{\mathrm{3}}}\: \\ $$

Question Number 99894    Answers: 1   Comments: 0

Σ_(n≥0) (1/(n^2 +1)) = ?

$$\:\:\: \\ $$$$\underset{\boldsymbol{{n}}\geqslant\mathrm{0}} {\sum}\:\:\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{1}}\:=\:? \\ $$

Question Number 99892    Answers: 0   Comments: 0

solve the equation xa^(1/x) +(1/x)a^x =2a Where a{−1,0,1}

$${solve}\:{the}\:{equation} \\ $$$${xa}^{\frac{\mathrm{1}}{{x}}} +\frac{\mathrm{1}}{{x}}{a}^{{x}} =\mathrm{2}{a} \\ $$$${Where}\:{a}\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\} \\ $$

Question Number 99889    Answers: 1   Comments: 0

1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+.......∞{Find the sum}

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{7}}+.......\infty\left\{\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\right\} \\ $$

Question Number 99887    Answers: 2   Comments: 5

Question Number 99877    Answers: 0   Comments: 5

Question Number 99869    Answers: 2   Comments: 0

tng(𝛑/9) + 4sin(𝛑/9) =(√3)

$$\:\boldsymbol{{tng}}\frac{\boldsymbol{\pi}}{\mathrm{9}}\:\:+\:\mathrm{4}\boldsymbol{{sin}}\frac{\boldsymbol{\pi}}{\mathrm{9}}\:=\sqrt{\mathrm{3}} \\ $$

Question Number 99853    Answers: 2   Comments: 0

(1/1^2 )+(1/2^2 )+(1/3^2 )+(1/4^2 )+(1/6^2 )+.....∞=?

$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{2}} }+.....\infty=? \\ $$

Question Number 99846    Answers: 0   Comments: 1

lim_(n→∞) (1−(1/(2!)))^(((1/(2!))−(1/(3!)))^(.........((1/(n!))−(1/((n+1)!)))) ) =?

$$\:\:\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{m}}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}!}\right)^{\left(\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}\right)^{.........\left(\frac{\mathrm{1}}{\boldsymbol{{n}}!}−\frac{\mathrm{1}}{\left(\boldsymbol{{n}}+\mathrm{1}\right)!}\right)} } =? \\ $$

Question Number 99839    Answers: 2   Comments: 4

let x_0 =1 and x_(n+1) =ln(e^x_n −x_n ) 1) prove that x_n →0 2)prove that Σ x_n converges and ddyermine its sum

$$\mathrm{let}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1}\:\mathrm{and}\:\mathrm{x}_{\mathrm{n}+\mathrm{1}} =\mathrm{ln}\left(\mathrm{e}^{\mathrm{x}_{\mathrm{n}} } −\mathrm{x}_{\mathrm{n}} \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{prove}\:\mathrm{that}\:\mathrm{x}_{\mathrm{n}} \:\rightarrow\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\mathrm{prove}\:\mathrm{that}\:\Sigma\:\mathrm{x}_{\mathrm{n}} \:\mathrm{converges}\:\mathrm{and}\:\mathrm{ddyermine}\:\mathrm{its}\:\mathrm{sum} \\ $$

Question Number 99832    Answers: 0   Comments: 0

solve x^2 y^(′′) −xy^′ +2y =x^3 e^(−x)

$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} \:−\mathrm{xy}^{'} \:+\mathrm{2y}\:=\mathrm{x}^{\mathrm{3}} \mathrm{e}^{−\mathrm{x}} \\ $$

Question Number 99831    Answers: 0   Comments: 0

solve the ds { ((x^′ +2y^′ =sint)),((3x^′ +y^′ =te^t )) :}

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{ds}\:\:\:\begin{cases}{\mathrm{x}^{'} \:+\mathrm{2y}^{'} \:=\mathrm{sint}}\\{\mathrm{3x}^{'} +\mathrm{y}^{'} \:=\mathrm{te}^{\mathrm{t}} }\end{cases} \\ $$

Question Number 99829    Answers: 0   Comments: 0

1.Find the principal if its interest in 3month with 5(1/2)% per amount is Rs.66. 2. The length of arectangular room is double of its breadth and height is one third of the length. If the room contains 972 cubic meter of air, find the area of floor of the room.

$$\:\mathrm{1}.\mathrm{Find}\:\mathrm{the}\:\mathrm{principal}\:\mathrm{if}\:\mathrm{its}\:\mathrm{interest}\:\mathrm{in}\:\mathrm{3month}\:\mathrm{with}\:\mathrm{5}\frac{\mathrm{1}}{\mathrm{2}}\%\:\mathrm{per}\:\mathrm{amount}\:\mathrm{is}\:\mathrm{Rs}.\mathrm{66}. \\ $$$$\:\mathrm{2}.\:\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{arectangular}\:\mathrm{room}\:\mathrm{is}\:\mathrm{double}\:\mathrm{of}\:\mathrm{its}\:\mathrm{breadth}\:\mathrm{and} \\ $$$$\:\:\mathrm{height}\:\mathrm{is}\:\mathrm{one}\:\mathrm{third}\:\mathrm{of}\:\mathrm{the}\:\mathrm{length}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{room}\:\mathrm{contains}\:\mathrm{972}\:\mathrm{cubic}\:\mathrm{meter}\:\mathrm{of}\:\mathrm{air}, \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{floor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{room}. \\ $$

Question Number 99828    Answers: 1   Comments: 2

let A = (((2 1)),((1 2)) ) 1) calculate A^n 2)determine cosA and sinA 3) find chA and shA

$$\mathrm{let}\:\mathrm{A}\:=\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\mathrm{2}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}^{\mathrm{n}} \\ $$$$\left.\mathrm{2}\right)\mathrm{determine}\:\mathrm{cosA}\:\mathrm{and}\:\mathrm{sinA} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\mathrm{chA}\:\mathrm{and}\:\mathrm{shA} \\ $$

Question Number 99827    Answers: 0   Comments: 0

How many days after 12/7/1941 (pearl harbour bombed) was 9/11/2001 (the september 11 terrorist attack? please help, i′m having 27175days, which apparently isn′t correct.

$$\mathrm{How}\:\mathrm{many}\:\mathrm{days}\:\mathrm{after}\:\mathrm{12}/\mathrm{7}/\mathrm{1941} \\ $$$$\left(\mathrm{pearl}\:\mathrm{harbour}\:\mathrm{bombed}\right)\:\mathrm{was}\:\mathrm{9}/\mathrm{11}/\mathrm{2001} \\ $$$$\left(\mathrm{the}\:\mathrm{september}\:\mathrm{11}\:\mathrm{terrorist}\:\mathrm{attack}?\right. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help},\:\mathrm{i}'\mathrm{m}\:\mathrm{having}\:\mathrm{27175days},\: \\ $$$$\mathrm{which}\:\mathrm{apparently}\:\mathrm{isn}'\mathrm{t}\:\mathrm{correct}. \\ $$

Question Number 99824    Answers: 1   Comments: 0

calculate ∫_0 ^1 xe^(−x^2 ) arctan((2/x))dx

$$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx} \\ $$

Question Number 99822    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((ch(sinx))/((x^2 +3)^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ch}\left(\mathrm{sinx}\right)}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 99820    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((x^2 dx)/((x^4 −x^2 +1)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 99819    Answers: 0   Comments: 0

sove sinx y^′ −cos(2x)y =xe^(−x)

$$\mathrm{sove}\:\:\mathrm{sinx}\:\mathrm{y}^{'} \:−\mathrm{cos}\left(\mathrm{2x}\right)\mathrm{y}\:=\mathrm{xe}^{−\mathrm{x}} \\ $$

Question Number 99818    Answers: 2   Comments: 0

∫_0 ^1 ln(1+(1/(n^2 x^2 )))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$

  Pg 1166      Pg 1167      Pg 1168      Pg 1169      Pg 1170      Pg 1171      Pg 1172      Pg 1173      Pg 1174      Pg 1175   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com