Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1171

Question Number 98806    Answers: 0   Comments: 1

for a is integer number such that ∣∣x−1∣ −2∣ ≤ a exactly has 2013 solution

$$\mathrm{for}\:{a}\:\mathrm{is}\:\mathrm{integer}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mid\mid{x}−\mathrm{1}\mid\:−\mathrm{2}\mid\:\leqslant\:{a}\:\:\mathrm{exactly}\:\mathrm{has}\:\mathrm{2013} \\ $$$$\mathrm{solution} \\ $$

Question Number 98788    Answers: 2   Comments: 0

lim_(n→∞) (1/n)[ (n+1)(n+2)...(n+n)_ ^ ]^(1/n)

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\left[\:\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)...\left(\mathrm{n}+\mathrm{n}\right)_{} ^{} \right]^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$

Question Number 98776    Answers: 0   Comments: 0

∫_0 ^∞ (((x−1))/(ln(F(x)(√5)+cos(πx)(ϕ)^(−x) −1)(√(F(x)(√5)+cos(πx)(ϕ)^(−x) −1))))dx F(x)=Fib(x)=xth Extended fibonacci number f:R→R ϕ=((1+(√5))/2)

$$\int_{\mathrm{0}} ^{\infty} \frac{\left({x}−\mathrm{1}\right)}{{ln}\left({F}\left({x}\right)\sqrt{\mathrm{5}}+{cos}\left(\pi{x}\right)\left(\varphi\right)^{−{x}} −\mathrm{1}\right)\sqrt{{F}\left({x}\right)\sqrt{\mathrm{5}}+{cos}\left(\pi{x}\right)\left(\varphi\right)^{−{x}} −\mathrm{1}}}{dx} \\ $$$$ \\ $$$${F}\left({x}\right)={Fib}\left({x}\right)={xth}\:{Extended}\:{fibonacci}\:{number} \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\varphi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$

Question Number 98773    Answers: 2   Comments: 0

if x is a selected number of the number from 20−99, then what is probalility x^3 −x is divided by 12?

$$\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{selected}\:\mathrm{number}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{from}\:\mathrm{20}−\mathrm{99},\:\mathrm{then}\:\mathrm{what} \\ $$$$\mathrm{is}\:\mathrm{probalility}\:\mathrm{x}^{\mathrm{3}} −\mathrm{x}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\mathrm{12}?\: \\ $$

Question Number 98770    Answers: 0   Comments: 2

Question Number 98768    Answers: 2   Comments: 0

lim_(x→0) (((√(x+1)) sin x+ln(1+x^2 )−x)/(((1+x^2 ))^(1/(3 )) −1))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}+\mathrm{1}}\:\mathrm{sin}\:\mathrm{x}+\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)−\mathrm{x}}{\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{1}} \\ $$

Question Number 98761    Answers: 0   Comments: 5

(√(x+(√x) )) −(√(x−(√x))) = m(√(x/(x+(√x)))) m is a real parameter

$$\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}\:}\:−\sqrt{\mathrm{x}−\sqrt{\mathrm{x}}}\:=\:\mathrm{m}\sqrt{\frac{\mathrm{x}}{\mathrm{x}+\sqrt{\mathrm{x}}}} \\ $$$$\mathrm{m}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{parameter} \\ $$

Question Number 98750    Answers: 0   Comments: 0

Question Number 98744    Answers: 0   Comments: 2

∫_0 ^π ∫_0 ^(2sinθ) (1+rsinθ)r dr dθ

$$\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\mathrm{2}{sin}\theta} \left(\mathrm{1}+{rsin}\theta\right){r}\:{dr}\:{d}\theta \\ $$

Question Number 98728    Answers: 0   Comments: 5

Currently working on enhancing this app to draw shapes. So posting a math problem realted to drawing.^ Ref. Frame1 X-Y Frame 2: Axis translated by (h,k) and rotated about point (u,v). Consider a point (x_1 ,y_1 ) on X−Y axis. 1. What will be the postion of the point on X−Y axis after it is translated and plotted in frame 2. 2. A point is moved by distance dx,dy in X−Y. How much distane will it moved in the new frame.

$$\mathrm{Currently}\:\mathrm{working}\:\mathrm{on}\:\mathrm{enhancing} \\ $$$$\mathrm{this}\:\mathrm{app}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{shapes}. \\ $$$$\mathrm{So}\:\mathrm{posting}\:\mathrm{a}\:\:\mathrm{math}\:\mathrm{problem}\:\mathrm{realted} \\ $$$$\mathrm{to}\:\mathrm{drawing}\bar {.} \\ $$$$\mathrm{Ref}.\:\mathrm{Frame1}\:\mathrm{X}-\mathrm{Y} \\ $$$$\mathrm{Frame}\:\mathrm{2}: \\ $$$$\mathrm{Axis}\:\mathrm{translated}\:\mathrm{by}\:\left({h},{k}\right)\:\mathrm{and} \\ $$$$\mathrm{rotated}\:\mathrm{about}\:\mathrm{point}\:\left({u},{v}\right). \\ $$$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{point}\:\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:\mathrm{on}\:\mathrm{X}−\mathrm{Y}\:\mathrm{axis}. \\ $$$$\mathrm{1}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{postion}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{X}−\mathrm{Y}\:\mathrm{axis}\:\mathrm{after}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{translated}\:\mathrm{and}\:\mathrm{plotted}\:\mathrm{in}\:\mathrm{frame}\:\mathrm{2}. \\ $$$$\mathrm{2}.\:\mathrm{A}\:\mathrm{point}\:\mathrm{is}\:\mathrm{moved}\:\mathrm{by}\:\mathrm{distance} \\ $$$${dx},{dy}\:\mathrm{in}\:\mathrm{X}−\mathrm{Y}.\:\mathrm{How}\:\mathrm{much}\:\mathrm{distane} \\ $$$$\mathrm{will}\:\mathrm{it}\:\mathrm{moved}\:\mathrm{in}\:\mathrm{the}\:\mathrm{new}\:\mathrm{frame}. \\ $$

Question Number 98723    Answers: 0   Comments: 4

Version 2.084 has fixes for all crashes which were reported on playstore in last week. If anyone is facing crashes please update to v2.084 and see if the problem is solved. If the problem is still present, please send us an email as the problem may be specifuc to device model.

$$\mathrm{Version}\:\mathrm{2}.\mathrm{084}\:\mathrm{has}\:\mathrm{fixes}\:\mathrm{for}\:\mathrm{all} \\ $$$$\mathrm{crashes}\:\mathrm{which}\:\mathrm{were}\:\mathrm{reported}\:\mathrm{on} \\ $$$$\mathrm{playstore}\:\mathrm{in}\:\mathrm{last}\:\mathrm{week}. \\ $$$$\mathrm{If}\:\mathrm{anyone}\:\mathrm{is}\:\mathrm{facing}\:\mathrm{crashes}\:\mathrm{please} \\ $$$$\mathrm{update}\:\mathrm{to}\:\mathrm{v2}.\mathrm{084}\:\mathrm{and}\:\mathrm{see}\:\mathrm{if}\:\mathrm{the}\: \\ $$$$\mathrm{problem}\:\mathrm{is}\:\mathrm{solved}. \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{still}\:\mathrm{present},\:\mathrm{please} \\ $$$$\mathrm{send}\:\mathrm{us}\:\mathrm{an}\:\mathrm{email}\:\mathrm{as}\:\mathrm{the}\:\mathrm{problem} \\ $$$$\mathrm{may}\:\mathrm{be}\:\mathrm{specifuc}\:\mathrm{to}\:\mathrm{device}\:\mathrm{model}. \\ $$

Question Number 98722    Answers: 3   Comments: 0

let f(x) =arctan((3/x)) 1) calculste f^((n)) (x) and f^((n)) (1) 2) developp f at integr seri at point x_0 =1

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\frac{\mathrm{3}}{\mathrm{x}}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculste}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{seri}\:\mathrm{at}\:\mathrm{point}\:\mathrm{x}_{\mathrm{0}} =\mathrm{1} \\ $$

Question Number 98721    Answers: 2   Comments: 0

calculate ∫_0 ^∞ (dx/(x^4 +x^2 +1)) 1) by using residue theorem 2) by using complex decomposition

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{by}\:\mathrm{using}\:\mathrm{residue}\:\mathrm{theorem} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{by}\:\mathrm{using}\:\mathrm{complex}\:\mathrm{decomposition} \\ $$

Question Number 98713    Answers: 2   Comments: 1

∫((sin(x))/x)dx

$$\int\frac{{sin}\left({x}\right)}{{x}}{dx} \\ $$$$ \\ $$

Question Number 98690    Answers: 1   Comments: 3

Question Number 98687    Answers: 1   Comments: 4

Question Number 98679    Answers: 1   Comments: 2

prove that ∫_0 ^∞ ((3+2(√x))/(x^2 +2x+5))dx=4.13049

$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{3}+\mathrm{2}\sqrt{{x}}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx}=\mathrm{4}.\mathrm{13049}\: \\ $$

Question Number 98678    Answers: 2   Comments: 9

∫_0 ^∞ e^(−ax) ((sin mx)/x) dx = tan^(−1) ((m/a)), a>0

$$\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{e}}^{−\boldsymbol{\mathrm{ax}}} \frac{\mathrm{sin}\:\boldsymbol{\mathrm{mx}}}{\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\boldsymbol{\mathrm{m}}}{\boldsymbol{\mathrm{a}}}\right),\:\boldsymbol{\mathrm{a}}>\mathrm{0} \\ $$

Question Number 98677    Answers: 1   Comments: 0

prove ∫_0 ^a ((ln(1+ax))/(1+x^2 ))dx=(1/2)ln(1+a^2 )tan^(−1) a, a>0

$$\mathrm{prove} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{a}} \frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{ax}}\right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\mathrm{tan}^{−\mathrm{1}} \boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{a}}>\mathrm{0} \\ $$

Question Number 98675    Answers: 0   Comments: 10

Question Number 98673    Answers: 2   Comments: 0

find a_n in terms of n (I can′t find it...) a_1 =1; a_2 =4 a_3 =a_2 ×4×((2^2 −1)/2^2 ) a_4 =a_3 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 ) a_5 =a_4 ×4×((2^2 −1)/2^2 )×((3^2 −1)/3^2 )×((4^2 −1)/4^2 ) ... n≥2: a_(n+1) =4a_n Π_(k=2) ^n ((k^2 −1)/k^2 )

$$\mathrm{find}\:{a}_{{n}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n} \\ $$$$\left(\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}...\right) \\ $$$${a}_{\mathrm{1}} =\mathrm{1};\:{a}_{\mathrm{2}} =\mathrm{4} \\ $$$${a}_{\mathrm{3}} ={a}_{\mathrm{2}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{4}} ={a}_{\mathrm{3}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} } \\ $$$${a}_{\mathrm{5}} ={a}_{\mathrm{4}} ×\mathrm{4}×\frac{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }×\frac{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }×\frac{\mathrm{4}^{\mathrm{2}} −\mathrm{1}}{\mathrm{4}^{\mathrm{2}} } \\ $$$$... \\ $$$${n}\geqslant\mathrm{2}:\:{a}_{{n}+\mathrm{1}} =\mathrm{4}{a}_{{n}} \underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\frac{{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$

Question Number 98672    Answers: 1   Comments: 0

∫_0 ^4 ∫_0 ^(x/4) e^x^2 dx dy

$$\int_{\mathrm{0}} ^{\mathrm{4}} \int_{\mathrm{0}} ^{\frac{{x}}{\mathrm{4}}} {e}^{{x}^{\mathrm{2}} } \:{dx}\:{dy} \\ $$

Question Number 98661    Answers: 0   Comments: 1

using cayley − hamilton theorem what is the inverse of matrix A= [((0 1 −1)),((1 2 2)),((0 1 −1)) ]

$$\mathrm{using}\:\mathrm{cayley}\:−\:\mathrm{hamilton} \\ $$$$\mathrm{theorem}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\mathrm{matrix}\:\mathrm{A}=\:\begin{bmatrix}{\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:−\mathrm{1}}\end{bmatrix}\: \\ $$

Question Number 98796    Answers: 2   Comments: 0

Question Number 98657    Answers: 2   Comments: 0

solve y^(′′) −3y^′ +2y =((sinx)/x)

$$\mathrm{solve}\:\:\mathrm{y}^{''} \:−\mathrm{3y}^{'} \:\:+\mathrm{2y}\:=\frac{\mathrm{sinx}}{\mathrm{x}} \\ $$

Question Number 98656    Answers: 2   Comments: 0

solve xy^(′′) +(2+x^2 )y^′ =xe^(−x^2 )

$$\mathrm{solve}\:\:\:\mathrm{xy}^{''} \:+\left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}^{'} \:\:=\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \\ $$

  Pg 1166      Pg 1167      Pg 1168      Pg 1169      Pg 1170      Pg 1171      Pg 1172      Pg 1173      Pg 1174      Pg 1175   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com