Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 117

Question Number 211679    Answers: 1   Comments: 1

Inverse root formula: x=((2c)/(−b±(√(b^2 −4ac)))) (1)The“ antiroot formula” is derivedr fom the abovementionedt antiroo formula.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{Inverse}\:\mathrm{root}\:\mathrm{formula}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}=\frac{\mathrm{2}\boldsymbol{{c}}}{−\boldsymbol{{b}}\pm\sqrt{\boldsymbol{{b}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{ac}}}} \\ $$$$\left(\mathrm{1}\right)\mathrm{The}``\:\mathrm{antiroot}\:\mathrm{formula}''\:\mathrm{is}\:\mathrm{derivedr} \\ $$$$\mathrm{fom}\:\mathrm{the}\:\mathrm{abovementionedt} \\ $$$$\mathrm{antiroo}\:\mathrm{formula}. \\ $$

Question Number 213343    Answers: 1   Comments: 0

Question Number 213342    Answers: 0   Comments: 1

Question Number 213341    Answers: 2   Comments: 3

Question Number 213340    Answers: 0   Comments: 3

Question Number 213369    Answers: 2   Comments: 0

Old question 203835 ∫_0 ^(√2) ((√(6−(√(25x^4 −50x^2 +36))))/( (√5)))dx=?

$$\mathrm{Old}\:\mathrm{question}\:\mathrm{203835} \\ $$$$\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{6}−\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{50}{x}^{\mathrm{2}} +\mathrm{36}}}}{\:\sqrt{\mathrm{5}}}{dx}=? \\ $$

Question Number 211675    Answers: 2   Comments: 1

x^2 =2^x Find more than three solutions

$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{2}^{\boldsymbol{{x}}} \\ $$$$\:\mathrm{Find}\:\mathrm{more}\:\mathrm{than}\:\mathrm{three}\:\mathrm{solutions} \\ $$$$ \\ $$

Question Number 211673    Answers: 1   Comments: 0

Resoudre ^x (√(x/(x−1))) =(x−1)^((x−2)) .

$$\:\:\:\boldsymbol{{Resoudre}} \\ $$$$\:\:^{\boldsymbol{\mathrm{x}}} \sqrt{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}−\mathrm{1}}}\:\:\:=\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)^{\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)} . \\ $$

Question Number 211672    Answers: 0   Comments: 2

In a triangle the bisector of the side c is perpendicular to side b. Prove that 2tanC + tanA = 0.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{the}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{the}\:\mathrm{side}\:{c}\:\mathrm{is} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{side}\:{b}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{2tanC}\:+\:\mathrm{tanA}\:=\:\mathrm{0}. \\ $$

Question Number 211659    Answers: 2   Comments: 1

Question Number 211658    Answers: 2   Comments: 0

(√(19−8(√3))) x^2 −ax+ b =0 a b a + b .

$$\:\: \sqrt{\mathrm{19}−\mathrm{8}\sqrt{\mathrm{3}}}\: \\ $$$$ \mathrm{x}^{\mathrm{2}} −{a}\mathrm{x}+\:{b}\:=\mathrm{0}\: {a}\: {b}\: \\ $$$$ \\ $$$$ {a}\:+\:{b}\:.\: \\ $$

Question Number 211657    Answers: 1   Comments: 0

sin(9x) = sin(5x) + sin(3x) find: x = ?

$$\mathrm{sin}\left(\mathrm{9x}\right)\:=\:\mathrm{sin}\left(\mathrm{5x}\right)\:+\:\mathrm{sin}\left(\mathrm{3x}\right) \\ $$$$\mathrm{find}:\:\:\mathrm{x}\:=\:? \\ $$

Question Number 211651    Answers: 1   Comments: 0

In triangle ABC, ∠C = 60°. If the length of opposite sides of ∠A, ∠B and ∠C are a, b and c respectively then prove that (1/(a + c)) + (1/(b + c)) = (3/(a + b + c)) .

$$\mathrm{In}\:\mathrm{triangle}\:\mathrm{ABC},\:\angle\mathrm{C}\:=\:\mathrm{60}°.\:\mathrm{If}\:\mathrm{the}\:\mathrm{length} \\ $$$$\mathrm{of}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{of}\:\angle\mathrm{A},\:\angle\mathrm{B}\:\mathrm{and}\:\angle\mathrm{C}\:\mathrm{are} \\ $$$${a},\:{b}\:\mathrm{and}\:{c}\:\mathrm{respectively}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}\:+\:{c}}\:+\:\frac{\mathrm{1}}{{b}\:+\:{c}}\:=\:\frac{\mathrm{3}}{{a}\:+\:{b}\:+\:{c}}\:. \\ $$

Question Number 211643    Answers: 1   Comments: 0

Let A={x ∈ R∣x^2 <4}and B={y ∈ Q∣y>−3}find A∩B

$$\mathrm{Let}\:\boldsymbol{{A}}=\left\{\boldsymbol{{x}}\:\in\:\mathbb{R}\mid\boldsymbol{{x}}^{\mathrm{2}} <\mathrm{4}\right\}\mathrm{and} \\ $$$$\boldsymbol{{B}}=\left\{\boldsymbol{{y}}\:\in\:\mathbb{Q}\mid\boldsymbol{{y}}>−\mathrm{3}\right\}\mathrm{find}\:\boldsymbol{{A}}\cap\boldsymbol{{B}} \\ $$

Question Number 211637    Answers: 1   Comments: 0

f(x) = sin x − e^x + 1. Prove that f(x) has only 2 zeros in −π≤x≤0.

$${f}\left({x}\right)\:=\:\mathrm{sin}\:{x}\:−\:\mathrm{e}^{{x}} \:+\:\mathrm{1}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:{f}\left({x}\right)\:\mathrm{has}\:\mathrm{only}\:\mathrm{2}\:\mathrm{zeros}\:\mathrm{in}\:−\pi\leqslant{x}\leqslant\mathrm{0}. \\ $$

Question Number 211636    Answers: 1   Comments: 0

Question Number 211635    Answers: 1   Comments: 0

Question Number 211634    Answers: 1   Comments: 0

Question Number 211633    Answers: 1   Comments: 1

Question Number 211632    Answers: 1   Comments: 0

Question Number 211631    Answers: 0   Comments: 0

Question Number 211630    Answers: 0   Comments: 0

Question Number 211627    Answers: 0   Comments: 0

certificate: ∣∣h∣∣_^L^p ^p =∫_0 ^∞ ∣h(x)∣^p dx.

$$ \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mid\mid\boldsymbol{{h}}\mid\mid_{\:^{\boldsymbol{{L}}^{\boldsymbol{{p}}} } } ^{\boldsymbol{{p}}} =\int_{\mathrm{0}} ^{\infty} \mid\boldsymbol{{h}}\left(\boldsymbol{{x}}\right)\mid^{\boldsymbol{{p}}} \boldsymbol{{dx}}. \\ $$

Question Number 211614    Answers: 2   Comments: 1

A group of people are standing in a circle. Every second person is removed from the circle and this process continues until only one person remains in the circle. If there are 100 people in the circle, what will be the number of the last person left?

$$ \\ $$A group of people are standing in a circle. Every second person is removed from the circle and this process continues until only one person remains in the circle. If there are 100 people in the circle, what will be the number of the last person left?

Question Number 211617    Answers: 1   Comments: 0

Ato starts a business with $1,250.00. Ama joins the business later with a capital of 1,875.00. At the end of the first year, profits are shared equally between Ato and Ama. When did Ama join the business?

$$\mathrm{Ato}\:\:\mathrm{starts}\:\mathrm{a}\:\mathrm{business}\:\mathrm{with}\:\$\mathrm{1},\mathrm{250}.\mathrm{00}.\:\mathrm{Ama}\:\mathrm{joins}\:\mathrm{the}\:\mathrm{business} \\ $$$$\mathrm{later}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capital}\:\mathrm{of}\:\mathrm{1},\mathrm{875}.\mathrm{00}.\:\mathrm{At}\:\mathrm{the}\: \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{year},\:\mathrm{profits}\:\mathrm{are}\:\mathrm{shared}\:\mathrm{equally} \\ $$$$\mathrm{between}\:\mathrm{Ato}\:\mathrm{and}\:\mathrm{Ama}.\:\mathrm{When}\:\mathrm{did}\:\mathrm{Ama} \\ $$$$\mathrm{join}\:\mathrm{the}\:\mathrm{business}? \\ $$

Question Number 211609    Answers: 2   Comments: 0

Prove that, in a triangle the ratios of the sides and the sine of the opposite angles are equal. Also prove that each ratio is equal to the diameter of the circum circle of the triangle.

$$\mathrm{Prove}\:\mathrm{that},\:\mathrm{in}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{the}\:\mathrm{ratios}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{angles} \\ $$$$\mathrm{are}\:\mathrm{equal}.\:\mathrm{Also}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{each}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circum}\:\mathrm{circle} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

  Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com