Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 117
Question Number 210855 Answers: 3 Comments: 0
Question Number 210843 Answers: 1 Comments: 0
Question Number 210842 Answers: 1 Comments: 0
Question Number 210851 Answers: 1 Comments: 1
Question Number 210840 Answers: 1 Comments: 0
$$ \\ $$Prove that if x, y are rational numbers satisfying the equation x^5 + y^5 = 2(x^2)(y^2) then 1 - xy is the square of rational number
Question Number 210824 Answers: 0 Comments: 0
Question Number 210820 Answers: 2 Comments: 0
$$\mathrm{prove} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{arctan}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$
Question Number 210839 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\int_{\mathrm{0}} ^{\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{xt}}} \boldsymbol{\mathrm{e}}^{−\mathrm{t}^{\mathrm{2}} } \boldsymbol{\mathrm{dt}}=\boldsymbol{\mathrm{e}}^{\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\mathrm{4}}} \underset{\mathrm{0}} {\int}^{\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{e}}^{−\frac{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$ \\ $$
Question Number 210836 Answers: 0 Comments: 0
Question Number 210816 Answers: 2 Comments: 1
Question Number 210832 Answers: 2 Comments: 1
$$ \\ $$If the probability of A solving a question is 1/2 and the probability of B solving the question is 2/3 then the probability of the question being solved is
Question Number 210809 Answers: 1 Comments: 4
Question Number 210807 Answers: 0 Comments: 0
Question Number 210789 Answers: 1 Comments: 0
Question Number 210788 Answers: 1 Comments: 0
$${s}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$$\mathrm{2}{s}={s}−\mathrm{1} \\ $$$${s}=\mathrm{1}\:? \\ $$$$\:{how}\:{to}\:{explain}\:{it} \\ $$$${and}\:{how}\:{to}\:{judge}\:{which}\:{case}\:{can}\:{use}\:{this}\:{way} \\ $$
Question Number 210787 Answers: 6 Comments: 0
$$ \\ $$$$\:\begin{cases}{\:\:\mathrm{I}{f},\:\mathrm{D}\::\:{x}^{\mathrm{2}} \:+{y}^{\:\mathrm{2}} \:+\:{z}^{\:\mathrm{2}} \leqslant\mathrm{1}}\\{\:\Rightarrow\int\underset{\overset{} {\mathrm{D}}} {\int}\int\frac{\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\:\mathrm{2}} }{{x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\:{dxdydz}=?}\end{cases} \\ $$$$ \\ $$$$ \\ $$
Question Number 210786 Answers: 1 Comments: 0
Question Number 210782 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\mathscr{H}{ow}\:{to}\:{make}\:\mathrm{4}\:{out}\:{of}\:{four}\:\:\mathrm{0}'{s}\:? \\ $$$$\:\:\:\mathscr{HELP}\:\mathscr{PLEASE} \\ $$$$ \\ $$
Question Number 210769 Answers: 0 Comments: 1
Question Number 210767 Answers: 2 Comments: 2
Question Number 210765 Answers: 1 Comments: 0
Question Number 210761 Answers: 2 Comments: 7
Question Number 210755 Answers: 0 Comments: 0
Question Number 210754 Answers: 1 Comments: 0
Question Number 210753 Answers: 1 Comments: 0
Question Number 210737 Answers: 1 Comments: 0
$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:{then} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{1}}\right)+.....+{f}\left(\frac{\mathrm{100}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$+{f}\left(\frac{\mathrm{2}}{\mathrm{2}}\right)+...+{f}\left(\frac{\mathrm{100}}{\mathrm{2}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{100}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{100}}\right) \\ $$$$+......+{f}\left(\frac{\mathrm{100}}{\mathrm{100}}\right)=? \\ $$
Pg 112 Pg 113 Pg 114 Pg 115 Pg 116 Pg 117 Pg 118 Pg 119 Pg 120 Pg 121
Terms of Service
Privacy Policy
Contact: info@tinkutara.com