Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 117

Question Number 211330    Answers: 1   Comments: 0

Question Number 211323    Answers: 2   Comments: 1

Question Number 211321    Answers: 1   Comments: 0

sec θ + tan θ =p (p>1) then ((cosec θ+1)/(cosec θ−1)) =?

$$\:\:\: \mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\:=\mathrm{p}\:\left(\mathrm{p}>\mathrm{1}\right) \\ $$$$\:\:\mathrm{then}\:\frac{\mathrm{cosec}\:\theta+\mathrm{1}}{\mathrm{cosec}\:\theta−\mathrm{1}}\:=? \\ $$

Question Number 211311    Answers: 1   Comments: 0

Dterminer le nombre total des nombres de (3 chiffres)qui sont impair( et) divisibles par 9 compris entre 100 et 500.? formule si c est possible?

$$\boldsymbol{\mathrm{Dterminer}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{nombre}}\:\boldsymbol{\mathrm{total}}\:\:\boldsymbol{\mathrm{des}}\:\boldsymbol{\mathrm{nombres}}\: \\ $$$$\boldsymbol{\mathrm{de}}\:\left(\mathrm{3}\:\boldsymbol{\mathrm{chiffres}}\right)\boldsymbol{\mathrm{qui}}\:\boldsymbol{\mathrm{sont}}\:\boldsymbol{\mathrm{impair}}\left(\:\boldsymbol{\mathrm{et}}\right)\:\boldsymbol{\mathrm{divisibles}}\: \\ $$$$\boldsymbol{\mathrm{par}}\:\mathrm{9}\:\:\:\boldsymbol{\mathrm{compris}}\:\boldsymbol{\mathrm{entre}}\:\mathrm{100}\:\boldsymbol{\mathrm{et}}\:\mathrm{500}.? \\ $$$$\boldsymbol{\mathrm{formule}}\:\boldsymbol{\mathrm{si}}\:\boldsymbol{\mathrm{c}}\:\boldsymbol{\mathrm{est}}\:\boldsymbol{\mathrm{possible}}? \\ $$$$ \\ $$

Question Number 211310    Answers: 1   Comments: 0

Find: LCD(2^(100) − 1 ; 2^(120) − 1) = ?

$$\mathrm{Find}: \\ $$$$\mathrm{LCD}\left(\mathrm{2}^{\mathrm{100}} \:−\:\mathrm{1}\:\:;\:\:\mathrm{2}^{\mathrm{120}} \:−\:\mathrm{1}\right)\:=\:? \\ $$

Question Number 211315    Answers: 0   Comments: 0

does anyone know if charpit′s method for solving PDE can be used to solve second order pde? Also is it possible to reduce second order PDE to first order?

$$\mathrm{does}\:\mathrm{anyone}\:\mathrm{know}\:\mathrm{if}\:\mathrm{charpit}'\mathrm{s}\:\mathrm{method}\:\mathrm{for}\:\mathrm{solving}\: \\ $$$$\mathrm{PDE}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{second}\:\mathrm{order}\:\mathrm{pde}? \\ $$$$\mathrm{Also}\:\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{reduce}\:\mathrm{second}\:\mathrm{order}\:\mathrm{PDE}\:\mathrm{to}\:\mathrm{first}\:\mathrm{order}? \\ $$

Question Number 211370    Answers: 1   Comments: 0

F(0)=0 F(1)=1 F(n+1)=F(n)+F(n−1) prove: (1/(89))=Σ_(i=1) ^(+∞) 10^(−i) F(i−1)

$${F}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:\:\:\:\:{F}\left(\mathrm{1}\right)=\mathrm{1}\:\:\:\:{F}\left({n}+\mathrm{1}\right)={F}\left({n}\right)+{F}\left({n}−\mathrm{1}\right) \\ $$$${prove}: \\ $$$$\frac{\mathrm{1}}{\mathrm{89}}=\underset{{i}=\mathrm{1}} {\overset{+\infty} {\sum}}\mathrm{10}^{−{i}} {F}\left({i}−\mathrm{1}\right) \\ $$

Question Number 211368    Answers: 1   Comments: 0

soit le systeme d equatiins x+y+z =7 x^2 +y^2 +z^2 =9 xyz =5 (1/x)+(1/y)+(1/z)?

$$\mathrm{soit}\:\mathrm{le}\:\mathrm{systeme}\:\mathrm{d}\:\mathrm{equatiins} \\ $$$$\:\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}\:\:\:\:=\mathrm{7} \\ $$$$\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{\mathrm{z}}^{\mathrm{2}} =\mathrm{9} \\ $$$$\:\:\boldsymbol{\mathrm{xyz}}\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{5} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{z}}}? \\ $$

Question Number 211367    Answers: 2   Comments: 1

solve for R^+ x^2 +y^2 −kxy=c^2 y^2 +z^2 −kyz=a^2 z^2 +x^2 −kzx=b^2 (k is constant)

$${solve}\:{for}\:{R}^{+} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{kxy}={c}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{kyz}={a}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{x}^{\mathrm{2}} −{kzx}={b}^{\mathrm{2}} \\ $$$$\left({k}\:{is}\:{constant}\right) \\ $$

Question Number 211295    Answers: 2   Comments: 0

lim_(x→0) ((x−sin (sin (sin (....(sin x)))))_(n times) )/x^3 )

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left.\mathrm{x}−\underset{\mathrm{n}\:\mathrm{times}} {\underbrace{\mathrm{sin}\:\left(\mathrm{sin}\:\left(\mathrm{sin}\:\left(....\left(\mathrm{sin}\:\mathrm{x}\right)\right)\right)\right)\right)}}}{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 211294    Answers: 1   Comments: 3

Question Number 211276    Answers: 2   Comments: 0

Prove , in AB^Δ C : ((cosA)/(sin^2 A)) + ((cosB)/(sin^2 B)) +((cosC)/(sin^2 C)) ≥ (r/R) r : incircle radius R: circumcircle radius

$$ \\ $$$$\:\:{Prove}\:,\:{in}\:{A}\overset{\Delta} {{B}C}\:\::\: \\ $$$$ \\ $$$$\:\:\:\:\:\frac{{cosA}}{{sin}^{\mathrm{2}} {A}}\:+\:\frac{{cosB}}{{sin}^{\mathrm{2}} {B}}\:\:+\frac{{cosC}}{{sin}^{\mathrm{2}} {C}}\:\geqslant\:\frac{{r}}{{R}} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{r}\::\:{incircle}\:\:{radius} \\ $$$$\:\:\:\:\:{R}:\:{circumcircle}\:\:{radius} \\ $$$$ \\ $$

Question Number 211279    Answers: 1   Comments: 1

Question Number 211265    Answers: 0   Comments: 0

Question Number 211262    Answers: 1   Comments: 0

Question Number 211258    Answers: 1   Comments: 0

Question Number 211255    Answers: 1   Comments: 3

(√(a+(√(b−x))+(√(b−(√(a+x))))))=2x solve for x.

$$\sqrt{{a}+\sqrt{{b}−{x}}+\sqrt{{b}−\sqrt{{a}+{x}}}}=\mathrm{2}{x} \\ $$$${solve}\:{for}\:{x}.\:\:\:\: \\ $$

Question Number 211252    Answers: 1   Comments: 0

Question Number 211251    Answers: 0   Comments: 2

Question Number 211250    Answers: 1   Comments: 0

Find the number of 4 digit numbers so that when decomposed into prime factors, have the sum of prime factors equal to the sum of the exponents?

$${Find}\:{the}\:{number}\:{of}\:\mathrm{4}\:{digit}\:{numbers} \\ $$$$\:{so}\:{that}\:{when}\:{decomposed}\:{into}\:{prime} \\ $$$$\:{factors},\:{have}\:{the}\:{sum}\:{of}\:{prime}\:{factors} \\ $$$$\:{equal}\:{to}\:{the}\:{sum}\:{of}\:{the}\:{exponents}? \\ $$

Question Number 211245    Answers: 1   Comments: 0

prove: ∫_0 ^∞ (t^(α−1) /(t^π +1))dt=(1/(sin α))

$$\mathrm{prove}: \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{t}^{\alpha−\mathrm{1}} }{{t}^{\pi} +\mathrm{1}}{dt}=\frac{\mathrm{1}}{\mathrm{sin}\:\alpha} \\ $$

Question Number 211241    Answers: 1   Comments: 4

lim_(x→0) ((cos x^2 −cos (sin^2 x ))/x^6 ) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}^{\mathrm{2}} −\mathrm{cos}\:\left(\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:\right)}{\mathrm{x}^{\mathrm{6}} }\:=? \\ $$

Question Number 211235    Answers: 2   Comments: 1

Question Number 211232    Answers: 1   Comments: 0

Question Number 211231    Answers: 0   Comments: 0

Question Number 211230    Answers: 0   Comments: 0

  Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119      Pg 120      Pg 121   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com