Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1161

Question Number 100951    Answers: 0   Comments: 4

Question Number 100947    Answers: 0   Comments: 2

(√(1+(√(2+(√(3+(√(4+(√(5+.....∞))))))))))=?

$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+\sqrt{\mathrm{5}+.....\infty}}}}}=? \\ $$

Question Number 100943    Answers: 1   Comments: 0

Determine the poles of the function; f(x)=((x^5 −1)/(x^3 −1))

$$\mathcal{D}\mathrm{etermine}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}; \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{5}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} −\mathrm{1}} \\ $$

Question Number 100928    Answers: 2   Comments: 2

Question Number 100920    Answers: 1   Comments: 2

Find limit lim_(x→+∞) x((√(x^2 +1))−x) and lim_(x→−∞) x((√(x^2 +1))−x) .

$${Find}\:{limit} \\ $$$$\:\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)\:\:\:{and} \\ $$$$\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)\:\:. \\ $$

Question Number 106447    Answers: 1   Comments: 0

lim_(x→0) ((2x + tan 4x)/(√(1 − cos 4x cos 6x))) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\:+\:\mathrm{tan}\:\mathrm{4}{x}}{\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{6}{x}}}\:=\:? \\ $$

Question Number 100916    Answers: 1   Comments: 0

solve the eqution : ((2 + x)/(12 + 4x)) = ((1/2))^x .,x =2

$${solve}\:{the}\:{eqution}\:: \\ $$$$\frac{\mathrm{2}\:+\:{x}}{\mathrm{12}\:+\:\mathrm{4}{x}}\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{x}} \:\:\:\:\:\:\:.,{x}\:=\mathrm{2}\: \\ $$

Question Number 100912    Answers: 0   Comments: 0

find the fourier series of the function { ((x −2≤x≤0)),((x+2 0≤x≤2)) :} help me sir ?

$${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:\begin{cases}{{x}\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}}\\{{x}+\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:\:\:\: \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Question Number 100904    Answers: 3   Comments: 3

lim_(n→∞) [(((n+1)(n+2)......3n)/n^(2n) )]^(1/n)

$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\left[\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)......\mathrm{3}{n}}{{n}^{\mathrm{2}{n}} }\right]^{\frac{\mathrm{1}}{{n}}} \\ $$

Question Number 100902    Answers: 0   Comments: 1

solve y′′−4y′+4y=0 with variation method

$$\mathrm{solve}\:\mathrm{y}''−\mathrm{4y}'+\mathrm{4y}=\mathrm{0}\: \\ $$$$\mathrm{with}\:\mathrm{variation}\:\mathrm{method} \\ $$

Question Number 100899    Answers: 1   Comments: 0

find the fourier series of the function f(x)= { ((x −2≤x≤0 )),((4 0≤x≤2)) :} ? help me sir ?

$${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:{f}\left({x}\right)=\begin{cases}{{x}\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}\:\:\:}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$

Question Number 102172    Answers: 0   Comments: 1

Question Number 100891    Answers: 1   Comments: 0

u_(tt) = u_(xx) − 6x ; 0≤x<π , t>0 u_((0,t)) = 0 ; u_((π,t)) = π^3 +3π u_((x,0)) = x^3 +3x+3sin x u_t (x,0) = 0

$$\mathrm{u}_{\mathrm{tt}} \:=\:\mathrm{u}_{\mathrm{xx}} \:−\:\mathrm{6x}\:;\:\mathrm{0}\leqslant\mathrm{x}<\pi\:,\:\mathrm{t}>\mathrm{0} \\ $$$$\mathrm{u}_{\left(\mathrm{0},\mathrm{t}\right)} \:=\:\mathrm{0}\:;\:\mathrm{u}_{\left(\pi,\mathrm{t}\right)} \:=\:\pi^{\mathrm{3}} +\mathrm{3}\pi \\ $$$$\mathrm{u}_{\left(\mathrm{x},\mathrm{0}\right)} \:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{3x}+\mathrm{3sin}\:\mathrm{x} \\ $$$$\mathrm{u}_{\mathrm{t}} \left(\mathrm{x},\mathrm{0}\right)\:=\:\mathrm{0}\: \\ $$

Question Number 100887    Answers: 0   Comments: 0

Question Number 100888    Answers: 0   Comments: 0

Find all pairs (k,n) of positive integer for which 7^k −3^n divides k^4 +n^2 .

$${Find}\:{all}\:{pairs}\:\left({k},{n}\right)\:{of}\:{positive}\: \\ $$$${integer}\:{for}\:{which}\:\mathrm{7}^{{k}} −\mathrm{3}^{{n}} \:{divides} \\ $$$${k}^{\mathrm{4}} +{n}^{\mathrm{2}} \:. \\ $$

Question Number 100879    Answers: 2   Comments: 1

Solve the equation 2^x +8x=4

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{2}^{\mathrm{x}} +\mathrm{8x}=\mathrm{4} \\ $$

Question Number 100873    Answers: 0   Comments: 4

[(1,5,3),(4,6,7),(9,2,8) ]+ [(9,5,7),(6,4,3),(1,8,2) ]

$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\\{\mathrm{4}}&{\mathrm{6}}&{\mathrm{7}}\\{\mathrm{9}}&{\mathrm{2}}&{\mathrm{8}}\end{bmatrix}+\begin{bmatrix}{\mathrm{9}}&{\mathrm{5}}&{\mathrm{7}}\\{\mathrm{6}}&{\mathrm{4}}&{\mathrm{3}}\\{\mathrm{1}}&{\mathrm{8}}&{\mathrm{2}}\end{bmatrix} \\ $$

Question Number 100870    Answers: 0   Comments: 1

Question Number 100866    Answers: 1   Comments: 0

solve 3x^2 y^(′′) −2xy^′ +4y =0

$$\mathrm{solve}\:\mathrm{3x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{2xy}^{'} \:+\mathrm{4y}\:=\mathrm{0} \\ $$

Question Number 100948    Answers: 0   Comments: 1

Question Number 100843    Answers: 0   Comments: 0

Σ_(k=1) ^n ((ln(k))/(k!)) = ?

$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}\right)}{\boldsymbol{{k}}!}\:=\:? \\ $$

Question Number 100850    Answers: 2   Comments: 1

∫_0 ^(102) (x−1)(x−2).....(x−100)×((1/(x−1))+(1/(x−2))+...+(1/(x−100)))dx

$$\int_{\mathrm{0}} ^{\mathrm{102}} \left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right).....\left({x}−\mathrm{100}\right)×\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\mathrm{1}}{{x}−\mathrm{2}}+...+\frac{\mathrm{1}}{{x}−\mathrm{100}}\right){dx} \\ $$

Question Number 100832    Answers: 1   Comments: 3

log(√(125)) ∙ln10 ∙log_5 e=? help me

$$\mathrm{log}\sqrt{\mathrm{125}}\:\centerdot\mathrm{ln10}\:\centerdot\mathrm{log}_{\mathrm{5}} \mathrm{e}=? \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$

Question Number 100829    Answers: 0   Comments: 0

hello every one prove that ∫_0 ^(π/2) cos^u (x) cos(ax) arctan(b cos(x)) dx =((2^(−u−2) .π.b.Γ(u+2))/(Γ(((u−a+3)/2))Γ(((u+a+3)/2)))).x_4 F_3 ((((1/2),1+(u/2),((u+3)/2),−b^2 )),(((3/2),((u−a+3)/2),((u+a+3)/2))) ) Re u>−1 ,∣arg(1+b^2 ) ∣<π

$${hello}\:{every}\:{one}\: \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{{u}} \left({x}\right)\:{cos}\left({ax}\right)\:{arctan}\left({b}\:{cos}\left({x}\right)\right)\:{dx} \\ $$$$=\frac{\mathrm{2}^{−{u}−\mathrm{2}} .\pi.{b}.\Gamma\left({u}+\mathrm{2}\right)}{\Gamma\left(\frac{{u}−{a}+\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{{u}+{a}+\mathrm{3}}{\mathrm{2}}\right)}.{x}_{\mathrm{4}} {F}_{\mathrm{3}} \begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}+\frac{{u}}{\mathrm{2}},\frac{{u}+\mathrm{3}}{\mathrm{2}},−{b}^{\mathrm{2}} }\\{\frac{\mathrm{3}}{\mathrm{2}},\frac{{u}−{a}+\mathrm{3}}{\mathrm{2}},\frac{{u}+{a}+\mathrm{3}}{\mathrm{2}}}\end{pmatrix} \\ $$$$ \\ $$$$ \\ $$$${Re}\:{u}>−\mathrm{1}\:,\mid{arg}\left(\mathrm{1}+{b}^{\mathrm{2}} \right)\:\mid<\pi \\ $$$$ \\ $$

Question Number 100817    Answers: 2   Comments: 1

Question Number 100815    Answers: 1   Comments: 0

  Pg 1156      Pg 1157      Pg 1158      Pg 1159      Pg 1160      Pg 1161      Pg 1162      Pg 1163      Pg 1164      Pg 1165   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com