Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1161

Question Number 100696    Answers: 0   Comments: 4

1. 25≠66 = True or False? 2. 44=44 =True or false? 3. 39>169=True or False? 4. 15<61 = True or false? Make sure you have to answer correctly

$$\mathrm{1}.\:\:\:\:\mathrm{25}\neq\mathrm{66}\:=\:\mathrm{True}\:\mathrm{or}\:\mathrm{False}? \\ $$$$\mathrm{2}.\:\:\:\:\mathrm{44}=\mathrm{44}\:=\mathrm{True}\:\mathrm{or}\:\mathrm{false}? \\ $$$$\mathrm{3}.\:\:\:\:\:\mathrm{39}>\mathrm{169}=\mathrm{True}\:\mathrm{or}\:\mathrm{False}? \\ $$$$\mathrm{4}.\:\:\:\:\mathrm{15}<\mathrm{61}\:=\:\mathrm{True}\:\mathrm{or}\:\mathrm{false}? \\ $$$$\: \\ $$$$\mathrm{Make}\:\mathrm{sure}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{answer}\:\mathrm{correctly} \\ $$

Question Number 100695    Answers: 2   Comments: 3

Question Number 100908    Answers: 2   Comments: 2

what the value of angle formed by a long needle and short needle on analog clock that shows at 15.50 ? (A) 175^o (B) 174^o (C) 173^o (D) 172^o (E) 170^o

$$\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{angle} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{a}\:\mathrm{long}\:\mathrm{needle}\:\mathrm{and}\: \\ $$$$\mathrm{short}\:\mathrm{needle}\:\mathrm{on}\:\mathrm{analog}\:\mathrm{clock}\: \\ $$$$\mathrm{that}\:\mathrm{shows}\:\mathrm{at}\:\mathrm{15}.\mathrm{50}\:? \\ $$$$\left(\mathrm{A}\right)\:\mathrm{175}^{\mathrm{o}} \:\:\:\left(\mathrm{B}\right)\:\mathrm{174}^{\mathrm{o}} \:\:\:\left(\mathrm{C}\right)\:\mathrm{173}^{\mathrm{o}} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{172}^{\mathrm{o}} \:\:\:\:\left(\mathrm{E}\right)\:\mathrm{170}^{\mathrm{o}} \\ $$

Question Number 100690    Answers: 0   Comments: 1

(√(((15929)/(30.25569))+15^5 ))+(√(30.509))

$$\sqrt{\frac{\mathrm{15929}}{\mathrm{30}.\mathrm{25569}}+\mathrm{15}^{\mathrm{5}} }+\sqrt{\mathrm{30}.\mathrm{509}} \\ $$

Question Number 100684    Answers: 1   Comments: 0

(x^2 +xy) (dy/dx) = xy + y^2

$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xy}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{xy}\:+\:\mathrm{y}^{\mathrm{2}} \\ $$

Question Number 100677    Answers: 0   Comments: 0

for m,n positive integers m > n prove that lcd(m,n) + lcd(m+1,n+1) > ((2mn)/(√(m−n)))

$$\mathrm{for}\:\mathrm{m},\mathrm{n}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{m}\:>\:\mathrm{n}\: \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{lcd}\left(\mathrm{m},\mathrm{n}\right)\:+\:\mathrm{lcd}\left(\mathrm{m}+\mathrm{1},\mathrm{n}+\mathrm{1}\right)\:>\:\frac{\mathrm{2mn}}{\sqrt{\mathrm{m}−\mathrm{n}}} \\ $$

Question Number 100675    Answers: 1   Comments: 1

If log _(2x) ((1/(18))) = log _(18) ((1/(3y))) = log _(3y) ((1/(2x))) find 3x−2y

$$\mathrm{If}\:\mathrm{log}\:_{\mathrm{2x}} \left(\frac{\mathrm{1}}{\mathrm{18}}\right)\:=\:\mathrm{log}\:_{\mathrm{18}} \left(\frac{\mathrm{1}}{\mathrm{3y}}\right)\:=\:\mathrm{log}\:_{\mathrm{3y}} \left(\frac{\mathrm{1}}{\mathrm{2x}}\right) \\ $$$$\mathrm{find}\:\mathrm{3x}−\mathrm{2y}\: \\ $$

Question Number 100667    Answers: 0   Comments: 5

[(1,2,3),(4,5,6),(7,8,9) ]

$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}\\{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}\end{bmatrix} \\ $$

Question Number 100666    Answers: 2   Comments: 3

find solution set of inequality (log _2 x −2)^(3x−1) < (log _2 x−2)^(3−x)

$$\mathrm{find}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequality} \\ $$$$\left(\mathrm{log}\:_{\mathrm{2}} {x}\:−\mathrm{2}\right)^{\mathrm{3}{x}−\mathrm{1}} \:<\:\left(\mathrm{log}\:_{\mathrm{2}} {x}−\mathrm{2}\right)^{\mathrm{3}−{x}} \\ $$

Question Number 100660    Answers: 0   Comments: 1

∣x^2 −x∣ < 2+x . find solution set.

$$\mid{x}^{\mathrm{2}} −{x}\mid\:<\:\mathrm{2}+{x}\:.\:{find}\:{solution}\:{set}. \\ $$

Question Number 100657    Answers: 1   Comments: 3

∫ ((3x−1)/(x^2 +9)) dx

$$\int\:\:\frac{\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{9}}\:{dx} \\ $$

Question Number 100653    Answers: 1   Comments: 0

Question Number 100650    Answers: 1   Comments: 0

find all 2x2 matrices A such that A^3 −3A^2 = (((−2 −2)),((−2 −2)) )

$$\mathrm{find}\:\mathrm{all}\:\mathrm{2x2}\:\mathrm{matrices}\:\mathrm{A}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{A}^{\mathrm{3}} −\mathrm{3A}^{\mathrm{2}} \:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$

Question Number 100649    Answers: 0   Comments: 0

calculate Σ_(n=0) ^∞ (((−1)^n )/(3n+1)) and Σ_(n=0) ^∞ (((−1)^n )/(4n+1))

$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{3n}+\mathrm{1}}\:\mathrm{and}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{4n}+\mathrm{1}} \\ $$

Question Number 100644    Answers: 3   Comments: 1

Question Number 100640    Answers: 2   Comments: 0

let( U_n ) be a sequence definied by: { ((U_0 =1)),((U_(n+1) =((3U_n +2)/(U_n +2)))) :} show that 0<U_n <2

$${let}\left(\:\boldsymbol{{U}}_{{n}} \right)\:{be}\:{a}\:{sequence}\:{definied}\:{by}: \\ $$$$\begin{cases}{\boldsymbol{{U}}_{\mathrm{0}} =\mathrm{1}}\\{\boldsymbol{{U}}_{{n}+\mathrm{1}} =\frac{\mathrm{3}\boldsymbol{{U}}_{\boldsymbol{{n}}} +\mathrm{2}}{\boldsymbol{{U}}_{\boldsymbol{{n}}} +\mathrm{2}}}\end{cases} \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\mathrm{0}<\boldsymbol{{U}}_{\boldsymbol{{n}}} <\mathrm{2} \\ $$

Question Number 100629    Answers: 1   Comments: 1

Question Number 100624    Answers: 1   Comments: 3

Find the value of (√(2+(√(2+(√(2+(√2)))))))...∞ using cos function

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}...\infty\:\mathrm{using}\:\mathrm{cos}\:\mathrm{function} \\ $$

Question Number 100622    Answers: 0   Comments: 2

Question Number 100618    Answers: 1   Comments: 0

Σ_(k=1) ^(k=n) ((ln(k))/2^k ) =?

$$\:\:\:\:\:\:\:\:\:\:\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\sum}}\:\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}\right)}{\mathrm{2}^{\boldsymbol{{k}}} }\:=? \\ $$

Question Number 100614    Answers: 0   Comments: 0

Σ_(k=0) ^(k=n−1) ((ln(k!))/2^(k+1) ) =? Any help ?

$$\:\:\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}−\mathrm{1}} {\sum}}\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}!\right)}{\mathrm{2}^{\boldsymbol{{k}}+\mathrm{1}} }\:=?\:\:\:\: \\ $$$$\:\:\boldsymbol{\mathrm{A}{ny}}\:\boldsymbol{{help}}\:? \\ $$

Question Number 100613    Answers: 0   Comments: 0

Question Number 100606    Answers: 0   Comments: 0

∫e^(ix^(ix...∞) ) dx

$$\int{e}^{{ix}^{{ix}...\infty} } {dx} \\ $$

Question Number 100597    Answers: 2   Comments: 1

Question Number 100594    Answers: 2   Comments: 0

solve the differential equations 1- xcos (ln (x/y))dy−ydx=0 2- ydx+2xdy =2y((√x)/(cos^2 (y)))dy y(0)=π

$${solve}\:\:{the}\:{differential}\:\:{equations} \\ $$$$\mathrm{1}-\:\:{x}\mathrm{cos}\:\left(\mathrm{ln}\:\frac{{x}}{{y}}\right){dy}−{ydx}=\mathrm{0} \\ $$$$\mathrm{2}-\:\:{ydx}+\mathrm{2}{xdy}\:=\mathrm{2}{y}\frac{\sqrt{{x}}}{{cos}^{\mathrm{2}} \left({y}\right)}{dy}\:\:\:\:\:{y}\left(\mathrm{0}\right)=\pi \\ $$

Question Number 100590    Answers: 2   Comments: 0

∫_0 ^∞ (dx/((1+x^(18) )^2 ))

$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{18}} \right)^{\mathrm{2}} } \\ $$

  Pg 1156      Pg 1157      Pg 1158      Pg 1159      Pg 1160      Pg 1161      Pg 1162      Pg 1163      Pg 1164      Pg 1165   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com