Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1161

Question Number 101523    Answers: 0   Comments: 1

Dear Joint Users, please use “answer” instead of “comment” when answering a question. it′s impossible to find unanswered questions at the moment. it makes no sense to search for “unanswered questions” anymore. maybe we need a search function for “uncommented questions” soon. Thank you

$$\mathrm{Dear}\:\mathrm{Joint}\:\mathrm{Users}, \\ $$$$\mathrm{please}\:\mathrm{use}\:``\mathrm{answer}''\:\mathrm{instead}\:\mathrm{of}\:``\mathrm{comment}'' \\ $$$$\mathrm{when}\:\mathrm{answering}\:\mathrm{a}\:\mathrm{question}.\:\mathrm{it}'\mathrm{s}\:\mathrm{impossible} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{unanswered}\:\mathrm{questions}\:\mathrm{at}\:\mathrm{the}\:\mathrm{moment}. \\ $$$$\mathrm{it}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}\:\mathrm{to}\:\mathrm{search}\:\mathrm{for}\:``\mathrm{unanswered} \\ $$$$\mathrm{questions}''\:\mathrm{anymore}.\:\mathrm{maybe}\:\mathrm{we}\:\mathrm{need}\:\mathrm{a}\:\mathrm{search} \\ $$$$\mathrm{function}\:\mathrm{for}\:``\mathrm{uncommented}\:\mathrm{questions}''\:\mathrm{soon}. \\ $$$$\mathrm{Thank}\:\mathrm{you} \\ $$

Question Number 101514    Answers: 2   Comments: 4

Question Number 101510    Answers: 0   Comments: 1

What are all critical point for f(x,y) = 2x^2 −y^3 −2xy

$$\mathrm{What}\:\mathrm{are}\:\mathrm{all}\:\mathrm{critical}\:\mathrm{point} \\ $$$$\mathrm{for}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{2x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{3}} −\mathrm{2xy} \\ $$

Question Number 101500    Answers: 2   Comments: 1

let f(x)=cosx .cos(2x).cos(3x) 1)calculate f^((n)) (x) and f^((n)) (0) 2)developp f at integr serie 3. calculate ∫_0 ^(π/2) f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cosx}\:.\mathrm{cos}\left(\mathrm{2x}\right).\mathrm{cos}\left(\mathrm{3x}\right) \\ $$$$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\mathrm{3}.\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 101498    Answers: 1   Comments: 3

If 4^x = 5^y = 20^z . what is z in term of x and y. ★♠

$$\mathrm{If}\:\mathrm{4}^{\mathrm{x}} \:=\:\mathrm{5}^{\mathrm{y}} \:=\:\mathrm{20}^{\mathrm{z}} \:. \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{z}\:\mathrm{in}\:\mathrm{term}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}. \\ $$$$\bigstar\spadesuit \\ $$

Question Number 101493    Answers: 1   Comments: 0

∫(√(x.((x.((x.((x.((x.((x...))^(1/7) ))^(1/6) ))^(1/5) ))^(1/4) ))^(1/3) )) dx =

$$\int\sqrt{\mathrm{x}.\sqrt[{\mathrm{3}}]{\mathrm{x}.\sqrt[{\mathrm{4}}]{\mathrm{x}.\sqrt[{\mathrm{5}}]{\mathrm{x}.\sqrt[{\mathrm{6}}]{\mathrm{x}.\sqrt[{\mathrm{7}}]{\mathrm{x}...}}}}}}\:\mathrm{dx}\:=\: \\ $$$$ \\ $$

Question Number 101491    Answers: 0   Comments: 2

Question Number 101489    Answers: 1   Comments: 0

Question Number 101486    Answers: 0   Comments: 0

Question Number 101476    Answers: 1   Comments: 0

Question Number 101474    Answers: 1   Comments: 0

Question Number 101473    Answers: 1   Comments: 0

Question Number 101471    Answers: 0   Comments: 4

Question Number 101461    Answers: 1   Comments: 0

Question Number 101459    Answers: 0   Comments: 0

Question Number 101458    Answers: 0   Comments: 6

Question Number 101451    Answers: 2   Comments: 1

Question Number 101447    Answers: 0   Comments: 6

To sir Tinkutara: please sir can you help us with a development which allows our maths work which is saved to be converted directly to a portable document format(PDF)?

$$\mathrm{To}\:\mathrm{sir}\:\mathrm{Tinkutara}:\:\mathrm{please}\:\mathrm{sir}\:\mathrm{can}\:\mathrm{you}\:\mathrm{help}\:\mathrm{us} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{development}\:\mathrm{which}\:\mathrm{allows}\:\mathrm{our}\:\mathrm{maths}\:\mathrm{work} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{saved}\:\mathrm{to}\:\mathrm{be}\:\mathrm{converted}\:\mathrm{directly}\:\mathrm{to}\:\mathrm{a}\: \\ $$$$\mathrm{portable}\:\mathrm{document}\:\mathrm{format}\left(\mathrm{PDF}\right)?\: \\ $$

Question Number 101439    Answers: 0   Comments: 10

Question Number 101436    Answers: 1   Comments: 0

Question Number 101425    Answers: 3   Comments: 2

A student wrote three papers in mathematics examinations. Her marks for the two of papers were 77 and 72 respectively. To obtain grade A, an average of not less than 75 marks is required for the three papers. How many marks must she get in the third paper to get grade A?

$$\mathrm{A}\:\mathrm{student}\:\mathrm{wrote}\:\mathrm{three}\:\mathrm{papers}\:\mathrm{in}\:\mathrm{mathematics} \\ $$$$\mathrm{examinations}.\:\mathrm{Her}\:\mathrm{marks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{two}\:\mathrm{of} \\ $$$$\mathrm{papers}\:\mathrm{were}\:\mathrm{77}\:\mathrm{and}\:\mathrm{72}\:\mathrm{respectively}.\:\mathrm{To} \\ $$$$\mathrm{obtain}\:\mathrm{grade}\:\mathrm{A},\:\mathrm{an}\:\mathrm{average}\:\mathrm{of}\:\mathrm{not}\:\mathrm{less} \\ $$$$\mathrm{than}\:\mathrm{75}\:\mathrm{marks}\:\mathrm{is}\:\mathrm{required}\:\mathrm{for}\:\mathrm{the}\:\mathrm{three} \\ $$$$\mathrm{papers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{marks}\:\mathrm{must}\:\mathrm{she}\:\mathrm{get} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{third}\:\mathrm{paper}\:\mathrm{to}\:\mathrm{get}\:\mathrm{grade}\:\mathrm{A}? \\ $$

Question Number 101422    Answers: 0   Comments: 2

lim_(h→0 ) ((sin ((α+h)^2 )−sin (α^2 ))/(cos ((α+h)^2 sin (α+h)−cos (α^2 )sin (α))) =?

$$\underset{\mathrm{h}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \right)−\mathrm{sin}\:\left(\alpha^{\mathrm{2}} \right)}{\mathrm{cos}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \mathrm{sin}\:\left(\alpha+\mathrm{h}\right)−\mathrm{cos}\:\left(\alpha^{\mathrm{2}} \right)\mathrm{sin}\:\left(\alpha\right)\right.}\:=? \\ $$

Question Number 101419    Answers: 2   Comments: 0

y′′−4y′+3y = (e^x /(1+e^x ))

$$\mathrm{y}''−\mathrm{4y}'+\mathrm{3y}\:=\:\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{\mathrm{x}} } \\ $$

Question Number 101418    Answers: 0   Comments: 6

Find 2020 term from series (1/1),(2/1),(1/2),(3/1),(2/2),(1/3),(4/1),(3/2),(2/3),(1/4) ,(5/1),(4/2),... is ___ (A) ((2019)/(2020)) (B) ((61)/4) (C)((63)/1) (D) ((96)/4) (E) ((2020)/(2019))

$$\mathrm{Find}\:\mathrm{2020}\:\mathrm{term}\:\mathrm{from}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}},\frac{\mathrm{2}}{\mathrm{1}},\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{1}},\frac{\mathrm{2}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{3}},\frac{\mathrm{4}}{\mathrm{1}},\frac{\mathrm{3}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$,\frac{\mathrm{5}}{\mathrm{1}},\frac{\mathrm{4}}{\mathrm{2}},...\:\mathrm{is}\:\_\_\_ \\ $$$$\left(\mathrm{A}\right)\:\frac{\mathrm{2019}}{\mathrm{2020}}\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{61}}{\mathrm{4}}\:\:\:\:\:\left(\mathrm{C}\right)\frac{\mathrm{63}}{\mathrm{1}} \\ $$$$\left(\mathrm{D}\right)\:\frac{\mathrm{96}}{\mathrm{4}}\:\:\:\:\:\:\left(\mathrm{E}\right)\:\frac{\mathrm{2020}}{\mathrm{2019}} \\ $$

Question Number 101409    Answers: 0   Comments: 1

which is correct ∫((5x^4 +4x^5 )/((x^5 +x+1)^2 )) dx is equal to a) (x^5 /(x^5 +x+1)) b)−((x+1)/(x^5 +x+1))

$$\mathrm{which}\:\mathrm{is}\:\mathrm{correct} \\ $$$$\int\frac{\mathrm{5x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{5}} }{\left(\mathrm{x}^{\mathrm{5}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left.\mathrm{a}\left.\right)\:\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{x}^{\mathrm{5}} +\mathrm{x}+\mathrm{1}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}\right)−\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{5}} +\mathrm{x}+\mathrm{1}} \\ $$

Question Number 101393    Answers: 1   Comments: 0

  Pg 1156      Pg 1157      Pg 1158      Pg 1159      Pg 1160      Pg 1161      Pg 1162      Pg 1163      Pg 1164      Pg 1165   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com