Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1161

Question Number 101248    Answers: 0   Comments: 0

Π_(p∈P/(2..3)) ((1/p))^2 =? p is prime number Any help ?

$$\:\:\:\underset{\boldsymbol{{p}}\in\boldsymbol{{P}}/\left(\mathrm{2}..\mathrm{3}\right)} {\prod}\left(\frac{\mathrm{1}}{\boldsymbol{{p}}}\right)^{\mathrm{2}} =?\:\:\:\:\:\boldsymbol{{p}}\:{is}\:{prime}\:{number} \\ $$$${Any}\:{help}\:? \\ $$

Question Number 101247    Answers: 1   Comments: 0

Question Number 101243    Answers: 0   Comments: 3

Find the solution xa^(1/x) +(1/x)a^x =2a a∈{−1,0,1} and also find when a is not given

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\:\:\mathrm{xa}^{\frac{\mathrm{1}}{\mathrm{x}}} +\frac{\mathrm{1}}{\mathrm{x}}\mathrm{a}^{\mathrm{x}} =\mathrm{2a}\:\:\:\mathrm{a}\in\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\}\:\:\:{and}\:{also}\:{find}\:{when}\:{a}\:\:{is}\:{not}\:{given} \\ $$

Question Number 101307    Answers: 0   Comments: 5

Some comments with inapproriate language were deleted. Kindly refrain from posting abusive comments. Forum has been around for a long time without these occurrences. Every new user, please scroll through the previous posts and abide by the established conventions followed by everyone else.

$$\mathrm{Some}\:\mathrm{comments}\:\mathrm{with}\:\mathrm{inapproriate} \\ $$$$\mathrm{language}\:\mathrm{were}\:\mathrm{deleted}. \\ $$$$\mathrm{Kindly}\:\mathrm{refrain}\:\mathrm{from}\:\mathrm{posting}\:\mathrm{abusive} \\ $$$$\mathrm{comments}.\:\mathrm{Forum}\:\mathrm{has}\:\mathrm{been}\:\mathrm{around} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{long}\:\mathrm{time}\:\mathrm{without}\:\mathrm{these} \\ $$$$\mathrm{occurrences}. \\ $$$$\mathrm{Every}\:\mathrm{new}\:\mathrm{user},\:\mathrm{please}\:\mathrm{scroll}\:\mathrm{through} \\ $$$$\mathrm{the}\:\mathrm{previous}\:\mathrm{posts}\:\mathrm{and}\:\mathrm{abide}\:\mathrm{by}\:\mathrm{the}\: \\ $$$$\mathrm{established}\:\mathrm{conventions}\:\mathrm{followed}\:\mathrm{by}\: \\ $$$$\mathrm{everyone}\:\mathrm{else}. \\ $$

Question Number 101239    Answers: 1   Comments: 0

lim_(x→∞) (((1+(1/2)+(1/3)+......+(1/n))/(1+(1/3)+(1/5)......+(1/(2n+1)))))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+......+\frac{\mathrm{1}}{{n}}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}......+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}}\right) \\ $$

Question Number 101234    Answers: 0   Comments: 0

Show that the greatest integer function is Riemann integrable within all segments of R

$$\mathcal{S}\mathrm{how}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}\:\mathrm{is}\:\mathrm{Riemann} \\ $$$$\mathrm{integrable}\:\mathrm{within}\:\mathrm{all}\:\mathrm{segments}\:\mathrm{of}\:\mathbb{R} \\ $$

Question Number 101231    Answers: 1   Comments: 1

Question Number 101225    Answers: 0   Comments: 4

Question Number 101220    Answers: 1   Comments: 0

∫∫_D (√(x^2 +y^2 ))dxdy D= { (((x,y)∈R, x^2 +y^2 ≥2y, x^2 +y^2 ≤1)),((x≥0 , y≥0)) :}

$$\int\int_{\mathrm{D}} \sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy}\:\:\:\mathcal{D}=\begin{cases}{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \geqslant\mathrm{2y},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{1}}\\{\mathrm{x}\geqslant\mathrm{0}\:,\:\mathrm{y}\geqslant\mathrm{0}}\end{cases} \\ $$

Question Number 101303    Answers: 1   Comments: 1

i^i^(i.∞) =?

$${i}^{{i}^{{i}.\infty} } =? \\ $$

Question Number 101293    Answers: 1   Comments: 8

Question Number 101291    Answers: 1   Comments: 0

Question Number 101285    Answers: 0   Comments: 1

∫(((x^m −x^n ))/(√x))dx=?

$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)}{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$

Question Number 101278    Answers: 0   Comments: 2

Did I miss some updates? Do we get a prize or at least an award for the fastest answer? Or for the “best”, or for the most sophisticated answer? Or for using the largest font size and the brightest colour? Annoying developments...

$$\mathrm{Did}\:\mathrm{I}\:\mathrm{miss}\:\mathrm{some}\:\mathrm{updates}? \\ $$$$\mathrm{Do}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{prize}\:\mathrm{or}\:\mathrm{at}\:\mathrm{least}\:\mathrm{an}\:\mathrm{award}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{fastest}\:\mathrm{answer}?\:\mathrm{Or}\:\mathrm{for}\:\mathrm{the}\:``\mathrm{best}'',\:\mathrm{or}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{most}\:\mathrm{sophisticated}\:\mathrm{answer}?\:\mathrm{Or}\:\mathrm{for}\:\mathrm{using}\:\mathrm{the} \\ $$$$\mathrm{largest}\:\mathrm{font}\:\mathrm{size}\:\mathrm{and}\:\mathrm{the}\:\mathrm{brightest}\:\mathrm{colour}? \\ $$$$\mathrm{Annoying}\:\mathrm{developments}... \\ $$

Question Number 101277    Answers: 2   Comments: 0

∫_0 ^1 (((x−1) dx )/((x+1)ln (x)))

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\left({x}−\mathrm{1}\right)\:{dx}\:}{\left({x}+\mathrm{1}\right)\mathrm{ln}\:\left({x}\right)} \\ $$$$ \\ $$

Question Number 101156    Answers: 1   Comments: 0

Find the range of the function: h : x = 2 − x^2 sin(x), x ≥ 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}: \\ $$$$\:\:\:\:\:\mathrm{h}\::\:\mathrm{x}\:\:\:=\:\:\mathrm{2}\:\:−\:\:\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{x}\right),\:\:\:\:\:\:\mathrm{x}\:\:\geqslant\:\:\mathrm{0} \\ $$

Question Number 101212    Answers: 2   Comments: 1

∫e^x sin x dx = −e^x cos x + e^x sin x − ∫ e^x sin x dx

$$\int{e}^{{x}} \mathrm{sin}\:{x}\:{dx}\:=\:−{e}^{{x}} {cos}\:{x}\:+\:{e}^{{x}} \:{sin}\:{x}\:−\:\int\:{e}^{{x}} \:\mathrm{sin}\:\:{x}\:{dx} \\ $$

Question Number 101148    Answers: 0   Comments: 2

lim_(x→0) ((sin (ln (1+x))−ln(1+sin x))/(sin^4 ((x/2)))) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{ln}\:\left(\mathrm{1}+\mathrm{x}\right)\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{sin}\:^{\mathrm{4}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\:=?\: \\ $$

Question Number 101192    Answers: 1   Comments: 2

∫ (x/(1+sin x)) dx

$$\int\:\frac{{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx}\: \\ $$

Question Number 101185    Answers: 2   Comments: 0

In an arithmetic progression the sum of the third term and 8th term is 49 and the sum of the 5th and 9th term is 58.Find the first term and the common difference using simultaneous equations.

$${In}\:{an}\:{arithmetic}\:{progression}\:{the}\:{sum}\:{of}\:{the}\:{third}\:{term}\:{and}\:\mathrm{8}{th}\:{term}\:{is}\:\mathrm{49}\:{and}\:{the}\:{sum}\:{of}\:{the}\:\:\mathrm{5}{th}\:{and}\:\mathrm{9}{th}\:{term}\:{is}\:\mathrm{58}.{Find}\:{the}\:{first}\:{term}\:{and}\:{the}\:{common}\:{difference}\:{using}\:{simultaneous}\:{equations}. \\ $$

Question Number 101183    Answers: 1   Comments: 0

Question Number 101182    Answers: 1   Comments: 0

Consider a square − based pyramid with a height of 6x cm and a base length of (2−x)cm. Find maximum value of volume of pyramid.

$$\mathcal{C}\mathrm{onsider}\:\mathrm{a}\:\mathrm{square}\:−\:\mathrm{based} \\ $$$$\mathrm{pyramid}\:\mathrm{with}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{6}{x}\:\mathrm{cm} \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{base}\:\mathrm{length}\:\mathrm{of}\:\left(\mathrm{2}−{x}\right)\mathrm{cm}. \\ $$$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{pyramid}. \\ $$

Question Number 101178    Answers: 2   Comments: 0

∫ ((((√x)−x)^2 )/x^2 ) dx ?

$$\int\:\frac{\left(\sqrt{\mathrm{x}}−\mathrm{x}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$

Question Number 101172    Answers: 1   Comments: 0

Find the range of the function: y = 2 − x^2 sin(x), x ≥ 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}: \\ $$$$\:\:\:\:\:\:\mathrm{y}\:\:=\:\:\mathrm{2}\:\:−\:\:\mathrm{x}^{\mathrm{2}} \:\mathrm{sin}\left(\mathrm{x}\right),\:\:\:\:\:\:\mathrm{x}\:\geqslant\:\mathrm{0} \\ $$

Question Number 101159    Answers: 1   Comments: 0

given the complex number z such that z−4i=a+3zi. find the value of a if z is purwly imaginary

$${given}\:{the}\:{complex}\:{number}\:{z}\:{such}\:{that} \\ $$$${z}−\mathrm{4}{i}={a}+\mathrm{3}{zi}.\: \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\:{if}\:\:{z}\:{is}\:{purwly}\:{imaginary} \\ $$$$ \\ $$

Question Number 101121    Answers: 1   Comments: 0

Two dice are tossed simultaneously. Find the probability of any showing a number greater than five.

$$\mathrm{Two}\:\mathrm{dice}\:\mathrm{are}\:\mathrm{tossed}\:\mathrm{simultaneously}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{any}\:\mathrm{showing} \\ $$$$\mathrm{a}\:\mathrm{number}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{five}. \\ $$

  Pg 1156      Pg 1157      Pg 1158      Pg 1159      Pg 1160      Pg 1161      Pg 1162      Pg 1163      Pg 1164      Pg 1165   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com