Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1161
Question Number 100696 Answers: 0 Comments: 4
$$\mathrm{1}.\:\:\:\:\mathrm{25}\neq\mathrm{66}\:=\:\mathrm{True}\:\mathrm{or}\:\mathrm{False}? \\ $$$$\mathrm{2}.\:\:\:\:\mathrm{44}=\mathrm{44}\:=\mathrm{True}\:\mathrm{or}\:\mathrm{false}? \\ $$$$\mathrm{3}.\:\:\:\:\:\mathrm{39}>\mathrm{169}=\mathrm{True}\:\mathrm{or}\:\mathrm{False}? \\ $$$$\mathrm{4}.\:\:\:\:\mathrm{15}<\mathrm{61}\:=\:\mathrm{True}\:\mathrm{or}\:\mathrm{false}? \\ $$$$\: \\ $$$$\mathrm{Make}\:\mathrm{sure}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{answer}\:\mathrm{correctly} \\ $$
Question Number 100695 Answers: 2 Comments: 3
Question Number 100908 Answers: 2 Comments: 2
$$\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{angle} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{a}\:\mathrm{long}\:\mathrm{needle}\:\mathrm{and}\: \\ $$$$\mathrm{short}\:\mathrm{needle}\:\mathrm{on}\:\mathrm{analog}\:\mathrm{clock}\: \\ $$$$\mathrm{that}\:\mathrm{shows}\:\mathrm{at}\:\mathrm{15}.\mathrm{50}\:? \\ $$$$\left(\mathrm{A}\right)\:\mathrm{175}^{\mathrm{o}} \:\:\:\left(\mathrm{B}\right)\:\mathrm{174}^{\mathrm{o}} \:\:\:\left(\mathrm{C}\right)\:\mathrm{173}^{\mathrm{o}} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{172}^{\mathrm{o}} \:\:\:\:\left(\mathrm{E}\right)\:\mathrm{170}^{\mathrm{o}} \\ $$
Question Number 100690 Answers: 0 Comments: 1
$$\sqrt{\frac{\mathrm{15929}}{\mathrm{30}.\mathrm{25569}}+\mathrm{15}^{\mathrm{5}} }+\sqrt{\mathrm{30}.\mathrm{509}} \\ $$
Question Number 100684 Answers: 1 Comments: 0
$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xy}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{xy}\:+\:\mathrm{y}^{\mathrm{2}} \\ $$
Question Number 100677 Answers: 0 Comments: 0
$$\mathrm{for}\:\mathrm{m},\mathrm{n}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{m}\:>\:\mathrm{n}\: \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{lcd}\left(\mathrm{m},\mathrm{n}\right)\:+\:\mathrm{lcd}\left(\mathrm{m}+\mathrm{1},\mathrm{n}+\mathrm{1}\right)\:>\:\frac{\mathrm{2mn}}{\sqrt{\mathrm{m}−\mathrm{n}}} \\ $$
Question Number 100675 Answers: 1 Comments: 1
$$\mathrm{If}\:\mathrm{log}\:_{\mathrm{2x}} \left(\frac{\mathrm{1}}{\mathrm{18}}\right)\:=\:\mathrm{log}\:_{\mathrm{18}} \left(\frac{\mathrm{1}}{\mathrm{3y}}\right)\:=\:\mathrm{log}\:_{\mathrm{3y}} \left(\frac{\mathrm{1}}{\mathrm{2x}}\right) \\ $$$$\mathrm{find}\:\mathrm{3x}−\mathrm{2y}\: \\ $$
Question Number 100667 Answers: 0 Comments: 5
$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{4}}&{\mathrm{5}}&{\mathrm{6}}\\{\mathrm{7}}&{\mathrm{8}}&{\mathrm{9}}\end{bmatrix} \\ $$
Question Number 100666 Answers: 2 Comments: 3
$$\mathrm{find}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequality} \\ $$$$\left(\mathrm{log}\:_{\mathrm{2}} {x}\:−\mathrm{2}\right)^{\mathrm{3}{x}−\mathrm{1}} \:<\:\left(\mathrm{log}\:_{\mathrm{2}} {x}−\mathrm{2}\right)^{\mathrm{3}−{x}} \\ $$
Question Number 100660 Answers: 0 Comments: 1
$$\mid{x}^{\mathrm{2}} −{x}\mid\:<\:\mathrm{2}+{x}\:.\:{find}\:{solution}\:{set}. \\ $$
Question Number 100657 Answers: 1 Comments: 3
$$\int\:\:\frac{\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{9}}\:{dx} \\ $$
Question Number 100653 Answers: 1 Comments: 0
Question Number 100650 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{all}\:\mathrm{2x2}\:\mathrm{matrices}\:\mathrm{A}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{A}^{\mathrm{3}} −\mathrm{3A}^{\mathrm{2}} \:=\:\begin{pmatrix}{−\mathrm{2}\:\:\:\:\:−\mathrm{2}}\\{−\mathrm{2}\:\:\:\:\:\:−\mathrm{2}}\end{pmatrix} \\ $$
Question Number 100649 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{3n}+\mathrm{1}}\:\mathrm{and}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{4n}+\mathrm{1}} \\ $$
Question Number 100644 Answers: 3 Comments: 1
Question Number 100640 Answers: 2 Comments: 0
$${let}\left(\:\boldsymbol{{U}}_{{n}} \right)\:{be}\:{a}\:{sequence}\:{definied}\:{by}: \\ $$$$\begin{cases}{\boldsymbol{{U}}_{\mathrm{0}} =\mathrm{1}}\\{\boldsymbol{{U}}_{{n}+\mathrm{1}} =\frac{\mathrm{3}\boldsymbol{{U}}_{\boldsymbol{{n}}} +\mathrm{2}}{\boldsymbol{{U}}_{\boldsymbol{{n}}} +\mathrm{2}}}\end{cases} \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\mathrm{0}<\boldsymbol{{U}}_{\boldsymbol{{n}}} <\mathrm{2} \\ $$
Question Number 100629 Answers: 1 Comments: 1
Question Number 100624 Answers: 1 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}...\infty\:\mathrm{using}\:\mathrm{cos}\:\mathrm{function} \\ $$
Question Number 100622 Answers: 0 Comments: 2
Question Number 100618 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\sum}}\:\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}\right)}{\mathrm{2}^{\boldsymbol{{k}}} }\:=? \\ $$
Question Number 100614 Answers: 0 Comments: 0
$$\:\:\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}−\mathrm{1}} {\sum}}\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}!\right)}{\mathrm{2}^{\boldsymbol{{k}}+\mathrm{1}} }\:=?\:\:\:\: \\ $$$$\:\:\boldsymbol{\mathrm{A}{ny}}\:\boldsymbol{{help}}\:? \\ $$
Question Number 100613 Answers: 0 Comments: 0
Question Number 100606 Answers: 0 Comments: 0
$$\int{e}^{{ix}^{{ix}...\infty} } {dx} \\ $$
Question Number 100597 Answers: 2 Comments: 1
Question Number 100594 Answers: 2 Comments: 0
$${solve}\:\:{the}\:{differential}\:\:{equations} \\ $$$$\mathrm{1}-\:\:{x}\mathrm{cos}\:\left(\mathrm{ln}\:\frac{{x}}{{y}}\right){dy}−{ydx}=\mathrm{0} \\ $$$$\mathrm{2}-\:\:{ydx}+\mathrm{2}{xdy}\:=\mathrm{2}{y}\frac{\sqrt{{x}}}{{cos}^{\mathrm{2}} \left({y}\right)}{dy}\:\:\:\:\:{y}\left(\mathrm{0}\right)=\pi \\ $$
Question Number 100590 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{18}} \right)^{\mathrm{2}} } \\ $$
Pg 1156 Pg 1157 Pg 1158 Pg 1159 Pg 1160 Pg 1161 Pg 1162 Pg 1163 Pg 1164 Pg 1165
Terms of Service
Privacy Policy
Contact: info@tinkutara.com