Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1156

Question Number 101378    Answers: 2   Comments: 1

∫_(1/e) ^(tanx) (t/(1+t^2 ))dt + ∫_(1/e) ^(cotx) (1/(t(1+t^2 )))dt

$$\int_{\frac{\mathrm{1}}{{e}}} ^{{tanx}} \frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:+\:\int_{\frac{\mathrm{1}}{{e}}} ^{{cotx}} \frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$

Question Number 101375    Answers: 1   Comments: 4

Question Number 101373    Answers: 0   Comments: 1

lim_(n→∞ ) Σ_(r=1) ^(4n) ((√n)/((√r)(3(√r)+4(√n))^2 ))

$$\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}{n}} {\sum}}\frac{\sqrt{{n}}}{\sqrt{{r}}\left(\mathrm{3}\sqrt{{r}}+\mathrm{4}\sqrt{{n}}\right)^{\mathrm{2}} } \\ $$

Question Number 101366    Answers: 1   Comments: 2

lim_(x→0) ((x^3 −sin^3 x)/x^5 ) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{sin}\:^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} }\:=? \\ $$

Question Number 101363    Answers: 1   Comments: 0

The solution set of inequality (((√((3x−7)^2 ))−2)/(x−3)) ≤ ((3−(√x^2 ))/(x−3)) is __ (A) (−∞, (1/2)] (D) [(1/2), ∞) (B) [(1/2),1 ] (E) (−∞,(2/3)] (C) (−∞,1 ]

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequality} \\ $$$$\frac{\sqrt{\left(\mathrm{3x}−\mathrm{7}\right)^{\mathrm{2}} }−\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\sqrt{\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}−\mathrm{3}}\:\mathrm{is}\:\_\_ \\ $$$$\left(\mathrm{A}\right)\:\left(−\infty,\:\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\left[\frac{\mathrm{1}}{\mathrm{2}},\:\infty\right) \\ $$$$\left(\mathrm{B}\right)\:\left[\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}\:\right]\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:\left(−\infty,\frac{\mathrm{2}}{\mathrm{3}}\right] \\ $$$$\left(\mathrm{C}\right)\:\left(−\infty,\mathrm{1}\:\right]\: \\ $$

Question Number 101362    Answers: 0   Comments: 1

Question Number 101360    Answers: 0   Comments: 0

xy′=y(ylnx+1)

$${xy}'={y}\left({ylnx}+\mathrm{1}\right) \\ $$

Question Number 101350    Answers: 1   Comments: 0

Question Number 101345    Answers: 0   Comments: 3

(1)∫ ((sec^4 x tan x)/(sec^4 x+4)) dx= (2) ∫x^(2x) (2lnx +2) dx = (3) ∫_0 ^1 (√(1−x^2 )) dx =

$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:\mathrm{tan}\:{x}}{\mathrm{sec}\:^{\mathrm{4}} {x}+\mathrm{4}}\:{dx}= \\ $$$$\left(\mathrm{2}\right)\:\int{x}^{\mathrm{2}{x}} \left(\mathrm{2ln}{x}\:+\mathrm{2}\right)\:{dx}\:= \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:=\: \\ $$

Question Number 101342    Answers: 1   Comments: 0

find U_n =∫_0 ^1 ((x^(2n) −1)/(lnx))dx with n integr natural and n≥2 find nature of the serie Σ U_n

$$\mathrm{find}\:\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}} −\mathrm{1}}{\mathrm{lnx}}\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{2} \\ $$$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$

Question Number 101402    Answers: 0   Comments: 3

I desire the developmenter of this apps improve adding some other functions like as:choose whole text by tap in text or choose some line at one time has many colours more

$$\mathrm{I}\:\mathrm{desire}\:\mathrm{the}\:\mathrm{developmenter}\:\mathrm{of}\:\mathrm{this}\:\mathrm{apps} \\ $$$$\mathrm{improve}\:\mathrm{adding}\:\mathrm{some}\:\mathrm{other}\:\mathrm{functions} \\ $$$$\mathrm{like}\:\mathrm{as}:\mathrm{choose}\:\mathrm{whole}\:\mathrm{text}\:\mathrm{by}\:\mathrm{tap}\:\mathrm{in} \\ $$$$\mathrm{text}\:\mathrm{or}\:\mathrm{choose}\:\mathrm{some}\:\mathrm{line}\:\mathrm{at}\:\mathrm{one}\:\mathrm{time} \\ $$$$\mathrm{has}\:\mathrm{many}\:\mathrm{colours}\:\mathrm{more} \\ $$

Question Number 101330    Answers: 0   Comments: 5

Evaluate. ∫_(−π) ^π x^9 cos x dx

$${Evaluate}. \\ $$$$\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx} \\ $$

Question Number 101329    Answers: 1   Comments: 0

Question Number 101328    Answers: 0   Comments: 1

this i a beautifull old question in the forum by sir.Ali Esam i Reposted it trying to find any idea to solve I=∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x))))dx i solved it numerical the value is 2.03383

$${this}\:{i}\:{a}\:{beautifull}\:{old}\:{question}\:{in}\:{the}\:{forum} \\ $$$${by}\:{sir}.{Ali}\:{Esam}\:{i}\:{Reposted}\:{it}\:{trying}\:{to} \\ $$$${find}\:{any}\:{idea}\:{to}\:{solve} \\ $$$$ \\ $$$${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\frac{{sin}\left({x}\right)}{{sinh}^{−\mathrm{1}} \left({x}\right)}\right)\left(\frac{{sin}^{−\mathrm{1}} \left({x}\right)}{{sinh}\left({x}\right)}\right){dx} \\ $$$$ \\ $$$${i}\:{solved}\:{it}\:{numerical}\: \\ $$$${the}\:{value}\:{is}\:\mathrm{2}.\mathrm{03383} \\ $$

Question Number 101319    Answers: 1   Comments: 4

find the area bounded the parabola y=4x^2 and y=8−4x^2 ? by using intigral? help me

$${find}\:{the}\:{area}\:{bounded}\:{the}\:{parabola}\: \\ $$$${y}=\mathrm{4}{x}^{\mathrm{2}} \:\:\:{and}\:\:{y}=\mathrm{8}−\mathrm{4}{x}^{\mathrm{2}} \:\:?\:\:{by}\:{using}\:{intigral}? \\ $$$${help}\:{me} \\ $$

Question Number 101273    Answers: 0   Comments: 0

caoculate lim_(x→0) ((sh(sin(2x))−sin(sh(2x)))/x^3 )

$$\mathrm{caoculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{sh}\left(\mathrm{sin}\left(\mathrm{2x}\right)\right)−\mathrm{sin}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 101272    Answers: 1   Comments: 2

∫(√(sec x)) dx

$$\int\sqrt{\mathrm{sec}\:{x}}\:{dx}\: \\ $$

Question Number 101271    Answers: 0   Comments: 2

find ∫ ((xdx)/((√(x^2 +x+1))+(√(x^2 −x+1))))

$$\mathrm{find}\:\int\:\:\:\frac{\mathrm{xdx}}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}} \\ $$

Question Number 101270    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^2 (x+2)^2 (x+3)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 101269    Answers: 1   Comments: 0

calculate ∫_4 ^(+∞) (dx/((x−2)^5 (x+3)^7 ))

$$\mathrm{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{7}} } \\ $$

Question Number 101268    Answers: 1   Comments: 0

calculate ∫_(−∞) ^∞ ((cos(arctan(2x+1)))/(x^2 +2x+2))dx

$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{arctan}\left(\mathrm{2x}+\mathrm{1}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx} \\ $$

Question Number 101266    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^3 (x+2)^4 ))

$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$

Question Number 101286    Answers: 0   Comments: 3

∫(((x^m −x^n )^2 )/(√x))dx=?

$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)^{\mathrm{2}} }{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$

Question Number 101258    Answers: 2   Comments: 2

minimum value f(x,y)=x^2 +y^2 with constrain g(x,y)= x^2 y−16

$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{with}\:\mathrm{constrain}\:\mathrm{g}\left(\mathrm{x},\mathrm{y}\right)=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{16} \\ $$

Question Number 101252    Answers: 0   Comments: 1

(√(1+2(√(1+4(√(1+5(√(1+6(√(1+7(√(1+8..))))))))))))∞=?

$$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{\mathrm{1}+\mathrm{6}\sqrt{\mathrm{1}+\mathrm{7}\sqrt{\mathrm{1}+\mathrm{8}..}}}}}}\infty=? \\ $$

Question Number 101250    Answers: 0   Comments: 0

  Pg 1151      Pg 1152      Pg 1153      Pg 1154      Pg 1155      Pg 1156      Pg 1157      Pg 1158      Pg 1159      Pg 1160   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com