Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1156

Question Number 101436    Answers: 1   Comments: 0

Question Number 101425    Answers: 3   Comments: 2

A student wrote three papers in mathematics examinations. Her marks for the two of papers were 77 and 72 respectively. To obtain grade A, an average of not less than 75 marks is required for the three papers. How many marks must she get in the third paper to get grade A?

$$\mathrm{A}\:\mathrm{student}\:\mathrm{wrote}\:\mathrm{three}\:\mathrm{papers}\:\mathrm{in}\:\mathrm{mathematics} \\ $$$$\mathrm{examinations}.\:\mathrm{Her}\:\mathrm{marks}\:\mathrm{for}\:\mathrm{the}\:\mathrm{two}\:\mathrm{of} \\ $$$$\mathrm{papers}\:\mathrm{were}\:\mathrm{77}\:\mathrm{and}\:\mathrm{72}\:\mathrm{respectively}.\:\mathrm{To} \\ $$$$\mathrm{obtain}\:\mathrm{grade}\:\mathrm{A},\:\mathrm{an}\:\mathrm{average}\:\mathrm{of}\:\mathrm{not}\:\mathrm{less} \\ $$$$\mathrm{than}\:\mathrm{75}\:\mathrm{marks}\:\mathrm{is}\:\mathrm{required}\:\mathrm{for}\:\mathrm{the}\:\mathrm{three} \\ $$$$\mathrm{papers}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{marks}\:\mathrm{must}\:\mathrm{she}\:\mathrm{get} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{third}\:\mathrm{paper}\:\mathrm{to}\:\mathrm{get}\:\mathrm{grade}\:\mathrm{A}? \\ $$

Question Number 101422    Answers: 0   Comments: 2

lim_(h→0 ) ((sin ((α+h)^2 )−sin (α^2 ))/(cos ((α+h)^2 sin (α+h)−cos (α^2 )sin (α))) =?

$$\underset{\mathrm{h}\rightarrow\mathrm{0}\:} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \right)−\mathrm{sin}\:\left(\alpha^{\mathrm{2}} \right)}{\mathrm{cos}\:\left(\left(\alpha+\mathrm{h}\right)^{\mathrm{2}} \mathrm{sin}\:\left(\alpha+\mathrm{h}\right)−\mathrm{cos}\:\left(\alpha^{\mathrm{2}} \right)\mathrm{sin}\:\left(\alpha\right)\right.}\:=? \\ $$

Question Number 101419    Answers: 2   Comments: 0

y′′−4y′+3y = (e^x /(1+e^x ))

$$\mathrm{y}''−\mathrm{4y}'+\mathrm{3y}\:=\:\frac{\mathrm{e}^{\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{\mathrm{x}} } \\ $$

Question Number 101418    Answers: 0   Comments: 6

Find 2020 term from series (1/1),(2/1),(1/2),(3/1),(2/2),(1/3),(4/1),(3/2),(2/3),(1/4) ,(5/1),(4/2),... is ___ (A) ((2019)/(2020)) (B) ((61)/4) (C)((63)/1) (D) ((96)/4) (E) ((2020)/(2019))

$$\mathrm{Find}\:\mathrm{2020}\:\mathrm{term}\:\mathrm{from}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}},\frac{\mathrm{2}}{\mathrm{1}},\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{1}},\frac{\mathrm{2}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{3}},\frac{\mathrm{4}}{\mathrm{1}},\frac{\mathrm{3}}{\mathrm{2}},\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$,\frac{\mathrm{5}}{\mathrm{1}},\frac{\mathrm{4}}{\mathrm{2}},...\:\mathrm{is}\:\_\_\_ \\ $$$$\left(\mathrm{A}\right)\:\frac{\mathrm{2019}}{\mathrm{2020}}\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{61}}{\mathrm{4}}\:\:\:\:\:\left(\mathrm{C}\right)\frac{\mathrm{63}}{\mathrm{1}} \\ $$$$\left(\mathrm{D}\right)\:\frac{\mathrm{96}}{\mathrm{4}}\:\:\:\:\:\:\left(\mathrm{E}\right)\:\frac{\mathrm{2020}}{\mathrm{2019}} \\ $$

Question Number 101409    Answers: 0   Comments: 1

which is correct ∫((5x^4 +4x^5 )/((x^5 +x+1)^2 )) dx is equal to a) (x^5 /(x^5 +x+1)) b)−((x+1)/(x^5 +x+1))

$$\mathrm{which}\:\mathrm{is}\:\mathrm{correct} \\ $$$$\int\frac{\mathrm{5x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{5}} }{\left(\mathrm{x}^{\mathrm{5}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left.\mathrm{a}\left.\right)\:\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{x}^{\mathrm{5}} +\mathrm{x}+\mathrm{1}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}\right)−\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{5}} +\mathrm{x}+\mathrm{1}} \\ $$

Question Number 101393    Answers: 1   Comments: 0

Question Number 101400    Answers: 0   Comments: 4

App Updates: Show and Hide Keyboard Request by teachers using this app along with screen sharing apps for online classes Set Home Screen to Forum Requested by Mr W

$$\mathrm{App}\:\mathrm{Updates}: \\ $$$$\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{Hide}}\:\boldsymbol{\mathrm{Keyboard}} \\ $$$$\mathrm{Request}\:\mathrm{by}\:\mathrm{teachers}\:\mathrm{using}\:\mathrm{this} \\ $$$$\mathrm{app}\:\mathrm{along}\:\mathrm{with}\:\mathrm{screen}\:\mathrm{sharing}\:\mathrm{apps} \\ $$$$\mathrm{for}\:\mathrm{online}\:\mathrm{classes} \\ $$$$\boldsymbol{\mathrm{Set}}\:\boldsymbol{\mathrm{Home}}\:\boldsymbol{\mathrm{Screen}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{Forum}} \\ $$$$\mathrm{Requested}\:\mathrm{by}\:\mathrm{Mr}\:\mathrm{W} \\ $$

Question Number 101382    Answers: 2   Comments: 0

Question Number 105239    Answers: 1   Comments: 0

Σ_(Σ_(p=5) ^6 p) ^(Σ_(p=8) ^(11) p) ∫_(11) ^(13) (((12ky)/x^2 ) + 6x) dx = Σ_(Σ_(p=4) ^7 p) ^(Σ_(p=9) ^(12) p) ∫_(11) ^(16) (x^2 y−(3/2)k)dx solve for y

$$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{16}} {\int}}\left({x}^{\mathrm{2}} {y}−\frac{\mathrm{3}}{\mathrm{2}}{k}\right){dx} \\ $$$${solve}\:{for}\:{y} \\ $$

Question Number 105238    Answers: 1   Comments: 0

(dy/dx) = (1/(3e^y −2x)) ?

$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}{e}^{{y}} −\mathrm{2}{x}}\:? \\ $$

Question Number 101378    Answers: 2   Comments: 1

∫_(1/e) ^(tanx) (t/(1+t^2 ))dt + ∫_(1/e) ^(cotx) (1/(t(1+t^2 )))dt

$$\int_{\frac{\mathrm{1}}{{e}}} ^{{tanx}} \frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:+\:\int_{\frac{\mathrm{1}}{{e}}} ^{{cotx}} \frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$

Question Number 101375    Answers: 1   Comments: 4

Question Number 101373    Answers: 0   Comments: 1

lim_(n→∞ ) Σ_(r=1) ^(4n) ((√n)/((√r)(3(√r)+4(√n))^2 ))

$$\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\underset{{r}=\mathrm{1}} {\overset{\mathrm{4}{n}} {\sum}}\frac{\sqrt{{n}}}{\sqrt{{r}}\left(\mathrm{3}\sqrt{{r}}+\mathrm{4}\sqrt{{n}}\right)^{\mathrm{2}} } \\ $$

Question Number 101366    Answers: 1   Comments: 2

lim_(x→0) ((x^3 −sin^3 x)/x^5 ) =?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{sin}\:^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} }\:=? \\ $$

Question Number 101363    Answers: 1   Comments: 0

The solution set of inequality (((√((3x−7)^2 ))−2)/(x−3)) ≤ ((3−(√x^2 ))/(x−3)) is __ (A) (−∞, (1/2)] (D) [(1/2), ∞) (B) [(1/2),1 ] (E) (−∞,(2/3)] (C) (−∞,1 ]

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{inequality} \\ $$$$\frac{\sqrt{\left(\mathrm{3x}−\mathrm{7}\right)^{\mathrm{2}} }−\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\sqrt{\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}−\mathrm{3}}\:\mathrm{is}\:\_\_ \\ $$$$\left(\mathrm{A}\right)\:\left(−\infty,\:\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\left[\frac{\mathrm{1}}{\mathrm{2}},\:\infty\right) \\ $$$$\left(\mathrm{B}\right)\:\left[\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}\:\right]\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:\left(−\infty,\frac{\mathrm{2}}{\mathrm{3}}\right] \\ $$$$\left(\mathrm{C}\right)\:\left(−\infty,\mathrm{1}\:\right]\: \\ $$

Question Number 101362    Answers: 0   Comments: 1

Question Number 101360    Answers: 0   Comments: 0

xy′=y(ylnx+1)

$${xy}'={y}\left({ylnx}+\mathrm{1}\right) \\ $$

Question Number 101350    Answers: 1   Comments: 0

Question Number 101345    Answers: 0   Comments: 3

(1)∫ ((sec^4 x tan x)/(sec^4 x+4)) dx= (2) ∫x^(2x) (2lnx +2) dx = (3) ∫_0 ^1 (√(1−x^2 )) dx =

$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:\mathrm{tan}\:{x}}{\mathrm{sec}\:^{\mathrm{4}} {x}+\mathrm{4}}\:{dx}= \\ $$$$\left(\mathrm{2}\right)\:\int{x}^{\mathrm{2}{x}} \left(\mathrm{2ln}{x}\:+\mathrm{2}\right)\:{dx}\:= \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:=\: \\ $$

Question Number 101342    Answers: 1   Comments: 0

find U_n =∫_0 ^1 ((x^(2n) −1)/(lnx))dx with n integr natural and n≥2 find nature of the serie Σ U_n

$$\mathrm{find}\:\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}} −\mathrm{1}}{\mathrm{lnx}}\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{2} \\ $$$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{serie}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$

Question Number 101402    Answers: 0   Comments: 3

I desire the developmenter of this apps improve adding some other functions like as:choose whole text by tap in text or choose some line at one time has many colours more

$$\mathrm{I}\:\mathrm{desire}\:\mathrm{the}\:\mathrm{developmenter}\:\mathrm{of}\:\mathrm{this}\:\mathrm{apps} \\ $$$$\mathrm{improve}\:\mathrm{adding}\:\mathrm{some}\:\mathrm{other}\:\mathrm{functions} \\ $$$$\mathrm{like}\:\mathrm{as}:\mathrm{choose}\:\mathrm{whole}\:\mathrm{text}\:\mathrm{by}\:\mathrm{tap}\:\mathrm{in} \\ $$$$\mathrm{text}\:\mathrm{or}\:\mathrm{choose}\:\mathrm{some}\:\mathrm{line}\:\mathrm{at}\:\mathrm{one}\:\mathrm{time} \\ $$$$\mathrm{has}\:\mathrm{many}\:\mathrm{colours}\:\mathrm{more} \\ $$

Question Number 101330    Answers: 0   Comments: 5

Evaluate. ∫_(−π) ^π x^9 cos x dx

$${Evaluate}. \\ $$$$\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx} \\ $$

Question Number 101329    Answers: 1   Comments: 0

Question Number 101328    Answers: 0   Comments: 1

this i a beautifull old question in the forum by sir.Ali Esam i Reposted it trying to find any idea to solve I=∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x))))dx i solved it numerical the value is 2.03383

$${this}\:{i}\:{a}\:{beautifull}\:{old}\:{question}\:{in}\:{the}\:{forum} \\ $$$${by}\:{sir}.{Ali}\:{Esam}\:{i}\:{Reposted}\:{it}\:{trying}\:{to} \\ $$$${find}\:{any}\:{idea}\:{to}\:{solve} \\ $$$$ \\ $$$${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\frac{{sin}\left({x}\right)}{{sinh}^{−\mathrm{1}} \left({x}\right)}\right)\left(\frac{{sin}^{−\mathrm{1}} \left({x}\right)}{{sinh}\left({x}\right)}\right){dx} \\ $$$$ \\ $$$${i}\:{solved}\:{it}\:{numerical}\: \\ $$$${the}\:{value}\:{is}\:\mathrm{2}.\mathrm{03383} \\ $$

Question Number 101319    Answers: 1   Comments: 4

find the area bounded the parabola y=4x^2 and y=8−4x^2 ? by using intigral? help me

$${find}\:{the}\:{area}\:{bounded}\:{the}\:{parabola}\: \\ $$$${y}=\mathrm{4}{x}^{\mathrm{2}} \:\:\:{and}\:\:{y}=\mathrm{8}−\mathrm{4}{x}^{\mathrm{2}} \:\:?\:\:{by}\:{using}\:{intigral}? \\ $$$${help}\:{me} \\ $$

  Pg 1151      Pg 1152      Pg 1153      Pg 1154      Pg 1155      Pg 1156      Pg 1157      Pg 1158      Pg 1159      Pg 1160   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com