Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1156
Question Number 100590 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{18}} \right)^{\mathrm{2}} } \\ $$
Question Number 100587 Answers: 2 Comments: 1
$$\mathrm{If}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{of}\:{x}^{{k}} \:\mathrm{and}\:{x}^{{k}+\mathrm{1}} \:\mathrm{in}\:\mathrm{the}\: \\ $$$$\mathrm{expansion}\:\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{19}} \:\mathrm{are}\:\mathrm{equal}\:,\:\mathrm{what}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:? \\ $$
Question Number 100585 Answers: 0 Comments: 0
$$\:\mathrm{Given}\:\mathrm{that}\:\:{G}\:=\:\left\{\mathrm{1},\left({x}\:+\:{yi}\right),\left({x}−{yi}\right)\right\}\:\mathrm{form}\:\mathrm{a}\:\mathrm{group} \\ $$$$\mathrm{under}\:\mathrm{complex}\:\mathrm{multiplication},\:\mathrm{describe}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\left({x},{y}\right) \\ $$
Question Number 100584 Answers: 1 Comments: 0
$$\int{i}^{{i}^{{i}......\infty} } {dx} \\ $$
Question Number 100583 Answers: 0 Comments: 0
$$\:\mathrm{A}\:\mathrm{transformation}\:{f}\:\mathrm{on}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:{z}'\:=\:\left(\mathrm{1}\:+{i}\right){z}\:−\mathrm{3}\:+\:\mathrm{4}{i} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{simultitude}\:\mathrm{with}\:\mathrm{radius}\:{r}\:\mathrm{and}\:\mathrm{centre} \\ $$$$\Omega\:\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$$$\mathrm{Determine}\:\mathrm{to}\:\mathrm{the}\:\mathrm{invariant}\:\mathrm{point}\:\mathrm{under}\:{f}. \\ $$
Question Number 100581 Answers: 0 Comments: 0
$${If}\:\alpha=\frac{\mathrm{2}\pi}{\mathrm{7}} \\ $$$${then}\:{prove}\:{that} \\ $$$${tan}\alpha{tan}\mathrm{2}\alpha+{tan}\mathrm{2}\alpha{tan}\mathrm{4}\alpha+{tan}\mathrm{4}\alpha{tan}\alpha=−\mathrm{7} \\ $$
Question Number 100575 Answers: 1 Comments: 0
Question Number 100570 Answers: 0 Comments: 1
Question Number 100567 Answers: 0 Comments: 3
$$\begin{cases}{{x}−\sqrt{{yz}}\:=\:\mathrm{42}}\\{{y}−\sqrt{{xz}}\:=\:\mathrm{6}}\\{{z}−\sqrt{{xy}}\:=\:−\mathrm{30}}\end{cases} \\ $$$${find}\:{x}+{y}+{z}\:= \\ $$
Question Number 100565 Answers: 1 Comments: 1
Question Number 100562 Answers: 0 Comments: 0
Question Number 100561 Answers: 1 Comments: 1
Question Number 100557 Answers: 2 Comments: 0
$$\Omega=\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{e}^{{ax}} }{{e}^{{bx}} +\mathrm{1}}{dx},\:{b}>{a} \\ $$
Question Number 100538 Answers: 0 Comments: 1
Question Number 100540 Answers: 0 Comments: 1
Question Number 100539 Answers: 0 Comments: 2
$$\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{3}^{{n}} }{{n}} \\ $$
Question Number 100543 Answers: 2 Comments: 1
Question Number 100522 Answers: 1 Comments: 0
Question Number 100514 Answers: 2 Comments: 0
$$\mathrm{calculatelim}_{\mathrm{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)^{\mathrm{n}} \mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right)\mathrm{dx} \\ $$
Question Number 100513 Answers: 0 Comments: 0
$$\mathrm{findA}_{\mathrm{nm}} \:=\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\mathrm{nx}} \:\mid\mathrm{sin}\left(\mathrm{px}\right)\mid\:\mathrm{dx}\:\:\mathrm{with}\:\:\mathrm{n}\:\mathrm{and}\:\mathrm{p}\:\mathrm{integr}\:\mathrm{natural}\:\geqslant\mathrm{1} \\ $$
Question Number 100512 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} }\:\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{2} \\ $$
Question Number 100511 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{cosx}\:+\mathrm{sinx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\:\mathrm{dx} \\ $$
Question Number 100498 Answers: 0 Comments: 0
Question Number 100528 Answers: 1 Comments: 2
Question Number 100492 Answers: 2 Comments: 3
$$\sqrt[{\mathrm{3}\:\:\:}]{\mathrm{16}−\frac{\mathrm{64}}{\mathrm{16}−\frac{\mathrm{64}}{\mathrm{16}−\frac{\mathrm{64}}{\mathrm{16}−...}}}}−\sqrt[{\mathrm{3}\:\:}]{−\mathrm{2}−\frac{\mathrm{1}}{−\mathrm{2}−\frac{\mathrm{1}}{−\mathrm{2}−\frac{\mathrm{1}}{−\mathrm{2}−...}}}} \\ $$
Question Number 100491 Answers: 1 Comments: 0
Pg 1151 Pg 1152 Pg 1153 Pg 1154 Pg 1155 Pg 1156 Pg 1157 Pg 1158 Pg 1159 Pg 1160
Terms of Service
Privacy Policy
Contact: info@tinkutara.com