Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1153

Question Number 95547    Answers: 2   Comments: 0

∫((2x^3 dx)/(2x^2 −4x+3))=?

$$\int\frac{\mathrm{2}{x}^{\mathrm{3}} {dx}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}=? \\ $$

Question Number 95546    Answers: 2   Comments: 0

∫x^2 (√(a^2 +x^2 ))dx=?

$$\int{x}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}=? \\ $$

Question Number 95531    Answers: 0   Comments: 4

((tanx×ctg2x)/(tan^2 x−1))=?

$$\frac{\mathrm{tanx}×\mathrm{ctg2x}}{\mathrm{tan}^{\mathrm{2}} \mathrm{x}−\mathrm{1}}=? \\ $$

Question Number 95524    Answers: 0   Comments: 4

(1/(sin10))−((√3)/(cos10))=?

$$\frac{\mathrm{1}}{\mathrm{sin10}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{cos10}}=? \\ $$

Question Number 95520    Answers: 0   Comments: 0

For 0<x<(π/(6 )), all the values of tan^2 (3x)cos^2 (x)−4tan (3x)sin (2x)+16sin^2 (x) lie in the interval (a). (0,((121)/(36))) (b).(1,((121)/9)) (c). (−1,0) (d). None of these.

$$\mathrm{For}\:\mathrm{0}<\mathrm{x}<\frac{\pi}{\mathrm{6}\:},\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of} \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{3x}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{4tan}\:\left(\mathrm{3x}\right)\mathrm{sin}\:\left(\mathrm{2x}\right)+\mathrm{16sin}\:^{\mathrm{2}} \left(\mathrm{x}\right) \\ $$$$\mathrm{lie}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\left(\mathrm{a}\right).\:\left(\mathrm{0},\frac{\mathrm{121}}{\mathrm{36}}\right)\:\left(\mathrm{b}\right).\left(\mathrm{1},\frac{\mathrm{121}}{\mathrm{9}}\right)\:\left(\mathrm{c}\right).\:\left(−\mathrm{1},\mathrm{0}\right)\:\left(\mathrm{d}\right).\:\mathrm{None}\:\mathrm{of}\:\mathrm{these}. \\ $$

Question Number 95518    Answers: 0   Comments: 0

Question Number 95515    Answers: 1   Comments: 0

If A+B+C = π, then sin^2 A+sin^2 B+sin^2 C−2 cos A cos B cos C=

$$\mathrm{If}\:{A}+{B}+{C}\:=\:\pi,\:\mathrm{then} \\ $$$$\mathrm{sin}^{\mathrm{2}} {A}+\mathrm{sin}^{\mathrm{2}} {B}+\mathrm{sin}^{\mathrm{2}} {C}−\mathrm{2}\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}= \\ $$

Question Number 95512    Answers: 0   Comments: 3

If in a △ABC, 8R^2 = a^2 +b^2 +c^2 , then the △ABC is

$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{8}{R}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{the}\:\bigtriangleup{ABC}\:\mathrm{is} \\ $$

Question Number 95509    Answers: 2   Comments: 0

find the angle of plane 2x−y+2z=1 and x+3y−2z = 2

$$\mathrm{find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{plane} \\ $$$$\mathrm{2x}−\mathrm{y}+\mathrm{2z}=\mathrm{1}\:\mathrm{and}\:\mathrm{x}+\mathrm{3y}−\mathrm{2z}\:=\:\mathrm{2} \\ $$

Question Number 95502    Answers: 1   Comments: 3

6 man + 8 woman ⇒working a job in 10 days 26 man + 48 woman ⇒ in 2 days if 15 man + 20 woman ⇒ ?? days

$$\mathrm{6}\:\mathrm{man}\:+\:\mathrm{8}\:\mathrm{woman}\:\Rightarrow\mathrm{working}\:\mathrm{a}\:\mathrm{job}\:\mathrm{in}\:\mathrm{10}\:\mathrm{days} \\ $$$$\mathrm{26}\:\mathrm{man}\:+\:\mathrm{48}\:\mathrm{woman}\:\Rightarrow\:\mathrm{in}\:\mathrm{2}\:\mathrm{days} \\ $$$$\mathrm{if}\:\mathrm{15}\:\mathrm{man}\:+\:\mathrm{20}\:\mathrm{woman}\:\Rightarrow\:??\:\mathrm{days} \\ $$

Question Number 95495    Answers: 2   Comments: 0

3cos^2 x − 3cos x sin x + 2sin x = 1 x ∈ [ 0, 2π ]

$$\mathrm{3cos}\:^{\mathrm{2}} {x}\:−\:\mathrm{3cos}\:{x}\:\mathrm{sin}\:{x}\:+\:\mathrm{2sin}\:{x}\:=\:\mathrm{1} \\ $$$${x}\:\in\:\left[\:\mathrm{0},\:\mathrm{2}\pi\:\right]\: \\ $$

Question Number 95494    Answers: 0   Comments: 0

Question Number 95485    Answers: 0   Comments: 2

Question Number 95592    Answers: 0   Comments: 1

∫ ((sin 2x)/(sin^4 x + cos^4 x)) dx

$$\int\:\frac{\mathrm{sin}\:\mathrm{2x}}{\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}\:+\:\mathrm{cos}\:^{\mathrm{4}} \mathrm{x}}\:\mathrm{dx} \\ $$

Question Number 95473    Answers: 1   Comments: 0

Question Number 95471    Answers: 0   Comments: 1

(y^2 −6y) how factorise this one?

$$\left(\mathrm{y}^{\mathrm{2}} −\mathrm{6y}\right) \\ $$$$\mathrm{how}\:\mathrm{factorise}\:\mathrm{this}\:\mathrm{one}? \\ $$

Question Number 95469    Answers: 0   Comments: 1

(9b^2 −25) why is this inside the bracket as it is a diffetence of two squares?

$$\left(\mathrm{9b}^{\mathrm{2}} −\mathrm{25}\right) \\ $$$$\mathrm{why}\:\mathrm{is}\:\mathrm{this}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{bracket}\:\mathrm{as}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diffetence}\:\mathrm{of}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Question Number 95465    Answers: 1   Comments: 0

solve y^(′′) −y^′ +2 =x^2 e^(−x) with y(0) =1 and y^′ (0) =−1

$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{y}^{'} \:+\mathrm{2}\:\:\:=\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{x}} \:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)\:=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=−\mathrm{1} \\ $$

Question Number 95464    Answers: 0   Comments: 8

Question Number 95456    Answers: 0   Comments: 0

solve on R y′+xy=y^2 +1 y(0)=a ∈R

$${solve}\:{on}\:\mathbb{R}\: \\ $$$$\:\:{y}'+{xy}={y}^{\mathrm{2}} +\mathrm{1}\:\:\:\:\:\:\:\:{y}\left(\mathrm{0}\right)={a}\:\in\mathbb{R} \\ $$

Question Number 95449    Answers: 1   Comments: 7

∫∫ (√(x^2 +y^2 )) dxdy = where D : x^2 +y^2 ≤ 100

$$\int\int\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\mathrm{dxdy}\:=\: \\ $$$$\mathrm{where}\:\mathrm{D}\::\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\leqslant\:\mathrm{100}\: \\ $$

Question Number 95447    Answers: 1   Comments: 0

can I write the solution of ay′′+by′+cy=0 y= { ((c_1 e^(((−b+(√(b^2 −4ac)))/2)x) +c_2 e^(((−b−(√(b^2 −4ac)))/2)x) ,when b^2 −4ac≠0)),((c_1 e^(((−b)/2)x) +c_2 xe^(((−b)/2)x) ,when b^2 −4ac=0)) :} in one sentence not in the form of piecewide-define function

$${can}\:{I}\:{write}\:{the}\:{solution}\:{of} \\ $$$${ay}''+{by}'+{cy}=\mathrm{0} \\ $$$${y}=\begin{cases}{{c}_{\mathrm{1}} {e}^{\frac{−{b}+\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}}{x}} +{c}_{\mathrm{2}} {e}^{\frac{−{b}−\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}}{x}} ,{when}\:{b}^{\mathrm{2}} −\mathrm{4}{ac}\neq\mathrm{0}}\\{{c}_{\mathrm{1}} {e}^{\frac{−{b}}{\mathrm{2}}{x}} +{c}_{\mathrm{2}} {xe}^{\frac{−{b}}{\mathrm{2}}{x}} ,{when}\:{b}^{\mathrm{2}} −\mathrm{4}{ac}=\mathrm{0}}\end{cases} \\ $$$${in}\:{one}\:{sentence} \\ $$$${not}\:{in}\:{the}\:{form}\:{of}\:{piecewide}-{define}\:{function} \\ $$

Question Number 95440    Answers: 1   Comments: 0

Question Number 95436    Answers: 1   Comments: 0

∫((x^4 dx)/(x^8 +x^4 +1))

$$\int\frac{\mathrm{x}^{\mathrm{4}} \mathrm{dx}}{\mathrm{x}^{\mathrm{8}} +\mathrm{x}^{\mathrm{4}} +\mathrm{1}} \\ $$

Question Number 95424    Answers: 2   Comments: 1

without calculator tan^2 36^o × tan^2 72^o ?

$$\mathrm{without}\:\mathrm{calculator}\: \\ $$$$\mathrm{tan}\:^{\mathrm{2}} \mathrm{36}^{\mathrm{o}} \:×\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{72}^{\mathrm{o}} \:? \\ $$

Question Number 95420    Answers: 0   Comments: 7

tinkutara admint I want to update to version 2.074

$$\mathrm{tinkutara}\:\mathrm{admint} \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{update}\:\mathrm{to}\:\mathrm{version}\:\mathrm{2}.\mathrm{074} \\ $$

  Pg 1148      Pg 1149      Pg 1150      Pg 1151      Pg 1152      Pg 1153      Pg 1154      Pg 1155      Pg 1156      Pg 1157   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com