Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1153

Question Number 100189    Answers: 1   Comments: 0

∫tan^i xdx

$$\int{tan}^{{i}} {xdx} \\ $$

Question Number 100186    Answers: 0   Comments: 0

Question Number 100184    Answers: 1   Comments: 0

((ydx + xdy)/(1−x^2 y^2 )) + xdx = 0

$$\frac{\mathrm{ydx}\:+\:\mathrm{xdy}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} }\:+\:\mathrm{xdx}\:=\:\mathrm{0} \\ $$

Question Number 100179    Answers: 2   Comments: 0

Question Number 100178    Answers: 2   Comments: 0

what is the number of ordered pairs of positif integers (x,y) that satisfy x^2 +y^2 −xy=37

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ordered}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{positif}\: \\ $$$$\mathrm{integers}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{that}\:\mathrm{satisfy}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{xy}=\mathrm{37} \\ $$

Question Number 100173    Answers: 0   Comments: 2

Updated apk with the following changes (with fixes for all reported issues so far) is available at www.tinkutara.com. • Review a post • copy all to buffer • Ability to draw diagrams

$$\mathrm{Updated}\:\mathrm{apk}\:\mathrm{with}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{changes}\:\left(\mathrm{with}\:\mathrm{fixes}\:\mathrm{for}\:\mathrm{all}\:\mathrm{reported}\right. \\ $$$$\left.\mathrm{issues}\:\mathrm{so}\:\mathrm{far}\right)\:\mathrm{is}\:\mathrm{available}\:\mathrm{at} \\ $$$$\mathrm{www}.\mathrm{tinkutara}.\mathrm{com}. \\ $$$$\bullet\:\mathrm{Review}\:\mathrm{a}\:\mathrm{post} \\ $$$$\bullet\:\mathrm{copy}\:\mathrm{all}\:\mathrm{to}\:\mathrm{buffer} \\ $$$$\bullet\:\mathrm{Ability}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{diagrams} \\ $$

Question Number 100343    Answers: 1   Comments: 3

l_(x→0) im ((f(x+1)^(1/x) )/(f(1))) f(1)=? help me

$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{l}im}\:\frac{\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} }{\mathrm{f}\left(\mathrm{1}\right)}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{1}\right)=? \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$

Question Number 100304    Answers: 0   Comments: 3

Question Number 100158    Answers: 1   Comments: 0

Question Number 100151    Answers: 0   Comments: 1

(√(lnx)) −ln(√x) =0 x=?

$$\sqrt{\mathrm{lnx}}\:−\mathrm{ln}\sqrt{\mathrm{x}}\:=\mathrm{0}\:\:\:\:\:\:\mathrm{x}=? \\ $$

Question Number 100150    Answers: 0   Comments: 3

x^(ln) −e^6 ∙x=0 x=? help me

$$\mathrm{x}^{\mathrm{ln}} −\mathrm{e}^{\mathrm{6}} \centerdot\mathrm{x}=\mathrm{0}\:\:\:\:\:\:\mathrm{x}=? \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$

Question Number 100341    Answers: 1   Comments: 1

An open box with a square base is to be made out of a given quantity of a cardboard of area c^2 square units.show the maximum volume of the box (c^2 /(6(√3))) cubic units

$$\mathrm{An}\:\mathrm{open}\:\mathrm{box}\:\mathrm{with}\:\mathrm{a}\:\mathrm{square} \\ $$$$\mathrm{base}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{made}\:\mathrm{out} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{given}\:\mathrm{quantity}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{cardboard}\:\mathrm{of}\:\mathrm{area}\:\mathrm{c}^{\mathrm{2}} \\ $$$$\mathrm{square}\:\mathrm{units}.\mathrm{show}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{box}\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{6}\sqrt{\mathrm{3}}}\:\:\mathrm{cubic}\:\mathrm{units} \\ $$$$ \\ $$

Question Number 100146    Answers: 1   Comments: 3

Question Number 100134    Answers: 1   Comments: 2

lim_(x→(π/2)) ((4sin x−(√(6(√(sin x))+10)))/((π/2)−x)) ?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{4sin}\:\mathrm{x}−\sqrt{\mathrm{6}\sqrt{\mathrm{sin}\:\mathrm{x}}+\mathrm{10}}}{\frac{\pi}{\mathrm{2}}−\mathrm{x}}\:? \\ $$

Question Number 100133    Answers: 1   Comments: 0

If sin^(−1) θ+sin^(−1) β=π θ+β−(2/(θ^2 +β^2 )) = ?

$$\mathrm{If}\:\mathrm{sin}^{−\mathrm{1}} \theta+\mathrm{sin}^{−\mathrm{1}} \beta=\pi\: \\ $$$$\theta+\beta−\frac{\mathrm{2}}{\theta^{\mathrm{2}} +\beta^{\mathrm{2}} }\:=\:? \\ $$

Question Number 100131    Answers: 2   Comments: 3

If 3sin x+4cos x=5 then sin x=?

$$\mathrm{If}\:\mathrm{3sin}\:\mathrm{x}+\mathrm{4cos}\:\mathrm{x}=\mathrm{5}\:\mathrm{then}\:\mathrm{sin}\:\mathrm{x}=? \\ $$

Question Number 100130    Answers: 1   Comments: 0

how many integer number satisfy the equation ((sin x−∣x+2∣)/(x^2 −4x−5)) ≥ 0

$$\mathrm{how}\:\mathrm{many}\:\mathrm{integer}\:\mathrm{number}\: \\ $$$$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\frac{\mathrm{sin}\:\mathrm{x}−\mid\mathrm{x}+\mathrm{2}\mid}{\mathrm{x}^{\mathrm{2}} −\mathrm{4x}−\mathrm{5}}\:\geqslant\:\mathrm{0}\: \\ $$

Question Number 100114    Answers: 1   Comments: 0

Question Number 100106    Answers: 0   Comments: 6

APK with the option to review a post in forum is available. Review is essentially same as comment however an editable original post is included in editor. While review post with images image is used as background and you can use shapes like ovals circle etc to highlight. This should remove to manually count lines to highlight corrections. Once in progress enhancements are this version app will updated to playstore.

$$\mathrm{APK}\:\mathrm{with}\:\mathrm{the}\:\mathrm{option}\:\mathrm{to}\:\mathrm{review} \\ $$$$\mathrm{a}\:\mathrm{post}\:\mathrm{in}\:\mathrm{forum}\:\mathrm{is}\:\mathrm{available}. \\ $$$$\mathrm{Review}\:\mathrm{is}\:\mathrm{essentially}\:\mathrm{same}\:\mathrm{as}\:\mathrm{comment} \\ $$$$\mathrm{however}\:\mathrm{an}\:\mathrm{editable}\:\mathrm{original} \\ $$$$\mathrm{post}\:\mathrm{is}\:\mathrm{included}\:\mathrm{in}\:\mathrm{editor}. \\ $$$$\mathrm{While}\:\mathrm{review}\:\mathrm{post}\:\mathrm{with}\:\mathrm{images} \\ $$$$\mathrm{image}\:\mathrm{is}\:\mathrm{used}\:\mathrm{as}\:\mathrm{background}\:\mathrm{and} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{use}\:\mathrm{shapes}\:\mathrm{like}\:\mathrm{ovals} \\ $$$$\mathrm{circle}\:\mathrm{etc}\:\mathrm{to}\:\mathrm{highlight}. \\ $$$$\mathrm{This}\:\mathrm{should}\:\mathrm{remove}\:\mathrm{to}\:\mathrm{manually} \\ $$$$\mathrm{count}\:\mathrm{lines}\:\mathrm{to}\:\mathrm{highlight}\:\mathrm{corrections}. \\ $$$$\mathrm{Once}\:\mathrm{in}\:\mathrm{progress}\:\mathrm{enhancements}\:\mathrm{are} \\ $$$$\mathrm{this}\:\mathrm{version}\:\mathrm{app}\:\mathrm{will}\:\mathrm{updated}\:\mathrm{to}\:\mathrm{playstore}. \\ $$

Question Number 100097    Answers: 0   Comments: 1

∫(tanx)^e^(iπ) dx

$$\int\left({tanx}\right)^{{e}^{{i}\pi} } {dx} \\ $$

Question Number 100089    Answers: 0   Comments: 0

calculate A_n =∫_0 ^(π/2) ((sin^n (x))/(sin(nx)))dx

$$\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{nx}\right)}\mathrm{dx}\: \\ $$

Question Number 100088    Answers: 1   Comments: 1

calculate ∫ ((cosx)/(cos(3x)))dx

$$\mathrm{calculate}\:\int\:\frac{\mathrm{cosx}}{\mathrm{cos}\left(\mathrm{3x}\right)}\mathrm{dx} \\ $$

Question Number 100087    Answers: 1   Comments: 1

use beta function to calculate ∫_0 ^π sin^3 x(2+cosx)^6 dx

$$\mathrm{use}\:\mathrm{beta}\:\mathrm{function}\:\mathrm{to}\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\mathrm{sin}^{\mathrm{3}} \mathrm{x}\left(\mathrm{2}+\mathrm{cosx}\right)^{\mathrm{6}} \:\mathrm{dx} \\ $$

Question Number 100074    Answers: 1   Comments: 0

Question Number 100068    Answers: 2   Comments: 0

hello all i have some questions? 1)what is the riemann hypothesis? 2)how did they determine the distance to the sun? 3)how did we measure the speed of light?

$${hello}\:{all}\:{i}\:{have}\:{some}\:{questions}? \\ $$$$ \\ $$$$\left.\mathrm{1}\right){what}\:{is}\:{the}\:{riemann}\:{hypothesis}? \\ $$$$ \\ $$$$\left.\mathrm{2}\right){how}\:{did}\:{they}\:{determine}\:{the}\:{distance} \\ $$$${to}\:{the}\:{sun}? \\ $$$$ \\ $$$$\left.\mathrm{3}\right){how}\:{did}\:{we}\:{measure}\:{the}\:{speed}\:{of}\:{light}? \\ $$$$ \\ $$

Question Number 100065    Answers: 8   Comments: 0

  Pg 1148      Pg 1149      Pg 1150      Pg 1151      Pg 1152      Pg 1153      Pg 1154      Pg 1155      Pg 1156      Pg 1157   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com