Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1149

Question Number 102064    Answers: 1   Comments: 0

∫ ((sin 3x)/(cos 5x. cos 2x)) dx ?

$$\int\:\frac{\mathrm{sin}\:\mathrm{3x}}{\mathrm{cos}\:\mathrm{5x}.\:\mathrm{cos}\:\mathrm{2x}}\:\mathrm{dx}\:? \\ $$

Question Number 102060    Answers: 2   Comments: 1

Question Number 102043    Answers: 0   Comments: 1

∫e^(√(ax+b)) dx

$$\int{e}^{\sqrt{{ax}+{b}}} {dx} \\ $$

Question Number 102036    Answers: 3   Comments: 0

lim_(x→0) ((((x^2 −1))^(1/5) +((x+1))^(1/3) )/(((x−1))^(1/3) +(√(x+1))))=?

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\sqrt[{\mathrm{5}}]{{x}^{\mathrm{2}} −\mathrm{1}}\:+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}}{\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\:+\sqrt{{x}+\mathrm{1}}}=? \\ $$

Question Number 102034    Answers: 2   Comments: 0

lim_(x→2) ((((2x+4))^(1/3) −2)/(x^2 −x−2))=?

$${li}\underset{{x}\rightarrow\mathrm{2}} {{m}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{4}}\:−\mathrm{2}}{{x}^{\mathrm{2}} −{x}−\mathrm{2}}=? \\ $$

Question Number 105269    Answers: 0   Comments: 0

a;b;c are real numbers 1<b<c^2 <a^(10) log_a b+2log_b c+5log_c a=12 prove that 2log_a c+5log_c b+10log_b a≥21

$${a};{b};{c}\:{are}\:{real}\:{numbers} \\ $$$$\mathrm{1}<{b}<{c}^{\mathrm{2}} <{a}^{\mathrm{10}} \\ $$$${log}_{{a}} {b}+\mathrm{2}{log}_{{b}} {c}+\mathrm{5}{log}_{{c}} {a}=\mathrm{12} \\ $$$${prove}\:{that} \\ $$$$\mathrm{2}{log}_{{a}} {c}+\mathrm{5}{log}_{{c}} {b}+\mathrm{10}{log}_{{b}} {a}\geqslant\mathrm{21} \\ $$

Question Number 105300    Answers: 0   Comments: 0

what is the absolute speed of A that moves via y = (1/(1+x)) (upper part) when it crosses y −axis meanwhile B moves at constant speed of 1 the x−axis ?

$${what}\:{is}\:{the}\:{absolute}\:{speed}\:{of}\:{A}\:{that} \\ $$$${moves}\:{via}\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{1}+{x}}\:\left({upper}\:{part}\right)\:{when} \\ $$$${it}\:{crosses}\:{y}\:−{axis}\:{meanwhile}\:{B} \\ $$$${moves}\:{at}\:{constant}\:{speed}\:{of}\:\mathrm{1}\:{the} \\ $$$${x}−{axis}\:? \\ $$

Question Number 102020    Answers: 2   Comments: 0

lim_(x→0) (tan((π/4)−x))^(1/x)

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right)^{\frac{\mathrm{1}}{{x}}} \\ $$

Question Number 102015    Answers: 0   Comments: 0

how many rotational symetry triangle isosceles ? 1 or 0??

$${how}\:{many}\:{rotational}\:{symetry}\:\:{triangle} \\ $$$${isosceles}\:? \\ $$$$\mathrm{1}\:{or}\:\mathrm{0}?? \\ $$

Question Number 102002    Answers: 0   Comments: 6

Question Number 102001    Answers: 2   Comments: 0

evaluate ∫cos^3 xsin^3 xdx.

$${evaluate}\:\int\mathrm{cos}\:^{\mathrm{3}} {x}\mathrm{sin}\:^{\mathrm{3}} {xdx}. \\ $$

Question Number 101998    Answers: 0   Comments: 0

1)solve inside C x^n −e^(−inα) =0 (α real) 2) let P(x) =x^n −e^(−inα) factorize P(x)inside C[x] 2) decompose inside C(x) thefraction F =(1/(P(x))) and deyermine ∫ F(x)dx

$$\left.\mathrm{1}\right)\mathrm{solve}\:\mathrm{inside}\:\mathrm{C}\:\:\mathrm{x}^{\mathrm{n}} −\mathrm{e}^{−\mathrm{in}\alpha} \:=\mathrm{0}\:\:\:\:\:\left(\alpha\:\mathrm{real}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{let}\:\mathrm{P}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{n}} −\mathrm{e}^{−\mathrm{in}\alpha} \:\:\mathrm{factorize}\:\mathrm{P}\left(\mathrm{x}\right)\mathrm{inside}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$$$\left.\mathrm{2}\right)\:\mathrm{decompose}\:\mathrm{inside}\:\mathrm{C}\left(\mathrm{x}\right)\:\mathrm{thefraction}\:\mathrm{F}\:=\frac{\mathrm{1}}{\mathrm{P}\left(\mathrm{x}\right)} \\ $$$$\mathrm{and}\:\mathrm{deyermine}\:\int\:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 101994    Answers: 1   Comments: 1

Question Number 101985    Answers: 1   Comments: 0

∫ ((3x^5 − x^4 + 9x^3 − 12x^2 − 2x + 1)/((x^3 − 1)^2 )) dx

$$\int\:\frac{\mathrm{3x}^{\mathrm{5}} \:−\:\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{9x}^{\mathrm{3}} \:−\:\mathrm{12x}^{\mathrm{2}} \:−\:\mathrm{2x}\:\:+\:\:\mathrm{1}}{\left(\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 102058    Answers: 1   Comments: 0

∫_0 ^1 ((sin(logx))/(logx))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left({logx}\right)}{{logx}}{dx} \\ $$

Question Number 102183    Answers: 4   Comments: 0

∫ ((cos θ)/(sin θ−cos θ)) dθ ?

$$\int\:\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta−\mathrm{cos}\:\theta}\:{d}\theta\:? \\ $$

Question Number 101981    Answers: 3   Comments: 0

lim_(x→0) (((tanx)/x))^(1/x^2 )

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left(\frac{{tanx}}{{x}}\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$

Question Number 101977    Answers: 0   Comments: 0

Given 2 functions, f and g, n-times derivable within the open interval, R and verify the property f(x_0 )=f^((k)) (x_0 )=0 , g(x_0 )=g^((k)) (x_0 )=0 , ∀k∈{1,2,...,n−1} Show that lim_(x→x_0 ) ((f(x))/(g(x)))=((f^((n)) (x_0 ))/(g^((n)) (x_0 )))

$$\mathrm{Given}\:\mathrm{2}\:\mathrm{functions},\:\mathrm{f}\:\mathrm{and}\:\mathrm{g},\:\mathrm{n}-\mathrm{times}\:\mathrm{derivable}\:\mathrm{within} \\ $$$$\mathrm{the}\:\mathrm{open}\:\mathrm{interval},\:\mathbb{R}\:\mathrm{and}\:\mathrm{verify}\:\mathrm{the}\:\mathrm{property} \\ $$$$\mathrm{f}\left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{0}\:,\:\mathrm{g}\left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{g}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{0}\:,\:\forall\mathrm{k}\in\left\{\mathrm{1},\mathrm{2},...,\mathrm{n}−\mathrm{1}\right\} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\underset{\mathrm{x}\rightarrow\mathrm{x}_{\mathrm{0}} } {\mathrm{lim}}\frac{\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{g}\left(\mathrm{x}\right)}=\frac{\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)}{\mathrm{g}^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)} \\ $$

Question Number 101974    Answers: 2   Comments: 1

Question Number 101971    Answers: 0   Comments: 2

Question Number 101970    Answers: 1   Comments: 0

∫_0 ^∞ ((Cos(ax))/(x^2 +b^2 )) dx

$$\int_{\mathrm{0}} ^{\infty} \:\frac{{Cos}\left({ax}\right)}{{x}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:{dx} \\ $$

Question Number 101961    Answers: 0   Comments: 4

Question Number 101959    Answers: 1   Comments: 0

Starting from y=(4/(√π))t^((3/2) ) ∫_0 ^∞ x^3 e^(−tx^2 ) dx find (π/8)=?

$$ \\ $$$$ \\ $$$${Starting}\:{from} \\ $$$$\:\:\:\:\:\:\:\:{y}=\frac{\mathrm{4}}{\sqrt{\pi}}{t}^{\frac{\mathrm{3}}{\mathrm{2}}\:} \int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{−{tx}^{\mathrm{2}} } {dx} \\ $$$${find}\:\:\:\frac{\pi}{\mathrm{8}}=? \\ $$

Question Number 101951    Answers: 0   Comments: 3

Question Number 101940    Answers: 1   Comments: 0

lim_(n→∞ ) (1/n^2 )(ne^((−1)/n^2 ) +ne^((−4)/n^2 ) +.....∞)

$$\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left({ne}^{\frac{−\mathrm{1}}{{n}^{\mathrm{2}} }} +{ne}^{\frac{−\mathrm{4}}{{n}^{\mathrm{2}} }} +.....\infty\right) \\ $$

Question Number 101937    Answers: 0   Comments: 0

Given a circle with the center at the point O and the radius of the length R.From a point A outside so that AO=2R,drawing two tangents AB and AC to the circle (B and C are the tangency points).Take a arbitrary point M on smaller arc BC (M differ from B and C) The tangent pass M cuts AB and AC at Pand Q respectively.The segments OP and OQ cuts BC at D and E respectively. i)Prove that PQ=2DE ii)Define the position of M such the area of the triangle ODE is smallest and expression it by R

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{the}\:\mathrm{center}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{O}\: \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{length}\:\mathrm{R}.\mathrm{From}\:\mathrm{a}\:\mathrm{point}\:\mathrm{A}\:\mathrm{outside} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{AO}=\mathrm{2R},\mathrm{drawing}\:\mathrm{two}\:\mathrm{tangents}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{AC}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\left(\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{tangency}\:\mathrm{points}\right).\mathrm{Take}\:\mathrm{a}\:\mathrm{arbitrary}\:\mathrm{point}\:\mathrm{M} \\ $$$$\mathrm{on}\:\mathrm{smaller}\:\mathrm{arc}\:\mathrm{BC}\:\left(\mathrm{M}\:\mathrm{differ}\:\mathrm{from}\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\right) \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{pass}\:\mathrm{M}\:\mathrm{cuts}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{AC}\:\mathrm{at}\:\mathrm{Pand}\:\mathrm{Q} \\ $$$$\mathrm{respectively}.\mathrm{The}\:\mathrm{segments}\:\mathrm{OP}\:\mathrm{and}\:\mathrm{OQ}\:\mathrm{cuts} \\ $$$$\mathrm{BC}\:\mathrm{at}\:\mathrm{D}\:\mathrm{and}\:\mathrm{E}\:\mathrm{respectively}. \\ $$$$\left.\mathrm{i}\right)\mathrm{Prove}\:\mathrm{that}\:\mathrm{PQ}=\mathrm{2DE} \\ $$$$\left.\mathrm{ii}\right)\mathrm{Define}\:\:\mathrm{the}\:\mathrm{position}\:\mathrm{of}\:\mathrm{M}\:\mathrm{such}\:\mathrm{the}\: \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ODE}\:\mathrm{is}\:\mathrm{smallest} \\ $$$$\mathrm{and}\:\mathrm{expression}\:\mathrm{it}\:\mathrm{by}\:\mathrm{R} \\ $$

  Pg 1144      Pg 1145      Pg 1146      Pg 1147      Pg 1148      Pg 1149      Pg 1150      Pg 1151      Pg 1152      Pg 1153   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com