Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1149
Question Number 100649 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{3n}+\mathrm{1}}\:\mathrm{and}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{4n}+\mathrm{1}} \\ $$
Question Number 100644 Answers: 3 Comments: 1
Question Number 100640 Answers: 2 Comments: 0
$${let}\left(\:\boldsymbol{{U}}_{{n}} \right)\:{be}\:{a}\:{sequence}\:{definied}\:{by}: \\ $$$$\begin{cases}{\boldsymbol{{U}}_{\mathrm{0}} =\mathrm{1}}\\{\boldsymbol{{U}}_{{n}+\mathrm{1}} =\frac{\mathrm{3}\boldsymbol{{U}}_{\boldsymbol{{n}}} +\mathrm{2}}{\boldsymbol{{U}}_{\boldsymbol{{n}}} +\mathrm{2}}}\end{cases} \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\mathrm{0}<\boldsymbol{{U}}_{\boldsymbol{{n}}} <\mathrm{2} \\ $$
Question Number 100629 Answers: 1 Comments: 1
Question Number 100624 Answers: 1 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}...\infty\:\mathrm{using}\:\mathrm{cos}\:\mathrm{function} \\ $$
Question Number 100622 Answers: 0 Comments: 2
Question Number 100618 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\sum}}\:\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}\right)}{\mathrm{2}^{\boldsymbol{{k}}} }\:=? \\ $$
Question Number 100614 Answers: 0 Comments: 0
$$\:\:\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}−\mathrm{1}} {\sum}}\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}!\right)}{\mathrm{2}^{\boldsymbol{{k}}+\mathrm{1}} }\:=?\:\:\:\: \\ $$$$\:\:\boldsymbol{\mathrm{A}{ny}}\:\boldsymbol{{help}}\:? \\ $$
Question Number 100613 Answers: 0 Comments: 0
Question Number 100606 Answers: 0 Comments: 0
$$\int{e}^{{ix}^{{ix}...\infty} } {dx} \\ $$
Question Number 100597 Answers: 2 Comments: 1
Question Number 100594 Answers: 2 Comments: 0
$${solve}\:\:{the}\:{differential}\:\:{equations} \\ $$$$\mathrm{1}-\:\:{x}\mathrm{cos}\:\left(\mathrm{ln}\:\frac{{x}}{{y}}\right){dy}−{ydx}=\mathrm{0} \\ $$$$\mathrm{2}-\:\:{ydx}+\mathrm{2}{xdy}\:=\mathrm{2}{y}\frac{\sqrt{{x}}}{{cos}^{\mathrm{2}} \left({y}\right)}{dy}\:\:\:\:\:{y}\left(\mathrm{0}\right)=\pi \\ $$
Question Number 100590 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{18}} \right)^{\mathrm{2}} } \\ $$
Question Number 100587 Answers: 2 Comments: 1
$$\mathrm{If}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{of}\:{x}^{{k}} \:\mathrm{and}\:{x}^{{k}+\mathrm{1}} \:\mathrm{in}\:\mathrm{the}\: \\ $$$$\mathrm{expansion}\:\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{19}} \:\mathrm{are}\:\mathrm{equal}\:,\:\mathrm{what}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:? \\ $$
Question Number 100585 Answers: 0 Comments: 0
$$\:\mathrm{Given}\:\mathrm{that}\:\:{G}\:=\:\left\{\mathrm{1},\left({x}\:+\:{yi}\right),\left({x}−{yi}\right)\right\}\:\mathrm{form}\:\mathrm{a}\:\mathrm{group} \\ $$$$\mathrm{under}\:\mathrm{complex}\:\mathrm{multiplication},\:\mathrm{describe}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\left({x},{y}\right) \\ $$
Question Number 100584 Answers: 1 Comments: 0
$$\int{i}^{{i}^{{i}......\infty} } {dx} \\ $$
Question Number 100583 Answers: 0 Comments: 0
$$\:\mathrm{A}\:\mathrm{transformation}\:{f}\:\mathrm{on}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{by}\:{z}'\:=\:\left(\mathrm{1}\:+{i}\right){z}\:−\mathrm{3}\:+\:\mathrm{4}{i} \\ $$$$\:\mathrm{show}\:\mathrm{that}\:{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{simultitude}\:\mathrm{with}\:\mathrm{radius}\:{r}\:\mathrm{and}\:\mathrm{centre} \\ $$$$\Omega\:\mathrm{to}\:\mathrm{be}\:\mathrm{determined}. \\ $$$$\mathrm{Determine}\:\mathrm{to}\:\mathrm{the}\:\mathrm{invariant}\:\mathrm{point}\:\mathrm{under}\:{f}. \\ $$
Question Number 100581 Answers: 0 Comments: 0
$${If}\:\alpha=\frac{\mathrm{2}\pi}{\mathrm{7}} \\ $$$${then}\:{prove}\:{that} \\ $$$${tan}\alpha{tan}\mathrm{2}\alpha+{tan}\mathrm{2}\alpha{tan}\mathrm{4}\alpha+{tan}\mathrm{4}\alpha{tan}\alpha=−\mathrm{7} \\ $$
Question Number 100575 Answers: 1 Comments: 0
Question Number 100570 Answers: 0 Comments: 1
Question Number 100567 Answers: 0 Comments: 3
$$\begin{cases}{{x}−\sqrt{{yz}}\:=\:\mathrm{42}}\\{{y}−\sqrt{{xz}}\:=\:\mathrm{6}}\\{{z}−\sqrt{{xy}}\:=\:−\mathrm{30}}\end{cases} \\ $$$${find}\:{x}+{y}+{z}\:= \\ $$
Question Number 100565 Answers: 1 Comments: 1
Question Number 100562 Answers: 0 Comments: 0
Question Number 100561 Answers: 1 Comments: 1
Question Number 100557 Answers: 2 Comments: 0
$$\Omega=\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{e}^{{ax}} }{{e}^{{bx}} +\mathrm{1}}{dx},\:{b}>{a} \\ $$
Question Number 100538 Answers: 0 Comments: 1
Pg 1144 Pg 1145 Pg 1146 Pg 1147 Pg 1148 Pg 1149 Pg 1150 Pg 1151 Pg 1152 Pg 1153
Terms of Service
Privacy Policy
Contact: info@tinkutara.com