Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1147

Question Number 101645    Answers: 1   Comments: 0

E is a vectorial plane in B=(i^→ ,j^→ ) base. f is an endomorphism of E. f(i^→ )=4i^→ −j^→ and f(j^→ )=2i^→ +j^→ . u^→ =xi^→ +yj^→ ∈ E and x,y ∈ R. 1) Determinate f^( −1) (u).

$${E}\:{is}\:{a}\:{vectorial}\:{plane}\:{in}\:{B}=\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}}\right) \\ $$$${base}.\:{f}\:{is}\:{an}\:{endomorphism}\:{of}\:{E}. \\ $$$${f}\left(\overset{\rightarrow} {{i}}\right)=\mathrm{4}\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}\:{and}\:{f}\left(\overset{\rightarrow} {{j}}\right)=\mathrm{2}\overset{\rightarrow} {{i}}+\overset{\rightarrow} {{j}}. \\ $$$$\overset{\rightarrow} {{u}}={x}\overset{\rightarrow} {{i}}+{y}\overset{\rightarrow} {{j}}\:\in\:{E}\:{and}\:{x},{y}\:\in\:\mathbb{R}. \\ $$$$\left.\mathrm{1}\right)\:{Determinate}\:{f}^{\:−\mathrm{1}} \left({u}\right). \\ $$

Question Number 101641    Answers: 0   Comments: 1

hello every one for any user here please stop saying (please help me or who can help me or who is intellegent or.......) just post your question and if we can help you we will do.

$${hello}\:{every}\:{one} \\ $$$${for}\:{any}\:{user}\:{here}\:{please}\:{stop}\:{saying} \\ $$$$\left({please}\:{help}\:{me}\:{or}\:{who}\:{can}\:{help}\:{me}\:{or}\right. \\ $$$$\left.{who}\:{is}\:{intellegent}\:{or}.......\right) \\ $$$${just}\:{post}\:{your}\:{question}\:{and}\:{if}\:{we}\:{can} \\ $$$${help}\:{you}\:{we}\:{will}\:{do}. \\ $$$$ \\ $$

Question Number 101633    Answers: 1   Comments: 2

∫x^x^x ∙x^x ∙x dx=?

$$\int\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \centerdot\mathrm{x}^{\mathrm{x}} \centerdot\mathrm{x}\:\mathrm{dx}=? \\ $$

Question Number 101625    Answers: 0   Comments: 1

Question Number 101615    Answers: 3   Comments: 4

Question Number 101616    Answers: 2   Comments: 1

Question Number 101610    Answers: 2   Comments: 0

Question Number 101608    Answers: 0   Comments: 0

∫_(0 ) ^(π/2) ln(((ln^2 (sin(θ)))/(π^2 +ln^2 (sin(θ)))))((ln(cos(θ)))/(tan(θ)))dθ

$$\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}\right)\frac{{ln}\left({cos}\left(\theta\right)\right)}{{tan}\left(\theta\right)}{d}\theta \\ $$

Question Number 101607    Answers: 0   Comments: 0

f(x)=(√(2x+7))+log_3 x f^(−1) (x)=?

$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2x}+\mathrm{7}}+\mathrm{log}_{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=?\:\:\:\:\:\: \\ $$

Question Number 101601    Answers: 1   Comments: 0

∫_((√2)−1) ^((√2)+1) ((x^4 +x^2 +1)/((x^2 +1)^2 ))dx

$$\int_{\sqrt{\mathrm{2}}−\mathrm{1}} ^{\sqrt{\mathrm{2}}+\mathrm{1}} \frac{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 101597    Answers: 0   Comments: 3

∫ ln (1+ e^x ) dx = ..

$$\:\int\:\mathrm{ln}\:\left(\mathrm{1}+\:{e}^{{x}} \right)\:{dx}\:=\:.. \\ $$

Question Number 101595    Answers: 2   Comments: 0

let f(x) =cos^n x 1) find f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie 3) detemine ∫ f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{cos}^{\mathrm{n}} \mathrm{x} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{detemine}\:\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 101585    Answers: 1   Comments: 0

∫_0 ^π (1/(a^2 −2a cosx + 1))dx (a<1) is

$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\:{cosx}\:+\:\mathrm{1}}{dx}\:\left({a}<\mathrm{1}\right)\:{is} \\ $$$$ \\ $$

Question Number 101582    Answers: 2   Comments: 0

lim_(n→∞) (1/n^2 ) Σ_(r=1) ^n r e^(r/n) =

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\:{r}\:{e}^{{r}/{n}} \:= \\ $$

Question Number 101590    Answers: 2   Comments: 1

p(2x+5)=(2x^2 +3x−1)Q(x+1) if Q(−1)=3 then p(1)=?

$$\mathrm{p}\left(\mathrm{2x}+\mathrm{5}\right)=\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{1}\right)\mathrm{Q}\left(\mathrm{x}+\mathrm{1}\right) \\ $$$$\mathrm{if}\:\mathrm{Q}\left(−\mathrm{1}\right)=\mathrm{3}\:\:\:\:\:\mathrm{then}\:\mathrm{p}\left(\mathrm{1}\right)=? \\ $$

Question Number 101589    Answers: 1   Comments: 0

if sin10^0 =x then sin70^0 =?

$$\mathrm{if}\:\mathrm{sin10}^{\mathrm{0}} =\mathrm{x}\:\:\:\:\:\:\:\:\:\:\mathrm{then}\:\:\:\mathrm{sin70}^{\mathrm{0}} =? \\ $$

Question Number 101871    Answers: 1   Comments: 0

if a_1 = −4 , a_2 =−1 and a_n = a_(n+1) +a_(n+3 ) . find a_4 −a_1 ?

$${if}\:{a}_{\mathrm{1}} =\:−\mathrm{4}\:,\:{a}_{\mathrm{2}} =−\mathrm{1}\:{and}\: \\ $$$${a}_{{n}} \:=\:{a}_{{n}+\mathrm{1}} +{a}_{{n}+\mathrm{3}\:} .\:{find}\: \\ $$$${a}_{\mathrm{4}} −{a}_{\mathrm{1}} ? \\ $$

Question Number 101860    Answers: 1   Comments: 1

Question Number 101851    Answers: 1   Comments: 0

Question Number 101568    Answers: 1   Comments: 0

Question Number 101563    Answers: 2   Comments: 0

Question Number 101558    Answers: 1   Comments: 0

if y=sin2x is the solution of differintial equation (d^2 y/dx^2 ) +4y=k then the k is .......

$${if}\:{y}={sin}\mathrm{2}{x}\:{is}\:{the}\:{solution}\:{of}\:{differintial}\:{equation}\: \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\mathrm{4}{y}={k}\:{then}\:{the}\:{k}\:{is}\:....... \\ $$

Question Number 101555    Answers: 1   Comments: 0

Question Number 101554    Answers: 3   Comments: 0

(1/(cos80))−((√3)/(sin80))=?

$$\frac{\mathrm{1}}{\mathrm{cos80}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{sin80}}=? \\ $$

Question Number 101553    Answers: 1   Comments: 0

solve the inequality (^3 log x+2)^(5x+1) ≥ (^3 log x +2)^(3−3x)

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{inequality} \\ $$$$\left(\:^{\mathrm{3}} \mathrm{log}\:{x}+\mathrm{2}\right)^{\mathrm{5}{x}+\mathrm{1}} \:\geqslant\:\left(\:^{\mathrm{3}} \mathrm{log}\:{x}\:+\mathrm{2}\right)^{\mathrm{3}−\mathrm{3}{x}} \\ $$

Question Number 101551    Answers: 2   Comments: 0

  Pg 1142      Pg 1143      Pg 1144      Pg 1145      Pg 1146      Pg 1147      Pg 1148      Pg 1149      Pg 1150      Pg 1151   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com