Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1147

Question Number 101762    Answers: 0   Comments: 2

Question Number 101756    Answers: 2   Comments: 0

∫ ((3x^2 −11x+6)/((x^2 +1)(x−5))) dx

$$\int\:\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{11}{x}+\mathrm{6}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{5}\right)}\:{dx}\: \\ $$

Question Number 101742    Answers: 3   Comments: 0

{ ((ab+a+b = 5)),((bc + b+c = 14)),((ac + a+c = 9)) :} find a+b+c = ___

$$\begin{cases}{{ab}+{a}+{b}\:=\:\mathrm{5}}\\{{bc}\:+\:{b}+{c}\:=\:\mathrm{14}}\\{{ac}\:+\:{a}+{c}\:=\:\mathrm{9}}\end{cases} \\ $$$$\mathrm{find}\:{a}+{b}+{c}\:=\:\_\_\_ \\ $$

Question Number 101747    Answers: 1   Comments: 0

∫(x^((−1)/2) /(1+x^(1/3) ))dx

$$\int\frac{{x}^{\frac{−\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dx} \\ $$

Question Number 101732    Answers: 2   Comments: 1

There are 10 identical mathematics books, 7 identical physics books and 5 identical chemistry books. Find the number of ways to compile the books under the condition that same books are not mutually adjacent.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{10}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{7}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books} \\ $$$$\mathrm{and}\:\mathrm{5}\:\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{compile}\: \\ $$$$\mathrm{the}\:\mathrm{books}\:\mathrm{under}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that} \\ $$$$\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually}\:\mathrm{adjacent}. \\ $$

Question Number 101715    Answers: 0   Comments: 1

Deleted a few comments.

$$\mathrm{Deleted}\:\mathrm{a}\:\mathrm{few}\:\mathrm{comments}. \\ $$

Question Number 101713    Answers: 3   Comments: 0

Let a and b be positive numbers satisfying a^2 + b^2 = 5, If a cos(θ) − b sin(θ) = 1, find a sin(θ) + b(cosθ)

$$\mathrm{Let}\:\:\:\mathrm{a}\:\:\mathrm{and}\:\:\mathrm{b}\:\:\mathrm{be}\:\mathrm{positive}\:\mathrm{numbers}\:\mathrm{satisfying}\:\:\:\mathrm{a}^{\mathrm{2}} \:\:+\:\:\mathrm{b}^{\mathrm{2}} \:\:=\:\:\mathrm{5}, \\ $$$$\mathrm{If}\:\:\:\:\mathrm{a}\:\mathrm{cos}\left(\theta\right)\:\:−\:\:\mathrm{b}\:\mathrm{sin}\left(\theta\right)\:\:=\:\:\mathrm{1},\:\:\:\:\:\mathrm{find}\:\:\:\:\mathrm{a}\:\mathrm{sin}\left(\theta\right)\:\:+\:\:\mathrm{b}\left(\mathrm{cos}\theta\right) \\ $$

Question Number 105246    Answers: 4   Comments: 0

lim_(x→0) (cosx)^(1/x^2 )

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{cos}{x}\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$

Question Number 101730    Answers: 0   Comments: 3

Version 2.091 is available: - Slightly darker characters are used by default. A preference setting is available to revert to previous font. Change setting and restart app. - A new menu option mark as answered is added. This just mark as answered so that question will not show in unanswered question search.

$$\mathrm{Version}\:\mathrm{2}.\mathrm{091}\:\mathrm{is}\:\mathrm{available}: \\ $$$$-\:\mathrm{Slightly}\:\mathrm{darker}\:\mathrm{characters}\:\mathrm{are} \\ $$$$\:\:\:\:\mathrm{used}\:\mathrm{by}\:\mathrm{default}. \\ $$$$\:\:\:\:\mathrm{A}\:\mathrm{preference}\:\mathrm{setting}\:\mathrm{is}\:\mathrm{available} \\ $$$$\:\:\:\:\mathrm{to}\:\mathrm{revert}\:\mathrm{to}\:\mathrm{previous}\:\mathrm{font}. \\ $$$$\:\:\:\:\mathrm{Change}\:\mathrm{setting}\:\mathrm{and}\:\mathrm{restart}\:\mathrm{app}. \\ $$$$-\:\mathrm{A}\:\mathrm{new}\:\mathrm{menu}\:\mathrm{option}\:\mathrm{mark}\:\mathrm{as} \\ $$$$\:\:\:\mathrm{answered}\:\mathrm{is}\:\mathrm{added}.\:\mathrm{This}\:\mathrm{just}\:\mathrm{mark} \\ $$$$\:\:\:\mathrm{as}\:\mathrm{answered}\:\mathrm{so}\:\mathrm{that}\:\mathrm{question}\:\mathrm{will} \\ $$$$\:\:\:\mathrm{not}\:\mathrm{show}\:\mathrm{in}\:\mathrm{unanswered}\:\mathrm{question} \\ $$$$\:\:\:\mathrm{search}. \\ $$

Question Number 101693    Answers: 3   Comments: 2

There are 4 identical mathematics books, 2 identic physics books and 2 identical chemistry books . How many ways to compile the eight books on the condition of the same book are not mutually adjacent?

$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{2}\:\mathrm{identic}\:\mathrm{physics}\:\mathrm{books} \\ $$$$\mathrm{and}\:\mathrm{2}\:\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books} \\ $$$$.\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{compile}\: \\ $$$$\mathrm{the}\:\mathrm{eight}\:\mathrm{books}\:\mathrm{on}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{book}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}? \\ $$

Question Number 101686    Answers: 0   Comments: 5

Question Number 105306    Answers: 1   Comments: 1

(1/(2+(√2))) +(1/(3(√2)+2(√3) ))+(1/(4(√3)+3(√4)))+...+(1/(100(√(99))+99(√(100))))

$$\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{3}}\:}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}\sqrt{\mathrm{4}}}+...+\frac{\mathrm{1}}{\mathrm{100}\sqrt{\mathrm{99}}+\mathrm{99}\sqrt{\mathrm{100}}} \\ $$

Question Number 101680    Answers: 2   Comments: 0

Question Number 101671    Answers: 0   Comments: 0

What is the set of point M in each case: 1) ∣∣6MG^(→) ∣∣=∣∣−2GC^(→) ∣∣ 2) (6MG^(→) )×(−2GC^(→) )=0

$${What}\:{is}\:{the}\:{set}\:{of}\:{point}\:{M}\:{in}\:{each} \\ $$$${case}: \\ $$$$\left.\mathrm{1}\right)\:\:\:\:\mid\mid\mathrm{6}\overset{\rightarrow} {{MG}}\mid\mid=\mid\mid−\mathrm{2}\overset{\rightarrow} {{GC}}\mid\mid \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\left(\mathrm{6}\overset{\rightarrow} {{MG}}\right)×\left(−\mathrm{2}\overset{\rightarrow} {{GC}}\right)=\mathrm{0} \\ $$

Question Number 105250    Answers: 1   Comments: 0

(1/(1×3))+(2/(1×3×5))+(3/(1×3×5×7))+.........n−terms Find sum

$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{1}×\mathrm{3}×\mathrm{5}}+\frac{\mathrm{3}}{\mathrm{1}×\mathrm{3}×\mathrm{5}×\mathrm{7}}+.........\mathrm{n}−\mathrm{terms} \\ $$$$\mathrm{Find}\:\mathrm{sum} \\ $$

Question Number 101650    Answers: 2   Comments: 1

Question Number 101658    Answers: 1   Comments: 0

solve in R x^3 −4x−1=0

$${solve}\:{in}\:\mathbb{R} \\ $$$${x}^{\mathrm{3}} −\mathrm{4}{x}−\mathrm{1}=\mathrm{0} \\ $$

Question Number 101645    Answers: 1   Comments: 0

E is a vectorial plane in B=(i^→ ,j^→ ) base. f is an endomorphism of E. f(i^→ )=4i^→ −j^→ and f(j^→ )=2i^→ +j^→ . u^→ =xi^→ +yj^→ ∈ E and x,y ∈ R. 1) Determinate f^( −1) (u).

$${E}\:{is}\:{a}\:{vectorial}\:{plane}\:{in}\:{B}=\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}}\right) \\ $$$${base}.\:{f}\:{is}\:{an}\:{endomorphism}\:{of}\:{E}. \\ $$$${f}\left(\overset{\rightarrow} {{i}}\right)=\mathrm{4}\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}\:{and}\:{f}\left(\overset{\rightarrow} {{j}}\right)=\mathrm{2}\overset{\rightarrow} {{i}}+\overset{\rightarrow} {{j}}. \\ $$$$\overset{\rightarrow} {{u}}={x}\overset{\rightarrow} {{i}}+{y}\overset{\rightarrow} {{j}}\:\in\:{E}\:{and}\:{x},{y}\:\in\:\mathbb{R}. \\ $$$$\left.\mathrm{1}\right)\:{Determinate}\:{f}^{\:−\mathrm{1}} \left({u}\right). \\ $$

Question Number 101641    Answers: 0   Comments: 1

hello every one for any user here please stop saying (please help me or who can help me or who is intellegent or.......) just post your question and if we can help you we will do.

$${hello}\:{every}\:{one} \\ $$$${for}\:{any}\:{user}\:{here}\:{please}\:{stop}\:{saying} \\ $$$$\left({please}\:{help}\:{me}\:{or}\:{who}\:{can}\:{help}\:{me}\:{or}\right. \\ $$$$\left.{who}\:{is}\:{intellegent}\:{or}.......\right) \\ $$$${just}\:{post}\:{your}\:{question}\:{and}\:{if}\:{we}\:{can} \\ $$$${help}\:{you}\:{we}\:{will}\:{do}. \\ $$$$ \\ $$

Question Number 101633    Answers: 1   Comments: 2

∫x^x^x ∙x^x ∙x dx=?

$$\int\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \centerdot\mathrm{x}^{\mathrm{x}} \centerdot\mathrm{x}\:\mathrm{dx}=? \\ $$

Question Number 101625    Answers: 0   Comments: 1

Question Number 101615    Answers: 3   Comments: 4

Question Number 101616    Answers: 2   Comments: 1

Question Number 101610    Answers: 2   Comments: 0

Question Number 101608    Answers: 0   Comments: 0

∫_(0 ) ^(π/2) ln(((ln^2 (sin(θ)))/(π^2 +ln^2 (sin(θ)))))((ln(cos(θ)))/(tan(θ)))dθ

$$\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}\right)\frac{{ln}\left({cos}\left(\theta\right)\right)}{{tan}\left(\theta\right)}{d}\theta \\ $$

Question Number 101607    Answers: 0   Comments: 0

f(x)=(√(2x+7))+log_3 x f^(−1) (x)=?

$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{2x}+\mathrm{7}}+\mathrm{log}_{\mathrm{3}} \mathrm{x} \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=?\:\:\:\:\:\: \\ $$

  Pg 1142      Pg 1143      Pg 1144      Pg 1145      Pg 1146      Pg 1147      Pg 1148      Pg 1149      Pg 1150      Pg 1151   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com