Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1147
Question Number 100960 Answers: 0 Comments: 1
$$\begin{cases}{\sqrt{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}}\:=\:\mathrm{3}−{x}}\\{\sqrt{{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}}\:=\:{x}+\mathrm{3}}\end{cases}\: \\ $$
Question Number 100994 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{A}\:=\begin{pmatrix}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}^{\mathrm{n}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{e}^{\mathrm{A}} \:,\mathrm{e}^{−\mathrm{A}} \\ $$$$\left.\mathrm{3}\right)\mathrm{determine}\:\mathrm{ch}\left(\mathrm{A}\right)\:\mathrm{and}\:\mathrm{sh}\left(\mathrm{A}\right)\:\:\mathrm{is}\:\mathrm{ch}^{\mathrm{2}} \mathrm{A}−\mathrm{sh}^{\mathrm{2}} \mathrm{A}\:=\mathrm{1}? \\ $$
Question Number 100956 Answers: 2 Comments: 0
Question Number 100954 Answers: 2 Comments: 1
$$\begin{cases}{\frac{\mathrm{1}}{\mathrm{2}{x}−{y}}\:+\:\sqrt{{y}}\:=\:\mathrm{1}}\\{\frac{\sqrt{{y}}}{\mathrm{2}{x}−{y}}\:=\:−\mathrm{6}}\end{cases} \\ $$
Question Number 100951 Answers: 0 Comments: 4
Question Number 100947 Answers: 0 Comments: 2
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+\sqrt{\mathrm{5}+.....\infty}}}}}=? \\ $$
Question Number 100943 Answers: 1 Comments: 0
$$\mathcal{D}\mathrm{etermine}\:\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}; \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{5}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} −\mathrm{1}} \\ $$
Question Number 100928 Answers: 2 Comments: 2
Question Number 100920 Answers: 1 Comments: 2
$${Find}\:{limit} \\ $$$$\:\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)\:\:\:{and} \\ $$$$\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}{x}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}\right)\:\:. \\ $$
Question Number 106447 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\:+\:\mathrm{tan}\:\mathrm{4}{x}}{\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{6}{x}}}\:=\:? \\ $$
Question Number 100916 Answers: 1 Comments: 0
$${solve}\:{the}\:{eqution}\:: \\ $$$$\frac{\mathrm{2}\:+\:{x}}{\mathrm{12}\:+\:\mathrm{4}{x}}\:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{x}} \:\:\:\:\:\:\:.,{x}\:=\mathrm{2}\: \\ $$
Question Number 100912 Answers: 0 Comments: 0
$${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:\begin{cases}{{x}\:\:\:\:\:\:\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}}\\{{x}+\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:\:\:\: \\ $$$${help}\:{me}\:{sir}\:? \\ $$
Question Number 100904 Answers: 3 Comments: 3
$$\mathrm{li}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{m}}\left[\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)......\mathrm{3}{n}}{{n}^{\mathrm{2}{n}} }\right]^{\frac{\mathrm{1}}{{n}}} \\ $$
Question Number 100902 Answers: 0 Comments: 1
$$\mathrm{solve}\:\mathrm{y}''−\mathrm{4y}'+\mathrm{4y}=\mathrm{0}\: \\ $$$$\mathrm{with}\:\mathrm{variation}\:\mathrm{method} \\ $$
Question Number 100899 Answers: 1 Comments: 0
$${find}\:{the}\:{fourier}\:{series}\:{of}\:{the}\:{function}\:{f}\left({x}\right)=\begin{cases}{{x}\:\:\:\:−\mathrm{2}\leqslant{x}\leqslant\mathrm{0}\:\:\:}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}}\end{cases}\:\:\:? \\ $$$${help}\:{me}\:{sir}\:? \\ $$
Question Number 102172 Answers: 0 Comments: 1
Question Number 100891 Answers: 1 Comments: 0
$$\mathrm{u}_{\mathrm{tt}} \:=\:\mathrm{u}_{\mathrm{xx}} \:−\:\mathrm{6x}\:;\:\mathrm{0}\leqslant\mathrm{x}<\pi\:,\:\mathrm{t}>\mathrm{0} \\ $$$$\mathrm{u}_{\left(\mathrm{0},\mathrm{t}\right)} \:=\:\mathrm{0}\:;\:\mathrm{u}_{\left(\pi,\mathrm{t}\right)} \:=\:\pi^{\mathrm{3}} +\mathrm{3}\pi \\ $$$$\mathrm{u}_{\left(\mathrm{x},\mathrm{0}\right)} \:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{3x}+\mathrm{3sin}\:\mathrm{x} \\ $$$$\mathrm{u}_{\mathrm{t}} \left(\mathrm{x},\mathrm{0}\right)\:=\:\mathrm{0}\: \\ $$
Question Number 100887 Answers: 0 Comments: 0
Question Number 100888 Answers: 0 Comments: 0
$${Find}\:{all}\:{pairs}\:\left({k},{n}\right)\:{of}\:{positive}\: \\ $$$${integer}\:{for}\:{which}\:\mathrm{7}^{{k}} −\mathrm{3}^{{n}} \:{divides} \\ $$$${k}^{\mathrm{4}} +{n}^{\mathrm{2}} \:. \\ $$
Question Number 100879 Answers: 2 Comments: 1
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{2}^{\mathrm{x}} +\mathrm{8x}=\mathrm{4} \\ $$
Question Number 100873 Answers: 0 Comments: 4
$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{5}}&{\mathrm{3}}\\{\mathrm{4}}&{\mathrm{6}}&{\mathrm{7}}\\{\mathrm{9}}&{\mathrm{2}}&{\mathrm{8}}\end{bmatrix}+\begin{bmatrix}{\mathrm{9}}&{\mathrm{5}}&{\mathrm{7}}\\{\mathrm{6}}&{\mathrm{4}}&{\mathrm{3}}\\{\mathrm{1}}&{\mathrm{8}}&{\mathrm{2}}\end{bmatrix} \\ $$
Question Number 100870 Answers: 0 Comments: 1
Question Number 100866 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{3x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{2xy}^{'} \:+\mathrm{4y}\:=\mathrm{0} \\ $$
Question Number 100948 Answers: 0 Comments: 1
Question Number 100843 Answers: 0 Comments: 0
$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\boldsymbol{{ln}}\left(\boldsymbol{{k}}\right)}{\boldsymbol{{k}}!}\:=\:? \\ $$
Question Number 100850 Answers: 2 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{102}} \left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right).....\left({x}−\mathrm{100}\right)×\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\mathrm{1}}{{x}−\mathrm{2}}+...+\frac{\mathrm{1}}{{x}−\mathrm{100}}\right){dx} \\ $$
Pg 1142 Pg 1143 Pg 1144 Pg 1145 Pg 1146 Pg 1147 Pg 1148 Pg 1149 Pg 1150 Pg 1151
Terms of Service
Privacy Policy
Contact: info@tinkutara.com