Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1144

Question Number 102444    Answers: 1   Comments: 0

find the area bounded the curves y^2 = 36+12x and y^2 =16−8x

$${find}\:{the}\:{area}\:{bounded}\:{the} \\ $$$${curves}\:{y}^{\mathrm{2}} =\:\mathrm{36}+\mathrm{12}{x}\:{and}\: \\ $$$${y}^{\mathrm{2}} =\mathrm{16}−\mathrm{8}{x}\: \\ $$

Question Number 102418    Answers: 1   Comments: 0

Question Number 102417    Answers: 3   Comments: 0

calculate ∫_0 ^∞ e^(−x) ln(1+e^x )dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$

Question Number 102416    Answers: 2   Comments: 0

calculate ∫_0 ^1 e^(−x) ln(1+e^x )dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$

Question Number 102407    Answers: 0   Comments: 0

Sir MJS & Sir John Santu You both have decided to leave this forum for different reasons. Being agree with your reasons and accepting your right of decision I dare to suggest not to disconnect fully from the forum.Please stay connected although for very short time on daily/weekly basis.This is also necessary because we have no means to contact you. After all this is only a request. You may or may not accept it.

$$\mathrm{Sir}\:\mathrm{MJS}\:\&\:\mathrm{Sir}\:\mathrm{John}\:\mathrm{Santu} \\ $$$${You}\:{both}\:{have}\:{decided}\:{to}\:{leave} \\ $$$${this}\:{forum}\:{for}\:{different}\:{reasons}. \\ $$$${Being}\:{agree}\:{with}\:{your}\:{reasons} \\ $$$${and}\:{accepting}\:{your}\:{right}\:{of}\: \\ $$$${decision}\:{I}\:{dare}\:{to}\:{suggest}\:{not} \\ $$$${to}\:{disconnect}\:{fully}\:{from}\:{the} \\ $$$${forum}.{Please}\:{stay}\:{connected} \\ $$$${although}\:{for}\:{very}\:{short}\:{time}\:{on} \\ $$$${daily}/{weekly}\:{basis}.\mathcal{T}{his}\:{is}\:{also} \\ $$$${necessary}\:{because}\:{we}\:{have}\:{no} \\ $$$${means}\:{to}\:{contact}\:{you}. \\ $$$$\:\:\:\:\mathcal{A}{fter}\:{all}\:{this}\:{is}\:{only}\:{a}\:{request}. \\ $$$${You}\:{may}\:{or}\:{may}\:{not}\:{accept}\:{it}. \\ $$$$ \\ $$

Question Number 102397    Answers: 0   Comments: 0

∫ln(x−(√x)+1)dx

$$\int{ln}\left({x}−\sqrt{{x}}+\mathrm{1}\right){dx} \\ $$

Question Number 102383    Answers: 0   Comments: 2

∫(x/(sin^2 x−3))

$$\int\frac{{x}}{{sin}^{\mathrm{2}} {x}−\mathrm{3}} \\ $$

Question Number 102382    Answers: 1   Comments: 0

x^2 ∙(dy/dx)=x^2 +xy+y^2

$$\mathrm{x}^{\mathrm{2}} \centerdot\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} \\ $$

Question Number 102381    Answers: 0   Comments: 0

∫((x(√6)sec^2 (x/2))/(1+9tan^4 (x/2)+18tan^2 (x/2)))dx

$$\int\frac{{x}\sqrt{\mathrm{6}}{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+\mathrm{9}{tan}^{\mathrm{4}} \frac{{x}}{\mathrm{2}}+\mathrm{18}{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$

Question Number 102380    Answers: 0   Comments: 0

Question Number 102369    Answers: 3   Comments: 0

find the area bounded inner the curve r = 4−2cos θ and outer the curve r = 6+2cos θ

$${find}\:{the}\:{area}\:{bounded}\:{inner}\:{the}\:{curve} \\ $$$${r}\:=\:\mathrm{4}−\mathrm{2cos}\:\theta\:{and}\:{outer}\:{the}\:{curve}\:{r}\:=\:\mathrm{6}+\mathrm{2cos}\:\theta \\ $$

Question Number 102362    Answers: 0   Comments: 0

please how calculate the development limity of f(x,y)=x^y ,take a( 3,2) at order one and two

$${please}\:{how}\:{calculate}\:{the}\:{development}\:\:{limity}\:{of}\:{f}\left({x},{y}\right)={x}^{{y}} \\ $$$$\:,{take}\:{a}\left(\:\mathrm{3},\mathrm{2}\right)\:{at}\:{order}\:{one}\:{and}\:{two} \\ $$

Question Number 102390    Answers: 2   Comments: 4

asinθ+bcosθ=c acosecθ+bsecθ=c prove that sin2θ=((2ab)/(c^2 −a^2 −b^2 ))

$${asin}\theta+{bcos}\theta={c} \\ $$$${acosec}\theta+{bsec}\theta={c} \\ $$$$ \\ $$$${prove}\:{that}\:\:\:\:{sin}\mathrm{2}\theta=\frac{\mathrm{2}{ab}}{{c}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$

Question Number 102357    Answers: 2   Comments: 0

for A={1,2,3,4,5,6,7},compute the number of: (a) Subsets of A. (b) Nonempty subsets of A. (c) proper subsets of A. (d) Non empty proper subset of A. (e) Subsets of A containing three element. (f) Subsets of A containing 1,2. (g) Proper subsets of A containing 1,2. (h) Subset of A with an even number of element. (i) Subset of A with an odd number of element. (j) Subsets of A with an odd number of elements, including the element 3.

$${for}\:{A}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7}\right\},{compute}\:{the}\:{number}\:{of}: \\ $$$$\left({a}\right)\:{Subsets}\:{of}\:{A}. \\ $$$$\left({b}\right)\:{Nonempty}\:{subsets}\:{of}\:{A}. \\ $$$$\left({c}\right)\:{proper}\:{subsets}\:{of}\:{A}. \\ $$$$\left({d}\right)\:{Non}\:{empty}\:{proper}\:{subset}\:{of}\:{A}. \\ $$$$\left({e}\right)\:{Subsets}\:{of}\:{A}\:{containing}\:{three}\:{element}. \\ $$$$\left({f}\right)\:{Subsets}\:{of}\:{A}\:{containing}\:\mathrm{1},\mathrm{2}. \\ $$$$\left({g}\right)\:{Proper}\:{subsets}\:{of}\:{A}\:{containing}\:\mathrm{1},\mathrm{2}. \\ $$$$\left({h}\right)\:{Subset}\:{of}\:{A}\:{with}\:{an}\:{even}\:{number}\:{of}\:{element}. \\ $$$$\left({i}\right)\:{Subset}\:{of}\:{A}\:{with}\:{an}\:{odd}\:{number}\:{of}\:{element}. \\ $$$$\left({j}\right)\:{Subsets}\:{of}\:{A}\:{with}\:{an}\:{odd}\:{number}\:{of}\:{elements},\:{including}\:{the}\:{element}\:\mathrm{3}. \\ $$

Question Number 102348    Answers: 1   Comments: 0

Question Number 102347    Answers: 2   Comments: 2

Question Number 102341    Answers: 4   Comments: 0

∫((xdx)/((1+x^2 )(√(1−x^2 ))))

$$\int\frac{\mathrm{xdx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }} \\ $$

Question Number 102342    Answers: 2   Comments: 2

If { ((x=2t+sin 2t)),((y=e^(sin 2t) )) :} prove that (1/y).(dy/dx) = tan ((π/4)−t)

$${If}\:\begin{cases}{{x}=\mathrm{2}{t}+\mathrm{sin}\:\mathrm{2}{t}}\\{{y}={e}^{\mathrm{sin}\:\mathrm{2}{t}} }\end{cases} \\ $$$${prove}\:{that}\:\frac{\mathrm{1}}{{y}}.\frac{{dy}}{{dx}}\:=\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}−{t}\right) \\ $$

Question Number 102336    Answers: 1   Comments: 1

if f(x)≤2l +1 and ∫_1 ^3 f(x)dx≤l^2 find the value of l

$${if}\:\:{f}\left({x}\right)\leqslant\mathrm{2}{l}\:+\mathrm{1}\: \\ $$$${and}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} {f}\left({x}\right){dx}\leqslant{l}^{\mathrm{2}} \\ $$$${find}\:{the}\:{value}\:{of}\:{l} \\ $$

Question Number 102366    Answers: 3   Comments: 0

∫_0 ^(π/2) ((cos x)/(1+cos x+sin x)) dx ?

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}+\mathrm{sin}\:{x}}\:{dx}\:? \\ $$

Question Number 102303    Answers: 2   Comments: 1

∫ ((1+csc 2x)/(1−sin 2x)) dx ?

$$\int\:\frac{\mathrm{1}+\mathrm{csc}\:\mathrm{2}{x}}{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:? \\ $$

Question Number 102301    Answers: 0   Comments: 6

to all friends in this forum. i′ll be off for a while . thank you for the discussion in this forum . see you another time. (JS ⊛)

$${to}\:{all}\:{friends}\:{in}\:{this}\:{forum}. \\ $$$${i}'{ll}\:{be}\:{off}\:{for}\:{a}\:{while}\:.\:{thank}\:{you} \\ $$$${for}\:{the}\:{discussion}\:{in}\:{this}\:{forum} \\ $$$$.\:{see}\:{you}\:{another}\:{time}.\:\left({JS}\:\circledast\right) \\ $$

Question Number 102298    Answers: 1   Comments: 0

sinx∙(dy/dx)−ycosx=y^3 sin^2 xcosx

$$\mathrm{sinx}\centerdot\frac{\mathrm{dy}}{\mathrm{dx}}−\mathrm{ycosx}=\mathrm{y}^{\mathrm{3}} \mathrm{sin}^{\mathrm{2}} \mathrm{xcosx} \\ $$

Question Number 102296    Answers: 1   Comments: 0

lim_(t→∞) (1/t) ∫_0 ^t sin (αx) cos (βx) dx

$$\underset{{t}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{t}}\:\underset{\mathrm{0}} {\overset{{t}} {\int}}\:\mathrm{sin}\:\left(\alpha{x}\right)\:\mathrm{cos}\:\left(\beta{x}\right)\:{dx} \\ $$

Question Number 102295    Answers: 0   Comments: 0

Solve the equation : (x^2 lny−x)y′=y

$$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\:: \\ $$$$\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{lny}}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{y}}'=\boldsymbol{\mathrm{y}} \\ $$

Question Number 102330    Answers: 0   Comments: 0

Do this integration(please do it step by step and write the used formula) ∫(1/2)(sin x)(e^(sin x) )dx

$${Do}\:{this}\:{integration}\left({please}\:{do}\:{it}\:{step}\:{by}\:{step}\:{and}\:{write}\:{the}\:{used}\:{formula}\right) \\ $$$$\int\frac{\mathrm{1}}{\mathrm{2}}\left({sin}\:{x}\right)\left({e}^{{sin}\:{x}} \right){dx} \\ $$

  Pg 1139      Pg 1140      Pg 1141      Pg 1142      Pg 1143      Pg 1144      Pg 1145      Pg 1146      Pg 1147      Pg 1148   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com