Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1144

Question Number 101402    Answers: 0   Comments: 3

I desire the developmenter of this apps improve adding some other functions like as:choose whole text by tap in text or choose some line at one time has many colours more

$$\mathrm{I}\:\mathrm{desire}\:\mathrm{the}\:\mathrm{developmenter}\:\mathrm{of}\:\mathrm{this}\:\mathrm{apps} \\ $$$$\mathrm{improve}\:\mathrm{adding}\:\mathrm{some}\:\mathrm{other}\:\mathrm{functions} \\ $$$$\mathrm{like}\:\mathrm{as}:\mathrm{choose}\:\mathrm{whole}\:\mathrm{text}\:\mathrm{by}\:\mathrm{tap}\:\mathrm{in} \\ $$$$\mathrm{text}\:\mathrm{or}\:\mathrm{choose}\:\mathrm{some}\:\mathrm{line}\:\mathrm{at}\:\mathrm{one}\:\mathrm{time} \\ $$$$\mathrm{has}\:\mathrm{many}\:\mathrm{colours}\:\mathrm{more} \\ $$

Question Number 101330    Answers: 0   Comments: 5

Evaluate. ∫_(−π) ^π x^9 cos x dx

$${Evaluate}. \\ $$$$\int_{−\pi} ^{\pi} {x}^{\mathrm{9}} \mathrm{cos}\:{x}\:{dx} \\ $$

Question Number 101329    Answers: 1   Comments: 0

Question Number 101328    Answers: 0   Comments: 1

this i a beautifull old question in the forum by sir.Ali Esam i Reposted it trying to find any idea to solve I=∫_(−1) ^1 (((sin(x))/(sinh^(−1) (x))))(((sin^(−1) (x))/(sinh(x))))dx i solved it numerical the value is 2.03383

$${this}\:{i}\:{a}\:{beautifull}\:{old}\:{question}\:{in}\:{the}\:{forum} \\ $$$${by}\:{sir}.{Ali}\:{Esam}\:{i}\:{Reposted}\:{it}\:{trying}\:{to} \\ $$$${find}\:{any}\:{idea}\:{to}\:{solve} \\ $$$$ \\ $$$${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\frac{{sin}\left({x}\right)}{{sinh}^{−\mathrm{1}} \left({x}\right)}\right)\left(\frac{{sin}^{−\mathrm{1}} \left({x}\right)}{{sinh}\left({x}\right)}\right){dx} \\ $$$$ \\ $$$${i}\:{solved}\:{it}\:{numerical}\: \\ $$$${the}\:{value}\:{is}\:\mathrm{2}.\mathrm{03383} \\ $$

Question Number 101319    Answers: 1   Comments: 4

find the area bounded the parabola y=4x^2 and y=8−4x^2 ? by using intigral? help me

$${find}\:{the}\:{area}\:{bounded}\:{the}\:{parabola}\: \\ $$$${y}=\mathrm{4}{x}^{\mathrm{2}} \:\:\:{and}\:\:{y}=\mathrm{8}−\mathrm{4}{x}^{\mathrm{2}} \:\:?\:\:{by}\:{using}\:{intigral}? \\ $$$${help}\:{me} \\ $$

Question Number 101273    Answers: 0   Comments: 0

caoculate lim_(x→0) ((sh(sin(2x))−sin(sh(2x)))/x^3 )

$$\mathrm{caoculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{sh}\left(\mathrm{sin}\left(\mathrm{2x}\right)\right)−\mathrm{sin}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 101272    Answers: 1   Comments: 2

∫(√(sec x)) dx

$$\int\sqrt{\mathrm{sec}\:{x}}\:{dx}\: \\ $$

Question Number 101271    Answers: 0   Comments: 2

find ∫ ((xdx)/((√(x^2 +x+1))+(√(x^2 −x+1))))

$$\mathrm{find}\:\int\:\:\:\frac{\mathrm{xdx}}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}} \\ $$

Question Number 101270    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^2 (x+2)^2 (x+3)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 101269    Answers: 1   Comments: 0

calculate ∫_4 ^(+∞) (dx/((x−2)^5 (x+3)^7 ))

$$\mathrm{calculate}\:\int_{\mathrm{4}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{7}} } \\ $$

Question Number 101268    Answers: 1   Comments: 0

calculate ∫_(−∞) ^∞ ((cos(arctan(2x+1)))/(x^2 +2x+2))dx

$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{arctan}\left(\mathrm{2x}+\mathrm{1}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2x}+\mathrm{2}}\mathrm{dx} \\ $$

Question Number 101266    Answers: 0   Comments: 0

calculate ∫_1 ^(+∞) (dx/(x^2 (x+1)^3 (x+2)^4 ))

$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$

Question Number 101286    Answers: 0   Comments: 3

∫(((x^m −x^n )^2 )/(√x))dx=?

$$\int\frac{\left(\mathrm{x}^{\mathrm{m}} −\mathrm{x}^{\mathrm{n}} \right)^{\mathrm{2}} }{\sqrt{\mathrm{x}}}\mathrm{dx}=? \\ $$

Question Number 101258    Answers: 2   Comments: 2

minimum value f(x,y)=x^2 +y^2 with constrain g(x,y)= x^2 y−16

$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{with}\:\mathrm{constrain}\:\mathrm{g}\left(\mathrm{x},\mathrm{y}\right)=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{16} \\ $$

Question Number 101252    Answers: 0   Comments: 1

(√(1+2(√(1+4(√(1+5(√(1+6(√(1+7(√(1+8..))))))))))))∞=?

$$\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{\mathrm{1}+\mathrm{5}\sqrt{\mathrm{1}+\mathrm{6}\sqrt{\mathrm{1}+\mathrm{7}\sqrt{\mathrm{1}+\mathrm{8}..}}}}}}\infty=? \\ $$

Question Number 101250    Answers: 0   Comments: 0

Question Number 101249    Answers: 0   Comments: 8

As request by many users earlier, ability to convert written equations to plain text is now available. Plain text may be useful when you need to enter question content on internet sites. Standard convention for limits and power are used during processing and sites so one liner integral, summation, limits derviates should be directly usable. You might need do some small editing depending upon app used. Parser is implemented on server.

$$\mathrm{As}\:\mathrm{request}\:\mathrm{by}\:\mathrm{many}\:\mathrm{users}\:\mathrm{earlier}, \\ $$$$\mathrm{ability}\:\mathrm{to}\:\mathrm{convert}\:\mathrm{written}\:\mathrm{equations} \\ $$$$\mathrm{to}\:\mathrm{plain}\:\mathrm{text}\:\mathrm{is}\:\mathrm{now}\:\mathrm{available}. \\ $$$$\mathrm{Plain}\:\mathrm{text}\:\mathrm{may}\:\mathrm{be}\:\mathrm{useful}\:\mathrm{when}\:\mathrm{you} \\ $$$$\mathrm{need}\:\mathrm{to}\:\mathrm{enter}\:\mathrm{question}\:\mathrm{content} \\ $$$$\mathrm{on}\:\mathrm{internet}\:\mathrm{sites}. \\ $$$$\mathrm{Standard}\:\mathrm{convention}\:\mathrm{for}\:\mathrm{limits} \\ $$$$\mathrm{and}\:\mathrm{power}\:\mathrm{are}\:\mathrm{used}\:\mathrm{during}\:\mathrm{processing} \\ $$$$\mathrm{and}\:\mathrm{sites}\:\mathrm{so}\:\mathrm{one}\:\mathrm{liner}\:\mathrm{integral}, \\ $$$$\mathrm{summation},\:\mathrm{limits}\:\mathrm{derviates}\:\mathrm{should} \\ $$$$\mathrm{be}\:\mathrm{directly}\:\mathrm{usable}.\:\mathrm{You}\:\mathrm{might} \\ $$$$\mathrm{need}\:\mathrm{do}\:\mathrm{some}\:\mathrm{small}\:\mathrm{editing} \\ $$$$\mathrm{depending}\:\mathrm{upon}\:\mathrm{app}\:\mathrm{used}. \\ $$$$\boldsymbol{\mathrm{Parser}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{implemented}}\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{server}}. \\ $$

Question Number 101248    Answers: 0   Comments: 0

Π_(p∈P/(2..3)) ((1/p))^2 =? p is prime number Any help ?

$$\:\:\:\underset{\boldsymbol{{p}}\in\boldsymbol{{P}}/\left(\mathrm{2}..\mathrm{3}\right)} {\prod}\left(\frac{\mathrm{1}}{\boldsymbol{{p}}}\right)^{\mathrm{2}} =?\:\:\:\:\:\boldsymbol{{p}}\:{is}\:{prime}\:{number} \\ $$$${Any}\:{help}\:? \\ $$

Question Number 101247    Answers: 1   Comments: 0

Question Number 101243    Answers: 0   Comments: 3

Find the solution xa^(1/x) +(1/x)a^x =2a a∈{−1,0,1} and also find when a is not given

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$$$\:\:\mathrm{xa}^{\frac{\mathrm{1}}{\mathrm{x}}} +\frac{\mathrm{1}}{\mathrm{x}}\mathrm{a}^{\mathrm{x}} =\mathrm{2a}\:\:\:\mathrm{a}\in\left\{−\mathrm{1},\mathrm{0},\mathrm{1}\right\}\:\:\:{and}\:{also}\:{find}\:{when}\:{a}\:\:{is}\:{not}\:{given} \\ $$

Question Number 101307    Answers: 0   Comments: 5

Some comments with inapproriate language were deleted. Kindly refrain from posting abusive comments. Forum has been around for a long time without these occurrences. Every new user, please scroll through the previous posts and abide by the established conventions followed by everyone else.

$$\mathrm{Some}\:\mathrm{comments}\:\mathrm{with}\:\mathrm{inapproriate} \\ $$$$\mathrm{language}\:\mathrm{were}\:\mathrm{deleted}. \\ $$$$\mathrm{Kindly}\:\mathrm{refrain}\:\mathrm{from}\:\mathrm{posting}\:\mathrm{abusive} \\ $$$$\mathrm{comments}.\:\mathrm{Forum}\:\mathrm{has}\:\mathrm{been}\:\mathrm{around} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{long}\:\mathrm{time}\:\mathrm{without}\:\mathrm{these} \\ $$$$\mathrm{occurrences}. \\ $$$$\mathrm{Every}\:\mathrm{new}\:\mathrm{user},\:\mathrm{please}\:\mathrm{scroll}\:\mathrm{through} \\ $$$$\mathrm{the}\:\mathrm{previous}\:\mathrm{posts}\:\mathrm{and}\:\mathrm{abide}\:\mathrm{by}\:\mathrm{the}\: \\ $$$$\mathrm{established}\:\mathrm{conventions}\:\mathrm{followed}\:\mathrm{by}\: \\ $$$$\mathrm{everyone}\:\mathrm{else}. \\ $$

Question Number 101239    Answers: 1   Comments: 0

lim_(x→∞) (((1+(1/2)+(1/3)+......+(1/n))/(1+(1/3)+(1/5)......+(1/(2n+1)))))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+......+\frac{\mathrm{1}}{{n}}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}......+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}}\right) \\ $$

Question Number 101234    Answers: 0   Comments: 0

Show that the greatest integer function is Riemann integrable within all segments of R

$$\mathcal{S}\mathrm{how}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}\:\mathrm{is}\:\mathrm{Riemann} \\ $$$$\mathrm{integrable}\:\mathrm{within}\:\mathrm{all}\:\mathrm{segments}\:\mathrm{of}\:\mathbb{R} \\ $$

Question Number 101231    Answers: 1   Comments: 1

Question Number 101225    Answers: 0   Comments: 4

Question Number 101220    Answers: 1   Comments: 0

∫∫_D (√(x^2 +y^2 ))dxdy D= { (((x,y)∈R, x^2 +y^2 ≥2y, x^2 +y^2 ≤1)),((x≥0 , y≥0)) :}

$$\int\int_{\mathrm{D}} \sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy}\:\:\:\mathcal{D}=\begin{cases}{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \geqslant\mathrm{2y},\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant\mathrm{1}}\\{\mathrm{x}\geqslant\mathrm{0}\:,\:\mathrm{y}\geqslant\mathrm{0}}\end{cases} \\ $$

  Pg 1139      Pg 1140      Pg 1141      Pg 1142      Pg 1143      Pg 1144      Pg 1145      Pg 1146      Pg 1147      Pg 1148   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com