Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1144
Question Number 102545 Answers: 1 Comments: 0
Question Number 102544 Answers: 2 Comments: 0
Question Number 102539 Answers: 3 Comments: 2
$$\mathrm{2}+\mathrm{3}.\mathrm{3}+\mathrm{4}.\mathrm{3}^{\mathrm{2}} +\mathrm{5}.\mathrm{3}^{\mathrm{2}} +.....{up}\:{to}\:{n}\:{terms} \\ $$
Question Number 102530 Answers: 0 Comments: 1
Question Number 102527 Answers: 3 Comments: 0
$$\mathrm{2}{y}''−{y}'+{y}\:=\:\mathrm{cos}\:\mathrm{3}{x}\: \\ $$
Question Number 102524 Answers: 1 Comments: 1
Question Number 102517 Answers: 0 Comments: 1
$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dy}\:+\:\left(\mathrm{1}+{y}^{\mathrm{2}} \right){dx}\:=\:\mathrm{0} \\ $$
Question Number 102515 Answers: 2 Comments: 0
$$\left(\frac{{x}}{{y}}\right){y}'=\:\frac{\mathrm{2}{y}^{\mathrm{2}} +\mathrm{1}}{{x}+\mathrm{1}} \\ $$
Question Number 102510 Answers: 2 Comments: 0
$${li}\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {{m}}\frac{{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{3}}{x}+\frac{\mathrm{1}}{\mathrm{3}}\bigtriangleup{x}\right)−{sin}^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{3}}{x}}{\bigtriangleup{x}}=? \\ $$
Question Number 102508 Answers: 0 Comments: 5
$${li}\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {{m}}\frac{{e}^{{sin}\left({x}−\bigtriangleup{x}\right)} −{e}^{{sinx}} }{\bigtriangleup{x}}=? \\ $$
Question Number 102507 Answers: 0 Comments: 2
$${li}\underset{{x}\rightarrow{e}^{{lnx}} } {{m}}\left(\frac{{x}}{{e}^{{lnx}} }\right)^{−{logx}} =? \\ $$
Question Number 102491 Answers: 0 Comments: 0
$$ \\ $$$$\boldsymbol{{L}}{e}\boldsymbol{{ts}}\:\boldsymbol{{p}}\:\in\mathbb{N}\:\boldsymbol{{and}}\:\boldsymbol{{n}}\in\mathbb{N}^{\ast} \\ $$$$\boldsymbol{{A}}_{{n}} =\mathrm{2}^{\boldsymbol{{n}}} +\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{d}}_{\boldsymbol{{n}}} =\boldsymbol{{P}}{GCD}\left(\boldsymbol{{A}}_{{n}} ,\boldsymbol{{A}}_{\boldsymbol{{n}}+\mathrm{1}} \right) \\ $$$$\left.\mathrm{1}\right)\:\boldsymbol{{show}}\:\boldsymbol{{that}}\:\:\boldsymbol{{d}}_{\boldsymbol{{n}}} /\mathrm{2}^{\boldsymbol{{n}}} \\ $$$$\left.\mathrm{2}\right)\boldsymbol{{determine}}\:\boldsymbol{{the}}\:\boldsymbol{{parity}}\:{of}\:\boldsymbol{{A}}_{{n}} \:{as}\:{a}\:{function}\:{of}\:{that}\:\boldsymbol{{of}}\:\boldsymbol{{p}} \\ $$$$\left.\mathrm{3}\right){determine}\:{the}\:{parity}\:{of}\:\boldsymbol{{d}}_{\boldsymbol{{n}}} \:{as}\:{a}\:{function}\:{of}\:{that}\:{of}\:\boldsymbol{{p}} \\ $$$$\left.\mathrm{4}\right){deduce}\:{pgcd}\left(\mathrm{2}^{\mathrm{2009}} +\mathrm{2009},\mathrm{2}^{\mathrm{2010}} +\mathrm{2009}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 102490 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} −{bx}−{c}=\mathrm{0}\:\:\:\:\:;\:\:{b},\:{c}\:>\mathrm{0}\:;\:\:\left(\frac{{b}}{\mathrm{3}}\right)^{\mathrm{3}} >\left(\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${To}\:{find}\:{the}\:{three}\:{real}\:{roots}\:{without} \\ $$$${the}\:{use}\:{of}\:{trigonometric}\:{solution} \\ $$$${to}\:{cubic}\:{polynomial}... \\ $$
Question Number 102484 Answers: 1 Comments: 0
Question Number 102480 Answers: 1 Comments: 0
$${n}\:{positive}\:{integer}.\:{when} \\ $$$${dividen}\:{by}\:\mathrm{7}\:{give}\:{remainder}\:\mathrm{4} \\ $$$${and}\:{when}\:{divided}\:{by}\:\mathrm{4}\:{give} \\ $$$${remainder}\:\mathrm{2}.\:{find}\:{the}\:{value} \\ $$$${of}\:{n}\: \\ $$
Question Number 102474 Answers: 1 Comments: 0
$$\boldsymbol{{U}}{n}=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{{n}} \\ $$$${show}\:{that}\:{we}\:{have}\:\boldsymbol{{p}}_{\boldsymbol{{n}}} \in\mathbb{N}\:/ \\ $$$$\boldsymbol{{U}}_{\boldsymbol{{n}}} =\sqrt{{p}_{{n}} }+\sqrt{{p}_{{n}} +\mathrm{1}} \\ $$
Question Number 102470 Answers: 1 Comments: 0
$$\int\frac{{dx}}{{x}^{\mathrm{10}} +{x}^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 102467 Answers: 1 Comments: 5
$${hello}\:{friends},\:{is}\:{zero}\:{an}\: \\ $$$${even}\:{or}\:{odd}\:{number}\:{or}\:{not}\: \\ $$$${both}? \\ $$
Question Number 102462 Answers: 8 Comments: 0
$$\mathrm{Calculate}\:; \\ $$$$\mathrm{J}=\int\frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{K}=\int\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{x}−\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$\mathrm{L}=\int\frac{\mathrm{dx}}{\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Question Number 102461 Answers: 1 Comments: 0
$$\int\:\frac{{dx}}{\sqrt{\mathrm{5}{e}^{\mathrm{2}{x}} +\mathrm{4}{e}^{{x}} +\mathrm{1}}}\:=? \\ $$
Question Number 102555 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{98}} −\mathrm{99}{x}+\mathrm{98}}{{logx}}{dx} \\ $$
Question Number 102450 Answers: 3 Comments: 2
Question Number 102444 Answers: 1 Comments: 0
$${find}\:{the}\:{area}\:{bounded}\:{the} \\ $$$${curves}\:{y}^{\mathrm{2}} =\:\mathrm{36}+\mathrm{12}{x}\:{and}\: \\ $$$${y}^{\mathrm{2}} =\mathrm{16}−\mathrm{8}{x}\: \\ $$
Question Number 102418 Answers: 1 Comments: 0
Question Number 102417 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$
Question Number 102416 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$
Pg 1139 Pg 1140 Pg 1141 Pg 1142 Pg 1143 Pg 1144 Pg 1145 Pg 1146 Pg 1147 Pg 1148
Terms of Service
Privacy Policy
Contact: info@tinkutara.com