Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1142
Question Number 103622 Answers: 2 Comments: 0
$${Given}\:{a}\:=\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{24}} {\sum}}\frac{\mathrm{1}}{\sqrt{{n}+\mathrm{1}}+\sqrt{{n}}}\:{then}\:{the}\:{value}\:{of} \\ $$$${a}\:+\:\frac{\mathrm{1}}{\mathrm{log}\:_{{a}} \left({bc}\right)+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{log}\:_{{b}} \left({ac}\right)+\mathrm{1}}\:+ \\ $$$$\frac{\mathrm{1}}{\mathrm{log}\:_{{c}} \left({ab}\right)+\mathrm{1}}\:=\:? \\ $$
Question Number 103620 Answers: 1 Comments: 0
$${If}\:{a}^{\mathrm{2}} −{bc},\:{b}^{\mathrm{2}} −{ac},\:{c}^{\mathrm{2}} −{ab}\:{is}\:{AP}\:{where}\:{a}+{c} \\ $$$$=\:\mathrm{12},\:{find}\:{the}\:{value}\:{of}\:{a}+{b}+{c}\: \\ $$
Question Number 103607 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{value}\:{of}\:\int_{{c}} \left({x}+\mathrm{2}{y}\right){dx}+\left(\mathrm{4}−\mathrm{2}{x}\right){dy} \\ $$$${around}\:{the}\:{ellipse}\:{C}:\:\frac{{x}^{\mathrm{2}} }{\mathrm{16}}+\frac{{y}^{\mathrm{2}} }{\mathrm{8}}=\mathrm{1} \\ $$$${in}\:{the}\:{counterclockwise} \\ $$$${direction}\:?\: \\ $$
Question Number 103606 Answers: 3 Comments: 1
$${an}\:{integer}\:{n}\:{between}\:\mathrm{1}\:{and}\:\mathrm{98}\:, \\ $$$${inclusive}\:{is}\:{to}\:{be}\:{chosen}\:{at} \\ $$$${random}.\:{what}\:{is}\:{the}\:{probability} \\ $$$${that}\:{n}\left({n}+\mathrm{1}\right)\:{will}\:{be}\:{divisible}\:{by}\:\mathrm{3} \\ $$
Question Number 103603 Answers: 0 Comments: 1
Question Number 103597 Answers: 0 Comments: 2
$$\boldsymbol{{pls}}\:\boldsymbol{{help}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}} \\ $$$$\left(\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} \mathrm{sin}\:\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:+\:\boldsymbol{{y}}\right)\boldsymbol{{dx}}\:=\:\boldsymbol{{xcos}}\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:−\boldsymbol{{xdy}} \\ $$
Question Number 103593 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}\:+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{5}\right)^{\mathrm{2}} } \\ $$
Question Number 103591 Answers: 1 Comments: 4
$$\mathrm{calculate}\:\:\int_{\mathrm{3}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Question Number 103586 Answers: 1 Comments: 0
Question Number 103584 Answers: 0 Comments: 0
Question Number 103585 Answers: 1 Comments: 0
Question Number 103582 Answers: 0 Comments: 3
Question Number 103574 Answers: 0 Comments: 0
Question Number 103721 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{cosx}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 103563 Answers: 2 Comments: 0
$${find}\:{laplase}\:{transform}\:{of}\:{the}\:{function} \\ $$$${f}\left({t}\right)={sin}^{\mathrm{2}} {t}\:\:{cos}^{\mathrm{3}} {t}\:\:? \\ $$
Question Number 103560 Answers: 3 Comments: 1
$$\mathrm{S}=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{17}} {\sum}}\mathrm{k}\centerdot\mathrm{2}^{\mathrm{k}} =? \\ $$
Question Number 103553 Answers: 3 Comments: 0
Question Number 103515 Answers: 1 Comments: 0
$${given}\:{f}\left({x}\right)\:=\:{f}\left({x}+\frac{\pi}{\mathrm{6}}\right)\:\forall{x}\in\mathbb{R} \\ $$$${if}\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{6}} {\int}}{f}\left({x}\right){dx}\:=\:{T}\:{then}\:\underset{\pi} {\overset{\mathrm{7}\pi/\mathrm{3}} {\int}}{f}\left({x}+\pi\right) \\ $$$${dx}\:? \\ $$
Question Number 103513 Answers: 2 Comments: 0
$${coefficient}\:{of}\:{x}^{\mathrm{5}} \:{in}\:{expansion} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{5}} \left(\mathrm{1}+{x}\right)^{\mathrm{4}} \:{equal}\:{to}\: \\ $$$$\left({a}\right)\:\mathrm{40}\:\:\:\:\:\:\left({b}\right)\:\mathrm{45}\:\:\:\:\:\left({c}\right)\:\mathrm{50}\:\:\:\:\left({d}\right)\:\mathrm{55} \\ $$$$\left({e}\right)\:\mathrm{60} \\ $$
Question Number 103512 Answers: 2 Comments: 2
$$\int\:\frac{{x}\:{dx}}{\left(\mathrm{cot}\:{x}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} }\:= \\ $$$$\left({a}\right)\:\frac{{x}}{\mathrm{16}}−\frac{{x}\:\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{32}}−\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$$$\left({b}\right)\:\frac{{x}}{\mathrm{16}}+\frac{{x}\:\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{32}}−\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$$$\left({c}\right)\:\frac{{x}}{\mathrm{16}}+\frac{{x}\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{64}}+\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$$$\left({d}\right)\frac{{x}}{\mathrm{16}}+\frac{{x}\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{32}}+\frac{\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$
Question Number 103511 Answers: 1 Comments: 1
$$\int\:\frac{{dx}}{\sqrt{{x}}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)}\:=\_\_ \\ $$$$\left({a}\right)\:−\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+\:{c}\: \\ $$$$\left({b}\right)\:\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}+\mathrm{1}\right)^{\mathrm{9}} }\:+{c} \\ $$$$\left({c}\right)\:−\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:−\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+{c} \\ $$$$\left({d}\right)\:\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}+\mathrm{1}}{\mathrm{8}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+\:{c} \\ $$
Question Number 103510 Answers: 1 Comments: 5
Question Number 103504 Answers: 0 Comments: 0
Question Number 103503 Answers: 2 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{Solve}\:: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}^{{x}} \:=\:\mathrm{4}{x} \\ $$
Question Number 103497 Answers: 0 Comments: 0
Question Number 103655 Answers: 0 Comments: 3
$${li}\underset{{x}\rightarrow\infty} {{m}}\left(−{ln}\frac{\mathrm{10}}{\mathrm{17}}\right)^{\frac{\mathrm{17}}{\mathrm{10}}{x}} =??? \\ $$
Pg 1137 Pg 1138 Pg 1139 Pg 1140 Pg 1141 Pg 1142 Pg 1143 Pg 1144 Pg 1145 Pg 1146
Terms of Service
Privacy Policy
Contact: info@tinkutara.com