Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1142
Question Number 103585 Answers: 1 Comments: 0
Question Number 103582 Answers: 0 Comments: 3
Question Number 103574 Answers: 0 Comments: 0
Question Number 103721 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{cosx}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$
Question Number 103563 Answers: 2 Comments: 0
$${find}\:{laplase}\:{transform}\:{of}\:{the}\:{function} \\ $$$${f}\left({t}\right)={sin}^{\mathrm{2}} {t}\:\:{cos}^{\mathrm{3}} {t}\:\:? \\ $$
Question Number 103560 Answers: 3 Comments: 1
$$\mathrm{S}=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{17}} {\sum}}\mathrm{k}\centerdot\mathrm{2}^{\mathrm{k}} =? \\ $$
Question Number 103553 Answers: 3 Comments: 0
Question Number 103515 Answers: 1 Comments: 0
$${given}\:{f}\left({x}\right)\:=\:{f}\left({x}+\frac{\pi}{\mathrm{6}}\right)\:\forall{x}\in\mathbb{R} \\ $$$${if}\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{6}} {\int}}{f}\left({x}\right){dx}\:=\:{T}\:{then}\:\underset{\pi} {\overset{\mathrm{7}\pi/\mathrm{3}} {\int}}{f}\left({x}+\pi\right) \\ $$$${dx}\:? \\ $$
Question Number 103513 Answers: 2 Comments: 0
$${coefficient}\:{of}\:{x}^{\mathrm{5}} \:{in}\:{expansion} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{5}} \left(\mathrm{1}+{x}\right)^{\mathrm{4}} \:{equal}\:{to}\: \\ $$$$\left({a}\right)\:\mathrm{40}\:\:\:\:\:\:\left({b}\right)\:\mathrm{45}\:\:\:\:\:\left({c}\right)\:\mathrm{50}\:\:\:\:\left({d}\right)\:\mathrm{55} \\ $$$$\left({e}\right)\:\mathrm{60} \\ $$
Question Number 103512 Answers: 2 Comments: 2
$$\int\:\frac{{x}\:{dx}}{\left(\mathrm{cot}\:{x}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} }\:= \\ $$$$\left({a}\right)\:\frac{{x}}{\mathrm{16}}−\frac{{x}\:\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{32}}−\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$$$\left({b}\right)\:\frac{{x}}{\mathrm{16}}+\frac{{x}\:\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{32}}−\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$$$\left({c}\right)\:\frac{{x}}{\mathrm{16}}+\frac{{x}\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{64}}+\frac{\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$$$\left({d}\right)\frac{{x}}{\mathrm{16}}+\frac{{x}\mathrm{cos}\:\mathrm{4}{x}}{\mathrm{32}}+\frac{\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{128}}+{c} \\ $$
Question Number 103511 Answers: 1 Comments: 1
$$\int\:\frac{{dx}}{\sqrt{{x}}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)}\:=\_\_ \\ $$$$\left({a}\right)\:−\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+\:{c}\: \\ $$$$\left({b}\right)\:\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}+\mathrm{1}\right)^{\mathrm{9}} }\:+{c} \\ $$$$\left({c}\right)\:−\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}\:−\mathrm{1}}{\mathrm{18}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+{c} \\ $$$$\left({d}\right)\:\frac{\mathrm{9}\:\sqrt[{\mathrm{4}}]{{x}}+\mathrm{1}}{\mathrm{8}\left(\sqrt[{\mathrm{4}}]{{x}}\:+\mathrm{1}\right)^{\mathrm{9}} }\:+\:{c} \\ $$
Question Number 103510 Answers: 1 Comments: 5
Question Number 103504 Answers: 0 Comments: 0
Question Number 103503 Answers: 2 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{Solve}\:: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{3}^{{x}} \:=\:\mathrm{4}{x} \\ $$
Question Number 103497 Answers: 0 Comments: 0
Question Number 103655 Answers: 0 Comments: 3
$${li}\underset{{x}\rightarrow\infty} {{m}}\left(−{ln}\frac{\mathrm{10}}{\mathrm{17}}\right)^{\frac{\mathrm{17}}{\mathrm{10}}{x}} =??? \\ $$
Question Number 103654 Answers: 1 Comments: 0
$$\:{if}\:{a},{b}>\mathrm{1}\:\:{li}\underset{{x}\rightarrow\mathrm{0}^{+} } {{m}}\frac{{ln}\left({b}−{x}\right)}{{ax}}=??? \\ $$
Question Number 103537 Answers: 1 Comments: 0
$$\int\frac{\mathrm{x}}{\left(\mathrm{a}^{\mathrm{2}} \mathrm{cosx}+\mathrm{b}^{\mathrm{2}} \mathrm{sinx}\right)}\mathrm{dx} \\ $$
Question Number 103492 Answers: 4 Comments: 1
$$\mathrm{Q1}:\:\:\mathrm{Evaluate}\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} \mid\mathrm{x}\mid\centerdot\left(\mathrm{x}^{\mathrm{3}} +\mathrm{1}\right)\mathrm{dx} \\ $$$$ \\ $$$$\mathrm{Q2}:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{integers}\:{k}\:\mathrm{for}\: \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{2}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} +{k}=\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{more}\:\mathrm{than}\:\mathrm{one}\:\mathrm{solution}. \\ $$$$ \\ $$$$\mathrm{Q3}:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{a}\: \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:{y}={x}^{\mathrm{2}} −{x}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line} \\ $$$${y}={x}−\mathrm{3} \\ $$
Question Number 103489 Answers: 2 Comments: 0
Question Number 103484 Answers: 0 Comments: 0
Question Number 103483 Answers: 3 Comments: 0
$${y}^{\mathrm{2}} −{u}\left({u}+{y}\right).\:\frac{{dy}}{{du}}\:=\:\mathrm{0} \\ $$
Question Number 103481 Answers: 1 Comments: 0
$${prove}\:{that}\:\left({cos}\frac{{n}\theta}{\mathrm{5}}+{isin}\frac{\mathrm{2}{n}\theta}{\mathrm{10}}\right)^{\mathrm{5}} −\frac{\mathrm{1}}{{e}^{{in}\theta} }=\mathrm{2}{sin}\left({n}\theta\right)\:? \\ $$
Question Number 103480 Answers: 0 Comments: 0
$${if}\:{f}\left({x}\right)=\mid{x}−\mathrm{1}\:\:\:\:\:\:\mathrm{0}<{x}<\mathrm{1}\mid\:{solve}\:{in} \\ $$$$ \\ $$$$\left(\mathrm{1}\right){Fourier}\:{series}\:{of}\:{sines}\:{only}\:? \\ $$$$\left(\mathrm{2}\right)\:{Fourier}\:{series}\:{of}\:{cosines}\:? \\ $$
Question Number 103479 Answers: 1 Comments: 0
$${by}\:{ussing}\:{laplace}\:{find}\:{cosh}\left(\mathrm{2}{t}\right){cos}\left(\mathrm{4}{t}\right)\:? \\ $$
Question Number 103478 Answers: 4 Comments: 0
Pg 1137 Pg 1138 Pg 1139 Pg 1140 Pg 1141 Pg 1142 Pg 1143 Pg 1144 Pg 1145 Pg 1146
Terms of Service
Privacy Policy
Contact: info@tinkutara.com