Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 114

Question Number 211367    Answers: 2   Comments: 1

solve for R^+ x^2 +y^2 −kxy=c^2 y^2 +z^2 −kyz=a^2 z^2 +x^2 −kzx=b^2 (k is constant)

$${solve}\:{for}\:{R}^{+} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{kxy}={c}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} −{kyz}={a}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{x}^{\mathrm{2}} −{kzx}={b}^{\mathrm{2}} \\ $$$$\left({k}\:{is}\:{constant}\right) \\ $$

Question Number 211295    Answers: 2   Comments: 0

lim_(x→0) ((x−sin (sin (sin (....(sin x)))))_(n times) )/x^3 )

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left.\mathrm{x}−\underset{\mathrm{n}\:\mathrm{times}} {\underbrace{\mathrm{sin}\:\left(\mathrm{sin}\:\left(\mathrm{sin}\:\left(....\left(\mathrm{sin}\:\mathrm{x}\right)\right)\right)\right)\right)}}}{\mathrm{x}^{\mathrm{3}} } \\ $$

Question Number 211294    Answers: 1   Comments: 3

Question Number 211276    Answers: 2   Comments: 0

Prove , in AB^Δ C : ((cosA)/(sin^2 A)) + ((cosB)/(sin^2 B)) +((cosC)/(sin^2 C)) ≥ (r/R) r : incircle radius R: circumcircle radius

$$ \\ $$$$\:\:{Prove}\:,\:{in}\:{A}\overset{\Delta} {{B}C}\:\::\: \\ $$$$ \\ $$$$\:\:\:\:\:\frac{{cosA}}{{sin}^{\mathrm{2}} {A}}\:+\:\frac{{cosB}}{{sin}^{\mathrm{2}} {B}}\:\:+\frac{{cosC}}{{sin}^{\mathrm{2}} {C}}\:\geqslant\:\frac{{r}}{{R}} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{r}\::\:{incircle}\:\:{radius} \\ $$$$\:\:\:\:\:{R}:\:{circumcircle}\:\:{radius} \\ $$$$ \\ $$

Question Number 211279    Answers: 1   Comments: 1

Question Number 211265    Answers: 0   Comments: 0

Question Number 211262    Answers: 1   Comments: 0

Question Number 211258    Answers: 1   Comments: 0

Question Number 211255    Answers: 1   Comments: 3

(√(a+(√(b−x))+(√(b−(√(a+x))))))=2x solve for x.

$$\sqrt{{a}+\sqrt{{b}−{x}}+\sqrt{{b}−\sqrt{{a}+{x}}}}=\mathrm{2}{x} \\ $$$${solve}\:{for}\:{x}.\:\:\:\: \\ $$

Question Number 211252    Answers: 1   Comments: 0

Question Number 211251    Answers: 0   Comments: 2

Question Number 211250    Answers: 1   Comments: 0

Find the number of 4 digit numbers so that when decomposed into prime factors, have the sum of prime factors equal to the sum of the exponents?

$${Find}\:{the}\:{number}\:{of}\:\mathrm{4}\:{digit}\:{numbers} \\ $$$$\:{so}\:{that}\:{when}\:{decomposed}\:{into}\:{prime} \\ $$$$\:{factors},\:{have}\:{the}\:{sum}\:{of}\:{prime}\:{factors} \\ $$$$\:{equal}\:{to}\:{the}\:{sum}\:{of}\:{the}\:{exponents}? \\ $$

Question Number 211245    Answers: 1   Comments: 0

prove: ∫_0 ^∞ (t^(α−1) /(t^π +1))dt=(1/(sin α))

$$\mathrm{prove}: \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{t}^{\alpha−\mathrm{1}} }{{t}^{\pi} +\mathrm{1}}{dt}=\frac{\mathrm{1}}{\mathrm{sin}\:\alpha} \\ $$

Question Number 211241    Answers: 1   Comments: 4

lim_(x→0) ((cos x^2 −cos (sin^2 x ))/x^6 ) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}^{\mathrm{2}} −\mathrm{cos}\:\left(\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:\right)}{\mathrm{x}^{\mathrm{6}} }\:=? \\ $$

Question Number 211235    Answers: 2   Comments: 1

Question Number 211232    Answers: 1   Comments: 0

Question Number 211231    Answers: 0   Comments: 0

Question Number 211230    Answers: 0   Comments: 0

Question Number 211277    Answers: 0   Comments: 4

Question Number 211222    Answers: 1   Comments: 0

How many integers are there such that, 0≤n≤720 and n^2 ≡1(mod)720?

$${How}\:{many}\:{integers}\:{are}\:{there} \\ $$$$\:\:\:{such}\:{that},\:\:\mathrm{0}\leqslant{n}\leqslant\mathrm{720}\:{and}\: \\ $$$$\:\:\:{n}^{\mathrm{2}} \equiv\mathrm{1}\left({mod}\right)\mathrm{720}? \\ $$

Question Number 211216    Answers: 2   Comments: 0

Question Number 211207    Answers: 2   Comments: 0

Question Number 211201    Answers: 5   Comments: 0

((x−1))^(1/3) + ((x−2))^(1/3) −((2x−3))^(1/3) = 0 x=?

$$\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}}\:−\sqrt[{\mathrm{3}}]{\mathrm{2x}−\mathrm{3}}\:=\:\mathrm{0} \\ $$$$\:\:\:\mathrm{x}=? \\ $$

Question Number 211191    Answers: 2   Comments: 0

Question Number 211188    Answers: 1   Comments: 0

Question Number 211184    Answers: 3   Comments: 0

  Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com