Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 114

Question Number 211632    Answers: 1   Comments: 0

Question Number 211631    Answers: 0   Comments: 0

Question Number 211630    Answers: 0   Comments: 0

Question Number 211627    Answers: 0   Comments: 0

certificate: ∣∣h∣∣_^L^p ^p =∫_0 ^∞ ∣h(x)∣^p dx.

$$ \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mid\mid\boldsymbol{{h}}\mid\mid_{\:^{\boldsymbol{{L}}^{\boldsymbol{{p}}} } } ^{\boldsymbol{{p}}} =\int_{\mathrm{0}} ^{\infty} \mid\boldsymbol{{h}}\left(\boldsymbol{{x}}\right)\mid^{\boldsymbol{{p}}} \boldsymbol{{dx}}. \\ $$

Question Number 211614    Answers: 2   Comments: 1

A group of people are standing in a circle. Every second person is removed from the circle and this process continues until only one person remains in the circle. If there are 100 people in the circle, what will be the number of the last person left?

$$ \\ $$A group of people are standing in a circle. Every second person is removed from the circle and this process continues until only one person remains in the circle. If there are 100 people in the circle, what will be the number of the last person left?

Question Number 211617    Answers: 1   Comments: 0

Ato starts a business with $1,250.00. Ama joins the business later with a capital of 1,875.00. At the end of the first year, profits are shared equally between Ato and Ama. When did Ama join the business?

$$\mathrm{Ato}\:\:\mathrm{starts}\:\mathrm{a}\:\mathrm{business}\:\mathrm{with}\:\$\mathrm{1},\mathrm{250}.\mathrm{00}.\:\mathrm{Ama}\:\mathrm{joins}\:\mathrm{the}\:\mathrm{business} \\ $$$$\mathrm{later}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capital}\:\mathrm{of}\:\mathrm{1},\mathrm{875}.\mathrm{00}.\:\mathrm{At}\:\mathrm{the}\: \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{year},\:\mathrm{profits}\:\mathrm{are}\:\mathrm{shared}\:\mathrm{equally} \\ $$$$\mathrm{between}\:\mathrm{Ato}\:\mathrm{and}\:\mathrm{Ama}.\:\mathrm{When}\:\mathrm{did}\:\mathrm{Ama} \\ $$$$\mathrm{join}\:\mathrm{the}\:\mathrm{business}? \\ $$

Question Number 211609    Answers: 2   Comments: 0

Prove that, in a triangle the ratios of the sides and the sine of the opposite angles are equal. Also prove that each ratio is equal to the diameter of the circum circle of the triangle.

$$\mathrm{Prove}\:\mathrm{that},\:\mathrm{in}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{the}\:\mathrm{ratios}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{angles} \\ $$$$\mathrm{are}\:\mathrm{equal}.\:\mathrm{Also}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{each}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circum}\:\mathrm{circle} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}. \\ $$

Question Number 211605    Answers: 1   Comments: 1

Let a_1 ,a_2 ,…a_n Is n real numbers. All fall in the interval (−1,1) ________________________ (1)Prove that: Π_(1≤i,j≤n) ((1+a_i a_j )/(1−a_i a_j ))≥1 (2) Determine the necessary andsufficient conditions forl equaity in the inequality.

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Let}\:\boldsymbol{{a}}_{\mathrm{1}} ,\boldsymbol{{a}}_{\mathrm{2}} ,\ldots\boldsymbol{{a}}_{\boldsymbol{{n}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Is}\:\mathrm{n}\:\mathrm{real}\:\mathrm{numbers}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{All}\:\mathrm{fall}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\left(\mathrm{1}\right)\mathrm{Prove}\:\mathrm{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{1}\leq\boldsymbol{{i}},\boldsymbol{{j}}\leq\boldsymbol{{n}}} {\prod}\frac{\mathrm{1}+\boldsymbol{{a}}_{\boldsymbol{{i}}} \boldsymbol{{a}}_{\boldsymbol{{j}}} }{\mathrm{1}−\boldsymbol{{a}}_{\boldsymbol{{i}}} \boldsymbol{{a}}_{\boldsymbol{{j}}} }\geq\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{necessary}\: \\ $$$$\mathrm{andsufficient}\:\mathrm{conditions}\:\mathrm{forl} \\ $$$$\mathrm{equaity}\:\mathrm{in}\:\mathrm{the}\:\mathrm{inequality}. \\ $$$$ \\ $$

Question Number 211603    Answers: 3   Comments: 0

1.Given a regular tetrahedron ABCD with vertices A(0,0,0)B(a,0,0), C(0,a,0),and D(0,0,a).Calculate the volume V and the surface area S of this tetrahedron.

$$\mathrm{1}.\mathrm{Given}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{tetrahedron}\:\boldsymbol{{ABCD}} \\ $$$$\mathrm{with}\:\mathrm{vertices}\:\boldsymbol{{A}}\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\boldsymbol{{B}}\left(\boldsymbol{{a}},\mathrm{0},\mathrm{0}\right), \\ $$$$\boldsymbol{{C}}\left(\mathrm{0},\boldsymbol{{a}},\mathrm{0}\right),\boldsymbol{\mathrm{and}}\:\boldsymbol{{D}}\left(\mathrm{0},\mathrm{0},\boldsymbol{{a}}\right).\mathrm{Calculate}\:\mathrm{the} \\ $$$$\:\mathrm{volume}\:\boldsymbol{{V}}\:\:\mathrm{and}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{area}\:\boldsymbol{{S}}\:\boldsymbol{\mathrm{of}} \\ $$$$\mathrm{this}\:\mathrm{tetrahedron}. \\ $$

Question Number 211601    Answers: 0   Comments: 0

set 𝛂(2)^(1/3) ,ask Q(𝛂)Upper irreducible cubic equation: x^3 −3x+1=0 All the roots of

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{set}\:\boldsymbol{\alpha}\sqrt[{\mathrm{3}}]{\mathrm{2}},\mathrm{ask}\:\mathbb{Q}\left(\boldsymbol{\alpha}\right)\mathrm{Upper}\:\mathrm{irreducible}\:\mathrm{cubic}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{All}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of} \\ $$$$ \\ $$

Question Number 211598    Answers: 2   Comments: 0

{ ((x^2 −4x+3<0)),((((2x−1)/(x+2))≥1)) :}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{3}<\mathrm{0}}\\{\frac{\mathrm{2}\boldsymbol{{x}}−\mathrm{1}}{\boldsymbol{{x}}+\mathrm{2}}\geq\mathrm{1}}\end{cases} \\ $$$$ \\ $$

Question Number 211597    Answers: 1   Comments: 0

2x^4 −4x^3 −22x^2 +24x+36=0

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{22}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{24}\boldsymbol{{x}}+\mathrm{36}=\mathrm{0} \\ $$$$ \\ $$

Question Number 211595    Answers: 1   Comments: 0

Question Number 211594    Answers: 0   Comments: 1

If , H_n ^( −) =1−(1/2) +(1/3) −...+(((−1)^(n+1) )/n) prove that:Σ_(n=1) ^∞ ((H_n ^( − ) −ln(2))/n)=ln^2 (2) −−−−−−−−−−

$$ \\ $$$$\:{If}\:,\:\:\overset{\:\:−} {{H}}_{{n}} \:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−...+\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}\:\:\: \\ $$$${prove}\:{that}:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\overset{\:\:−\:} {{H}}_{{n}} −\mathrm{ln}\left(\mathrm{2}\right)}{{n}}=\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:−−−−−−−−−−\:\:\:\:\:\: \\ $$

Question Number 211579    Answers: 2   Comments: 0

∫(1/((1−x^4 )(√(1+x^2 ))))dx.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\left(\mathrm{1}−\boldsymbol{{x}}^{\mathrm{4}} \right)\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}\boldsymbol{{dx}}. \\ $$$$ \\ $$

Question Number 211578    Answers: 2   Comments: 0

∫_0 ^(+∞) (x/( (√(1+x^4 ))))dx.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{+\infty} \frac{\boldsymbol{{x}}}{\:\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{4}} }}\boldsymbol{{dx}}. \\ $$$$ \\ $$

Question Number 211575    Answers: 2   Comments: 0

Question Number 211570    Answers: 0   Comments: 2

{x_n }>0 lim_(x→0) x_n ^(1/n) =a prove when a<1 lim_(x→0) x_n =0 when a>1 lim_(x→0) x_n =∞ and when a=1 what happen about x_n

$$\left\{{x}_{{n}} \right\}>\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}_{{n}} ^{\frac{\mathrm{1}}{{n}}} ={a} \\ $$$${prove}\:{when}\:{a}<\mathrm{1}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}_{{n}} =\mathrm{0} \\ $$$${when}\:{a}>\mathrm{1}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}_{{n}} =\infty \\ $$$${and}\:{when}\:{a}=\mathrm{1}\:{what}\:{happen}\:{about}\:{x}_{{n}} \\ $$

Question Number 211567    Answers: 0   Comments: 2

if lim_(x→0) f(x)=lim_(x→0) g(x)=0 when do not use f(x) to replace g(x)

$${if}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{g}\left({x}\right)=\mathrm{0} \\ $$$${when}\:{do}\:{not}\:{use}\:{f}\left({x}\right)\:{to}\:\:{replace}\:{g}\left({x}\right)\:\:\: \\ $$

Question Number 211566    Answers: 0   Comments: 0

certificate: Σ_(n=−∞) ^(+∞) (1/(n^4 +a^4 ))=(𝛑/( (√2)a^3 )) ((sinh((√2)a𝛑)+sin((√2)a𝛑))/( (√2)a^3 cosh((√2)a𝛑)−cos((√2)a𝛑)))

$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\underset{\boldsymbol{{n}}=−\infty} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{4}} +\boldsymbol{{a}}^{\mathrm{4}} }=\frac{\boldsymbol{\pi}}{\:\sqrt{\mathrm{2}}\boldsymbol{{a}}^{\mathrm{3}} }\:\frac{\boldsymbol{\mathrm{si}{n}\mathrm{h}}\left(\sqrt{\mathrm{2}}\boldsymbol{{a}\pi}\right)+\boldsymbol{\mathrm{sin}}\left(\sqrt{\mathrm{2}}\boldsymbol{{a}\pi}\right)}{\:\sqrt{\mathrm{2}}\boldsymbol{{a}}^{\mathrm{3}} \boldsymbol{\mathrm{cos}{h}}\left(\sqrt{\mathrm{2}}\boldsymbol{{a}\pi}\right)−\boldsymbol{\mathrm{cos}}\left(\sqrt{\mathrm{2}}\boldsymbol{{a}\pi}\right)} \\ $$$$ \\ $$

Question Number 211564    Answers: 0   Comments: 1

certificate:Σ_(x=1) ^(90) ((sin(x^2 ))/(sin(x)))=45

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}:\underset{\boldsymbol{{x}}=\mathrm{1}} {\overset{\mathrm{90}} {\sum}}\frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} \right)}{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{{x}}\right)}=\mathrm{45} \\ $$$$ \\ $$$$ \\ $$

Question Number 211563    Answers: 1   Comments: 0

1.x^3 −3x−2=0 2.e^x +x^2 −4=0

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{{x}}−\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}.\boldsymbol{{e}}^{\boldsymbol{{x}}} +\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 211574    Answers: 1   Comments: 0

{ ((x^2 +y^2 =25)),((x+2y−3=0)) :}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{25}}\\{\boldsymbol{{x}}+\mathrm{2}\boldsymbol{\mathrm{y}}−\mathrm{3}=\mathrm{0}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 211562    Answers: 2   Comments: 0

{ ((x^2 +y^2 =1)),((x^3 −y=0)) :}

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{1}}\\{\boldsymbol{{x}}^{\mathrm{3}} −\boldsymbol{\mathrm{y}}=\mathrm{0}}\end{cases} \\ $$

Question Number 211560    Answers: 0   Comments: 0

certificate: I=∫_0 ^(𝛑/2) (√(√(x^2 +ln^2 cos(x)−lncos(x)dx)))=(𝛑/2)(√(2ln2))

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{I}}=\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \sqrt{\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \boldsymbol{\mathrm{cos}}\left(\boldsymbol{{x}}\right)−\boldsymbol{\mathrm{lncos}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\sqrt{\mathrm{2}\boldsymbol{\mathrm{ln}}\mathrm{2}} \\ $$$$ \\ $$

Question Number 211548    Answers: 2   Comments: 0

{ ((2x^2 +3y^2 −6xy=12)),((x^2 −y^2 =4)) :}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\mathrm{6}\boldsymbol{{x}\mathrm{y}}=\mathrm{12}}\\{\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{4}}\end{cases} \\ $$$$ \\ $$

  Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com