Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1139

Question Number 103788    Answers: 1   Comments: 0

y′′−y = cot x

$${y}''−{y}\:=\:\mathrm{cot}\:{x}\: \\ $$

Question Number 105290    Answers: 2   Comments: 0

Given ((sin 2a−sin 2b)/(cos 2a+cos 2b)) = (2/3) find the value of cos (a−b)

$$\mathcal{G}{iven}\:\frac{\mathrm{sin}\:\mathrm{2}{a}−\mathrm{sin}\:\mathrm{2}{b}}{\mathrm{cos}\:\mathrm{2}{a}+\mathrm{cos}\:\mathrm{2}{b}}\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${find}\:{the}\:{value}\:{of}\:\mathrm{cos}\:\left({a}−{b}\right)\: \\ $$

Question Number 105289    Answers: 1   Comments: 0

(√(52))+(√3)−(√(4/6)) = ?

$$\sqrt{\mathrm{52}}+\sqrt{\mathrm{3}}−\sqrt{\frac{\mathrm{4}}{\mathrm{6}}}\:=\:? \\ $$

Question Number 103781    Answers: 0   Comments: 4

Question Number 103780    Answers: 1   Comments: 0

the third, sixth and seventh terms of a geometric progression (whose common ratio is neither 0 nor 1 ) are in arithmetic progression . prove that the sum of the first three terms is equal to fourth .

$${the}\:{third},\:{sixth}\:{and}\:{seventh}\:{terms}\:{of}\:{a} \\ $$$${geometric}\:{progression}\:\left({whose}\:{common}\right. \\ $$$$\left.{ratio}\:{is}\:{neither}\:\mathrm{0}\:{nor}\:\mathrm{1}\:\right)\:{are}\:{in} \\ $$$${arithmetic}\:{progression}\:.\:{prove}\:{that}\:{the} \\ $$$${sum}\:{of}\:{the}\:{first}\:{three}\:{terms}\:{is}\:{equal}\:{to} \\ $$$${fourth}\:. \\ $$

Question Number 103776    Answers: 2   Comments: 0

y′ − (y/(x^2 −1)) = y^2

$${y}'\:−\:\frac{{y}}{{x}^{\mathrm{2}} −\mathrm{1}}\:=\:{y}^{\mathrm{2}} \\ $$

Question Number 103774    Answers: 1   Comments: 0

Question Number 103773    Answers: 1   Comments: 0

∫_c ((x^2 +2xy^2 )dx+(x^2 y^2 −1)dy) where C is the boundary of region define by y^2 = 4x and y =1 ?

$$\int_{{c}} \left(\left({x}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{2}} \right){dx}+\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}\right){dy}\right) \\ $$$${where}\:{C}\:{is}\:{the}\:{boundary}\:{of} \\ $$$${region}\:{define}\:{by}\:{y}^{\mathrm{2}} =\:\mathrm{4}{x}\:{and}\:{y} \\ $$$$=\mathrm{1}\:? \\ $$

Question Number 103771    Answers: 0   Comments: 0

y′′−y′+y = cos 3x

$${y}''−{y}'+{y}\:=\:\mathrm{cos}\:\mathrm{3}{x} \\ $$

Question Number 103769    Answers: 1   Comments: 0

2y′′−y′+y = cos 3x

$$\mathrm{2}{y}''−{y}'+{y}\:=\:\mathrm{cos}\:\mathrm{3}{x} \\ $$

Question Number 103767    Answers: 2   Comments: 0

solve y′−y = y^4 at y(0) = 1

$${solve}\:{y}'−{y}\:=\:{y}^{\mathrm{4}} \:{at}\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\: \\ $$

Question Number 103766    Answers: 1   Comments: 0

given { ((x = ln 34)),((y = ln 38)) :} find ln 32 in terms of x and y

$${given}\:\begin{cases}{{x}\:=\:\mathrm{ln}\:\mathrm{34}}\\{{y}\:=\:\mathrm{ln}\:\mathrm{38}}\end{cases} \\ $$$${find}\:\mathrm{ln}\:\mathrm{32}\:{in}\:{terms}\:{of}\:{x}\:{and}\:{y}\: \\ $$

Question Number 103763    Answers: 1   Comments: 0

calculate{ Σ_(n=0) ^∞ (−1)^n x^n }×{Σ_(n=o) ^∞ (x^(2n) /(n+1))}

$$\mathrm{calculate}\left\{\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \right\}×\left\{\sum_{\mathrm{n}=\mathrm{o}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{n}+\mathrm{1}}\right\} \\ $$

Question Number 103759    Answers: 3   Comments: 0

(x^5 +3y) dx −x dy = 0

$$\left({x}^{\mathrm{5}} +\mathrm{3}{y}\right)\:{dx}\:−{x}\:{dy}\:=\:\mathrm{0}\: \\ $$

Question Number 103796    Answers: 1   Comments: 2

Σ_(k = 1) ^n k^5 = ?

$$\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{5}} \:=\:? \\ $$

Question Number 103756    Answers: 1   Comments: 1

Question Number 103755    Answers: 0   Comments: 0

Π_(n = 3) ^∞ (1−tan^4 ((π/2^n ))) = ?

$$\underset{{n}\:=\:\mathrm{3}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{4}} \left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\right)\:=\:? \\ $$

Question Number 103753    Answers: 1   Comments: 0

→ { ((g(x)=(6/(x−2)))),(((goh)(3) = 17)),((h(x)= ax^2 −1)) :} find the value of a

$$\rightarrow\begin{cases}{{g}\left({x}\right)=\frac{\mathrm{6}}{{x}−\mathrm{2}}}\\{\left({goh}\right)\left(\mathrm{3}\right)\:=\:\mathrm{17}}\\{{h}\left({x}\right)=\:{ax}^{\mathrm{2}} −\mathrm{1}}\end{cases} \\ $$$${find}\:{the}\:{value}\:{of}\:{a}\: \\ $$

Question Number 103751    Answers: 1   Comments: 0

given that the parametric equation of a curvd are x=(1/(t−1)) y=(1/(t+1)) obtaun a cartesian equation of the curve. Hemce find an equqtion of tbe nirmal to the curve at the point t=2

$$ \\ $$$${given}\:{that}\:{the}\:{parametric}\:{equation}\:{of}\: \\ $$$${a}\:{curvd}\:{are}\:{x}=\frac{\mathrm{1}}{{t}−\mathrm{1}}\:\:{y}=\frac{\mathrm{1}}{{t}+\mathrm{1}}\:{obtaun}\:{a}\: \\ $$$${cartesian}\:{equation}\:{of}\:{the}\:{curve}.\:{Hemce}\:{find} \\ $$$${an}\:{equqtion}\:{of}\:{tbe}\:{nirmal}\:{to}\:{the}\:{curve}\:{at}\:{the}\: \\ $$$${point}\:{t}=\mathrm{2} \\ $$

Question Number 103749    Answers: 3   Comments: 0

lim_(n→∞) 2^n sin ((π/2^n )) = ?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{2}^{{n}} \:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:=\:? \\ $$

Question Number 103808    Answers: 0   Comments: 1

muhun kitu pisan

$${muhun}\:{kitu}\:{pisan} \\ $$

Question Number 103742    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/((2x+1)^4 (x+3)^5 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{4}} \left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{5}} } \\ $$

Question Number 103741    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((arctan(ch(x)))/(x^2 +9))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{ch}\left(\mathrm{x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx} \\ $$

Question Number 103739    Answers: 1   Comments: 0

Question Number 103738    Answers: 0   Comments: 2

Prime-counting function: π(x) What is the name of her reciprocal function? (Like arcsin(x) is the reciprocal function of sin(x)) [■ ■_(−) ^(−) ]

$$\mathrm{Prime}-\mathrm{counting}\:\mathrm{function}: \\ $$$$\pi\left({x}\right) \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{name}\:\mathrm{of}\:\mathrm{her} \\ $$$$\mathrm{reciprocal}\:\mathrm{function}? \\ $$$$ \\ $$$$\left(\mathrm{Like}\:\mathrm{arcsin}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{reciprocal}\:\mathrm{function}\:\mathrm{of}\:\mathrm{sin}\left({x}\right)\right) \\ $$$$ \\ $$$$\left[\underset{−} {\overline {\blacksquare\:\:\:\blacksquare}}\right] \\ $$

Question Number 103736    Answers: 0   Comments: 0

Solve: a^2 + c^2 = 196 ... (i) b^2 + (c − a)^2 = 169 ... (ii) c^2 + (b − c)^2 = 225 ... (iii)

$$\mathrm{Solve}:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:\:+\:\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\:\mathrm{196}\:\:\:\:\:\:...\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{c}\:\:−\:\:\mathrm{a}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{169}\:\:\:\:\:...\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{b}\:\:−\:\:\mathrm{c}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{225}\:\:\:\:\:...\:\left(\mathrm{iii}\right) \\ $$

  Pg 1134      Pg 1135      Pg 1136      Pg 1137      Pg 1138      Pg 1139      Pg 1140      Pg 1141      Pg 1142      Pg 1143   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com