Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1129
Question Number 104390 Answers: 1 Comments: 0
Question Number 104394 Answers: 1 Comments: 0
Question Number 104388 Answers: 1 Comments: 0
$$\int\frac{\mathrm{d}{x}}{{x}^{\mathrm{2}} \sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{1}}} \\ $$
Question Number 104383 Answers: 1 Comments: 1
$$\mathrm{When}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{function} \\ $$$$\mathrm{satisfying}\:\:{x}\centerdot{f}\left({x}\right)={x}^{\mathrm{2}} +\int_{\mathrm{0}} ^{\:{x}} \left({x}−{t}\right)\centerdot{f}\:'\left({t}\right){dt} \\ $$$$\mathrm{Find}\:\Rightarrow\:{f}\left(\mathrm{1}\right) \\ $$
Question Number 104377 Answers: 1 Comments: 6
$$\mathrm{Solve}:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:\:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{196}\:\:\:\:\:\:\:\:...\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{c}\:\:−\:\:\mathrm{a}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{169}\:\:\:...\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{b}\:\:−\:\:\mathrm{c}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{225}\:\:\:\:\:....\:\left(\mathrm{iii}\right) \\ $$
Question Number 104371 Answers: 1 Comments: 0
Question Number 104370 Answers: 1 Comments: 0
Question Number 104369 Answers: 1 Comments: 0
Question Number 104368 Answers: 1 Comments: 0
$${CH}_{\mathrm{3}} {CH}_{\mathrm{2}} −{CH}={CH}_{\mathrm{2}} +{HCl}\rightarrow \\ $$$${help}\:{me} \\ $$
Question Number 104367 Answers: 1 Comments: 0
$${CH}_{\mathrm{3}} −{CH}_{\mathrm{2}} −{CH}_{\mathrm{2}} −{CH}_{\mathrm{2}} {Cl}+{KOH}\rightarrow \\ $$$${help}\:{me} \\ $$
Question Number 104366 Answers: 0 Comments: 2
$${CH}_{\mathrm{3}} −{CH}_{\mathrm{2}} −{CHMgCl}−{CH}_{\mathrm{3}} +{H}_{\mathrm{2}} {O}\rightarrow \\ $$$${help}\:{me} \\ $$
Question Number 104364 Answers: 2 Comments: 1
Question Number 104853 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{Li}\left({x}^{\mathrm{2}} \right)−{Li}\left({x}\right)={ln}\mathrm{2} \\ $$
Question Number 104359 Answers: 1 Comments: 0
$${solve}\:{this}\:{using}\:{Riemann} \\ $$$${sum}\:{f}\left({x}\right)=\mathrm{2}{x}\:;\:\left[\mathrm{0},\mathrm{4}\right]\:{for}\:{n}=\mathrm{4} \\ $$
Question Number 104357 Answers: 2 Comments: 0
$$\left({x}+{y}+\mathrm{1}\right)\:\frac{{dy}}{{dx}}\:=\:\mathrm{1}\: \\ $$
Question Number 104852 Answers: 0 Comments: 0
$$\:\:{if}\:\:{g}\in{C}\left(\mathbb{R},\mathbb{R}\right)\:{and}.\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{g}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}+\int_{\mathrm{0}} ^{\mathrm{1}} {g}^{\mathrm{2}} \left({x}^{\mathrm{2}} \right){dx}\: \\ $$$${then}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {g}\left({x}\right){dx}=\frac{\mathrm{2}}{\mathrm{3}}\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {g}^{\mathrm{2}} \left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$
Question Number 104851 Answers: 4 Comments: 0
$$\int\:\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$
Question Number 104850 Answers: 0 Comments: 0
$${Let}\:\:{E}\:{be}\:{a}\:{no}\:{empty}\:{set}\:{with}\:{card}={n}\geqslant\mathrm{1} \\ $$$$\:{Find}\:{in}\:{term}\:{of}\:\:{n}\:\:\:\:\:\:\underset{{A},{B}\subseteq{E}} {\sum}{Card}\left({A}−{B}\right)=\underset{{A},{B}\subseteq{E}} {\sum}{Card}\left({A}\cap{B}\right)=\frac{\mathrm{1}}{\mathrm{3}}\underset{{A},{B}\subseteq{E}} {\sum}{Card}\:\left({A}\cup{B}\right)={n}\mathrm{4}^{{n}−\mathrm{1}} \:\:\:\: \\ $$
Question Number 104350 Answers: 1 Comments: 0
$$\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\left(\alpha+\bigtriangleup{x}\right)^{{n}} \right)−\mathrm{sin}\:\left(\alpha^{{n}} \right)}{\mathrm{cos}\:\left(\left(\alpha+\bigtriangleup{x}\right)^{{n}} \right)\mathrm{sin}\:\left(\alpha+\bigtriangleup{x}\right)−\mathrm{cos}\:\left(\alpha^{{n}} \right)\mathrm{sin}\:\left(\alpha\right)} \\ $$
Question Number 104348 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{arc}\:\mathrm{tan}\:\left({x}\right)−\mathrm{arc}\:\mathrm{sin}\:\left({x}\right)}{{x}\left(\mathrm{1}−\mathrm{cos}\:\left({x}\right)\right)}\right) \\ $$
Question Number 104342 Answers: 1 Comments: 0
$${solve}\:{x}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\frac{{dy}}{{dx}}−\mathrm{4}{x}^{\mathrm{3}} {y}\:=\:\mathrm{8}{x}^{\mathrm{3}} \mathrm{sin}\left({x}^{\mathrm{2}} \right) \\ $$
Question Number 104339 Answers: 3 Comments: 1
$${Examine}\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\frac{\mathrm{2}{x}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}/\mathrm{3}} }\:{dx} \\ $$
Question Number 104338 Answers: 0 Comments: 0
$$\int\frac{\mathrm{tdt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right)\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{t}^{\mathrm{3}} }} \\ $$
Question Number 104326 Answers: 1 Comments: 2
$$\boldsymbol{\mathrm{Suppose}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{had}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{rupees}}.\:\boldsymbol{\mathrm{Your}} \\ $$$$\boldsymbol{\mathrm{father}}\:\boldsymbol{\mathrm{gave}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{more}}\:\mathrm{6}\:\boldsymbol{\mathrm{rupees}}.\:\boldsymbol{\mathrm{You}} \\ $$$$\boldsymbol{\mathrm{gave}}\:\boldsymbol{{y}}\:\boldsymbol{\mathrm{rupees}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{brother}}.\:\boldsymbol{\mathrm{Now}} \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{many}}\:\boldsymbol{\mathrm{rupees}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{have}}?\:\boldsymbol{\mathrm{You}}\:\boldsymbol{\mathrm{will}} \\ $$$$\boldsymbol{\mathrm{buy}}\:\boldsymbol{\mathrm{three}}\:\boldsymbol{\mathrm{shirts}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{rupees}}\:\boldsymbol{\mathrm{that}} \\ $$$$\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{now}}.\:\boldsymbol{\mathrm{Write}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{cost}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{each}} \\ $$$$\boldsymbol{\mathrm{shirt}}. \\ $$
Question Number 104312 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\sqrt{\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{2}}}{\mathrm{sin}\theta}\mathrm{d}\theta \\ $$
Question Number 104302 Answers: 3 Comments: 2
Pg 1124 Pg 1125 Pg 1126 Pg 1127 Pg 1128 Pg 1129 Pg 1130 Pg 1131 Pg 1132 Pg 1133
Terms of Service
Privacy Policy
Contact: info@tinkutara.com