Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1129

Question Number 96947    Answers: 0   Comments: 4

Question Number 96936    Answers: 2   Comments: 1

Question Number 96931    Answers: 2   Comments: 3

lim_(x→∞) ((5x^4 −8)/(7x^3 +2))×tan ((3/x)) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{5x}^{\mathrm{4}} −\mathrm{8}}{\mathrm{7x}^{\mathrm{3}} +\mathrm{2}}×\mathrm{tan}\:\left(\frac{\mathrm{3}}{\mathrm{x}}\right)\:=? \\ $$

Question Number 96930    Answers: 0   Comments: 1

E(x) denotes the integer part of x x∈]0;1[ determine: E(x^x ) and E(x^x^x ) calcul lim_(x→0) E(x^x^x ) please i need help please

$${E}\left({x}\right)\:{denotes}\:{the}\:{integer}\:{part}\:{of}\:{x}\: \\ $$$$\left.{x}\in\right]\mathrm{0};\mathrm{1}\left[\:{determine}:\right. \\ $$$$\boldsymbol{{E}}\left(\boldsymbol{{x}}^{\boldsymbol{{x}}} \right)\:\boldsymbol{{and}}\:\boldsymbol{{E}}\left(\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}} } \right)\: \\ $$$$\boldsymbol{{calcul}}\:\boldsymbol{{li}}\underset{{x}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\:\boldsymbol{{E}}\left(\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}} } \right) \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{i}}\:\boldsymbol{{need}}\:\boldsymbol{{help}}\:\boldsymbol{{please}} \\ $$

Question Number 96928    Answers: 3   Comments: 1

69x ≡ 1 (mod 31) solve for x

$$\mathrm{69}{x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{31}\right)\: \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$

Question Number 96925    Answers: 2   Comments: 0

∫_0 ^1 ((ln(x^2 +1))/(x+1))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}+\mathrm{1}}{dx} \\ $$

Question Number 96922    Answers: 0   Comments: 8

Question Number 96920    Answers: 0   Comments: 2

Question Number 96911    Answers: 1   Comments: 2

∫_(−∞) ^(+∞) ((x^2 sinh(x)+tan^(−1) (x)∙log(x^4 +1))/(πe^x^2 +((x^8 +3cosh(x)))^(1/3) ))dx

$$\int_{−\infty} ^{+\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{sinh}\left(\mathrm{x}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\centerdot\mathrm{log}\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)}{\pi\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{8}} +\mathrm{3cosh}\left(\mathrm{x}\right)}}\mathrm{dx} \\ $$

Question Number 96907    Answers: 0   Comments: 1

Σ_(z = 0) ^(10) cos^3 (((πz)/3)) = ?

$$\underset{\mathrm{z}\:=\:\mathrm{0}} {\overset{\mathrm{10}} {\sum}}\:\mathrm{cos}\:^{\mathrm{3}} \left(\frac{\pi\mathrm{z}}{\mathrm{3}}\right)\:=\:? \\ $$

Question Number 96906    Answers: 1   Comments: 0

Question Number 96904    Answers: 0   Comments: 3

Question Number 96898    Answers: 2   Comments: 1

Question Number 96886    Answers: 0   Comments: 3

solve by using trapezoidal rule h=0.2 and e=2.718 ∫_1 ^(2.2) (e^x^2 /x)dx

$${solve}\:{by}\:{using}\:{trapezoidal}\:{rule}\:{h}=\mathrm{0}.\mathrm{2} \\ $$$${and}\:{e}=\mathrm{2}.\mathrm{718} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$

Question Number 96883    Answers: 0   Comments: 2

solve by simpson′s rule ∫_1 ^(2.2) (e^x^2 /x)dx

$${solve}\:{by}\:{simpson}'{s}\:{rule}\: \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$

Question Number 96866    Answers: 1   Comments: 1

Question Number 96870    Answers: 2   Comments: 0

Question Number 96868    Answers: 0   Comments: 1

Question Number 96864    Answers: 2   Comments: 1

∫ (dy/(y^2 (5−y^2 ))) ?

$$\int\:\frac{\mathrm{dy}}{\mathrm{y}^{\mathrm{2}} \left(\mathrm{5}−\mathrm{y}^{\mathrm{2}} \right)}\:? \\ $$

Question Number 141856    Answers: 1   Comments: 0

Question Number 141855    Answers: 1   Comments: 0

Question Number 96848    Answers: 1   Comments: 0

Question Number 96846    Answers: 0   Comments: 1

Question Number 96845    Answers: 2   Comments: 0

If sin^(−1) (x/5) + cosec^(−1) (5/4) = (π/2), then x=

$$\mathrm{If}\:\mathrm{sin}^{−\mathrm{1}} \frac{{x}}{\mathrm{5}}\:+\:\mathrm{cosec}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{4}}\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then}\:{x}= \\ $$

Question Number 96839    Answers: 0   Comments: 0

Question Number 96837    Answers: 1   Comments: 0

determine f continue on [a,b] wich verify (∫_a ^b f(x)dx)^2 =∫_a ^b f^2 (x)dx

$$\mathrm{determine}\:\mathrm{f}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{wich}\:\mathrm{verify}\:\left(\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right)^{\mathrm{2}} \:=\int_{\mathrm{a}} ^{\mathrm{b}} \:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$

  Pg 1124      Pg 1125      Pg 1126      Pg 1127      Pg 1128      Pg 1129      Pg 1130      Pg 1131      Pg 1132      Pg 1133   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com