Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1129
Question Number 96947 Answers: 0 Comments: 4
Question Number 96936 Answers: 2 Comments: 1
Question Number 96931 Answers: 2 Comments: 3
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{5x}^{\mathrm{4}} −\mathrm{8}}{\mathrm{7x}^{\mathrm{3}} +\mathrm{2}}×\mathrm{tan}\:\left(\frac{\mathrm{3}}{\mathrm{x}}\right)\:=? \\ $$
Question Number 96930 Answers: 0 Comments: 1
$${E}\left({x}\right)\:{denotes}\:{the}\:{integer}\:{part}\:{of}\:{x}\: \\ $$$$\left.{x}\in\right]\mathrm{0};\mathrm{1}\left[\:{determine}:\right. \\ $$$$\boldsymbol{{E}}\left(\boldsymbol{{x}}^{\boldsymbol{{x}}} \right)\:\boldsymbol{{and}}\:\boldsymbol{{E}}\left(\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}} } \right)\: \\ $$$$\boldsymbol{{calcul}}\:\boldsymbol{{li}}\underset{{x}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\:\boldsymbol{{E}}\left(\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}} } \right) \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{i}}\:\boldsymbol{{need}}\:\boldsymbol{{help}}\:\boldsymbol{{please}} \\ $$
Question Number 96928 Answers: 3 Comments: 1
$$\mathrm{69}{x}\:\equiv\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{31}\right)\: \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$
Question Number 96925 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}+\mathrm{1}}{dx} \\ $$
Question Number 96922 Answers: 0 Comments: 8
Question Number 96920 Answers: 0 Comments: 2
Question Number 96911 Answers: 1 Comments: 2
$$\int_{−\infty} ^{+\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{sinh}\left(\mathrm{x}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\centerdot\mathrm{log}\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)}{\pi\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{8}} +\mathrm{3cosh}\left(\mathrm{x}\right)}}\mathrm{dx} \\ $$
Question Number 96907 Answers: 0 Comments: 1
$$\underset{\mathrm{z}\:=\:\mathrm{0}} {\overset{\mathrm{10}} {\sum}}\:\mathrm{cos}\:^{\mathrm{3}} \left(\frac{\pi\mathrm{z}}{\mathrm{3}}\right)\:=\:? \\ $$
Question Number 96906 Answers: 1 Comments: 0
Question Number 96904 Answers: 0 Comments: 3
Question Number 96898 Answers: 2 Comments: 1
Question Number 96886 Answers: 0 Comments: 3
$${solve}\:{by}\:{using}\:{trapezoidal}\:{rule}\:{h}=\mathrm{0}.\mathrm{2} \\ $$$${and}\:{e}=\mathrm{2}.\mathrm{718} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$
Question Number 96883 Answers: 0 Comments: 2
$${solve}\:{by}\:{simpson}'{s}\:{rule}\: \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$
Question Number 96866 Answers: 1 Comments: 1
Question Number 96870 Answers: 2 Comments: 0
Question Number 96868 Answers: 0 Comments: 1
Question Number 96864 Answers: 2 Comments: 1
$$\int\:\frac{\mathrm{dy}}{\mathrm{y}^{\mathrm{2}} \left(\mathrm{5}−\mathrm{y}^{\mathrm{2}} \right)}\:? \\ $$
Question Number 141856 Answers: 1 Comments: 0
Question Number 141855 Answers: 1 Comments: 0
Question Number 96848 Answers: 1 Comments: 0
Question Number 96846 Answers: 0 Comments: 1
Question Number 96845 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{sin}^{−\mathrm{1}} \frac{{x}}{\mathrm{5}}\:+\:\mathrm{cosec}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{4}}\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then}\:{x}= \\ $$
Question Number 96839 Answers: 0 Comments: 0
Question Number 96837 Answers: 1 Comments: 0
$$\mathrm{determine}\:\mathrm{f}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{wich}\:\mathrm{verify}\:\left(\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right)^{\mathrm{2}} \:=\int_{\mathrm{a}} ^{\mathrm{b}} \:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$
Pg 1124 Pg 1125 Pg 1126 Pg 1127 Pg 1128 Pg 1129 Pg 1130 Pg 1131 Pg 1132 Pg 1133
Terms of Service
Privacy Policy
Contact: info@tinkutara.com