Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1129
Question Number 104973 Answers: 1 Comments: 1
$$\mathrm{2}\sqrt{\mathrm{3}}\:+\:\boldsymbol{{i}}\:\:\:{is}\:{a}\:{cubic}\:{root}\:{for} \\ $$$$\mathrm{18}\sqrt{\mathrm{3}}\:+\:\mathrm{35}\boldsymbol{{i}}\: \\ $$$$\boldsymbol{{find}}\:\:\boldsymbol{{the}}\:\boldsymbol{{other}}\:\mathrm{2}\:\boldsymbol{{cubic}}\:\boldsymbol{{roots}} \\ $$
Question Number 104980 Answers: 1 Comments: 3
Question Number 104877 Answers: 1 Comments: 0
$$ \\ $$$${find}\:{x} \\ $$
Question Number 104876 Answers: 0 Comments: 0
$${A}\:{ballot}\:{box}\:{contains}\:\mathrm{7}\:{balls}\left(\mathrm{3}\:{are}\:\right. \\ $$$$\left.{black}\right).\:{we}\:{draw}\:{successively}\:{and} \\ $$$${reputing}\left({inside}\right)\:\mathrm{5}\:{balls}. \\ $$$${What}\:{is}\:{the}\:{number}\:{of}\:{possibilities}\: \\ $$$${to}\:{have}\:{one}\:{black}\:{ball}? \\ $$
Question Number 104984 Answers: 0 Comments: 1
Question Number 104872 Answers: 0 Comments: 0
$${solve}\:{for}\:{a}\:{and}\:{b}: \\ $$$$\begin{cases}{{a}+{b}=\mathrm{60}°}\\{{tana}=\sqrt{\mathrm{2}}{tanb}}\end{cases} \\ $$
Question Number 104871 Answers: 2 Comments: 0
Question Number 104987 Answers: 1 Comments: 2
Question Number 104860 Answers: 1 Comments: 0
$$\left(\mathrm{1}−{aT}\right)\left(\mathrm{1}−{bT}\right).....\left(\mathrm{1}−{yT}\right)\left(\mathrm{1}−{zT}\right)\:\:\:\:???? \\ $$
Question Number 104859 Answers: 2 Comments: 0
Question Number 104858 Answers: 1 Comments: 1
$$\:\:\left(\mathrm{1}−{a}^{\mathrm{3}} \right)\left(\mathrm{1}−{b}^{\mathrm{3}} \right)......\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{y}^{\mathrm{3}} \right)\left(\mathrm{1}−{z}^{\mathrm{3}} \right)\:\:\:\:\:\:\:\:???? \\ $$
Question Number 104857 Answers: 3 Comments: 0
$$\:\:{y}'=\frac{{y}−{x}}{{y}+{x}}\:\:\:\:\:\:\:{y}\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Question Number 104856 Answers: 1 Comments: 0
$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\overset{−} {{z}}}{{z}}\:\:\:\:,\:\:\:\:\underset{{z}\rightarrow{i}} {\mathrm{lim}}\:\frac{\left(\overset{−} {{z}}\right)^{\mathrm{4}} }{{z}^{\mathrm{4}} }\:\:,\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{sinz}}{{z}}\: \\ $$
Question Number 104845 Answers: 1 Comments: 0
$${solve}\:{y}'\:=\:{y}−{x}−\mathrm{1}+\left({x}−{y}+\mathrm{2}\right)^{−\mathrm{1}} \\ $$
Question Number 104841 Answers: 3 Comments: 3
Question Number 104838 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\:^{\mathrm{3}} \left(\mathrm{8}{x}\right)−\mathrm{1}}{\mathrm{6}{x}^{\mathrm{2}} }\:? \\ $$
Question Number 104835 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{log}\:_{{p}} \left({q}\right)\:=\:{x}^{\mathrm{2}} }\\{\mathrm{log}\:_{{q}} \left({p}^{\mathrm{3}} \right)\:=\:{x}\:}\end{cases} \\ $$$${find}\:{x}\: \\ $$
Question Number 104832 Answers: 1 Comments: 0
$$\begin{cases}{{x}+{y}+\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }\:=\:\mathrm{7}}\\{\frac{\left({x}−{y}\right){x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }\:=\:\mathrm{12}\:}\end{cases} \\ $$
Question Number 104826 Answers: 1 Comments: 1
$$\int\mathrm{3}^{{x}+\mathrm{2}} \centerdot{lnsin}\mathrm{3}^{{x}} {dx}=??? \\ $$
Question Number 104821 Answers: 2 Comments: 0
$$\mathrm{3}+\mathrm{8}+\mathrm{15}+\mathrm{24}+\mathrm{35}+...\: \\ $$$${find}\:{sum}\:{of}\:\mathrm{50}^{{th}} −{term}\: \\ $$
Question Number 104812 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\left(\frac{\mathrm{3}}{{x}}\right)}{\left(\frac{\mathrm{2}}{{x}}+\mathrm{5}\right)^{\mathrm{2}} −\mathrm{25}}\:? \\ $$
Question Number 104799 Answers: 0 Comments: 1
Question Number 104796 Answers: 1 Comments: 2
$${show}\:{that}\: \\ $$$$\mathrm{8}{cos}^{\mathrm{4}} {x}−\mathrm{8}{cos}^{\mathrm{2}} {x}+\mathrm{1}={cos}\mathrm{4}{x}. \\ $$
Question Number 104789 Answers: 0 Comments: 1
$${if}\:{y}^{\left({n}\right)} \:{is}\:{the}\:{derivative}\:{of}\:{the}\:{function}\:{y} \\ $$$${of}\:{the}\:{order}\:{n},\:{then} \\ $$$$\int{y}^{\left({n}\right)} {dx}\:=........ \\ $$
Question Number 104783 Answers: 2 Comments: 0
$${find}\:\frac{{d}^{{n}} {y}}{{dx}^{{n}} }\:{for}\:\:\:\:{f}\left({x}\overset{} {\right)}=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}}} \\ $$
Question Number 104782 Answers: 1 Comments: 0
Pg 1124 Pg 1125 Pg 1126 Pg 1127 Pg 1128 Pg 1129 Pg 1130 Pg 1131 Pg 1132 Pg 1133
Terms of Service
Privacy Policy
Contact: info@tinkutara.com