Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1128

Question Number 104370    Answers: 1   Comments: 0

Question Number 104369    Answers: 1   Comments: 0

Question Number 104368    Answers: 1   Comments: 0

CH_3 CH_2 −CH=CH_2 +HCl→ help me

$${CH}_{\mathrm{3}} {CH}_{\mathrm{2}} −{CH}={CH}_{\mathrm{2}} +{HCl}\rightarrow \\ $$$${help}\:{me} \\ $$

Question Number 104367    Answers: 1   Comments: 0

CH_3 −CH_2 −CH_2 −CH_2 Cl+KOH→ help me

$${CH}_{\mathrm{3}} −{CH}_{\mathrm{2}} −{CH}_{\mathrm{2}} −{CH}_{\mathrm{2}} {Cl}+{KOH}\rightarrow \\ $$$${help}\:{me} \\ $$

Question Number 104366    Answers: 0   Comments: 2

CH_3 −CH_2 −CHMgCl−CH_3 +H_2 O→ help me

$${CH}_{\mathrm{3}} −{CH}_{\mathrm{2}} −{CHMgCl}−{CH}_{\mathrm{3}} +{H}_{\mathrm{2}} {O}\rightarrow \\ $$$${help}\:{me} \\ $$

Question Number 104364    Answers: 2   Comments: 1

Question Number 104853    Answers: 0   Comments: 0

lim_(x→1) Li(x^2 )−Li(x)=ln2

$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{Li}\left({x}^{\mathrm{2}} \right)−{Li}\left({x}\right)={ln}\mathrm{2} \\ $$

Question Number 104359    Answers: 1   Comments: 0

solve this using Riemann sum f(x)=2x ; [0,4] for n=4

$${solve}\:{this}\:{using}\:{Riemann} \\ $$$${sum}\:{f}\left({x}\right)=\mathrm{2}{x}\:;\:\left[\mathrm{0},\mathrm{4}\right]\:{for}\:{n}=\mathrm{4} \\ $$

Question Number 104357    Answers: 2   Comments: 0

(x+y+1) (dy/dx) = 1

$$\left({x}+{y}+\mathrm{1}\right)\:\frac{{dy}}{{dx}}\:=\:\mathrm{1}\: \\ $$

Question Number 104852    Answers: 0   Comments: 0

if g∈C(R,R) and. ∫_0 ^1 g(x)dx=(1/3)+∫_0 ^1 g^2 (x^2 )dx then ∫_0 ^1 g(x)dx=(2/3) and ∫_0 ^1 g^2 (x)dx=(1/2)

$$\:\:{if}\:\:{g}\in{C}\left(\mathbb{R},\mathbb{R}\right)\:{and}.\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{g}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}+\int_{\mathrm{0}} ^{\mathrm{1}} {g}^{\mathrm{2}} \left({x}^{\mathrm{2}} \right){dx}\: \\ $$$${then}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {g}\left({x}\right){dx}=\frac{\mathrm{2}}{\mathrm{3}}\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {g}^{\mathrm{2}} \left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$

Question Number 104851    Answers: 4   Comments: 0

∫ ((√(x^2 −9))/x^3 ) dx

$$\int\:\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$

Question Number 104850    Answers: 0   Comments: 0

Let E be a no empty set with card=n≥1 Find in term of n Σ_(A,B⊆E) Card(A−B)=Σ_(A,B⊆E) Card(A∩B)=(1/3)Σ_(A,B⊆E) Card (A∪B)=n4^(n−1)

$${Let}\:\:{E}\:{be}\:{a}\:{no}\:{empty}\:{set}\:{with}\:{card}={n}\geqslant\mathrm{1} \\ $$$$\:{Find}\:{in}\:{term}\:{of}\:\:{n}\:\:\:\:\:\:\underset{{A},{B}\subseteq{E}} {\sum}{Card}\left({A}−{B}\right)=\underset{{A},{B}\subseteq{E}} {\sum}{Card}\left({A}\cap{B}\right)=\frac{\mathrm{1}}{\mathrm{3}}\underset{{A},{B}\subseteq{E}} {\sum}{Card}\:\left({A}\cup{B}\right)={n}\mathrm{4}^{{n}−\mathrm{1}} \:\:\:\: \\ $$

Question Number 104350    Answers: 1   Comments: 0

lim_(△x→0) ((sin ((α+△x)^n )−sin (α^n ))/(cos ((α+△x)^n )sin (α+△x)−cos (α^n )sin (α)))

$$\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\left(\alpha+\bigtriangleup{x}\right)^{{n}} \right)−\mathrm{sin}\:\left(\alpha^{{n}} \right)}{\mathrm{cos}\:\left(\left(\alpha+\bigtriangleup{x}\right)^{{n}} \right)\mathrm{sin}\:\left(\alpha+\bigtriangleup{x}\right)−\mathrm{cos}\:\left(\alpha^{{n}} \right)\mathrm{sin}\:\left(\alpha\right)} \\ $$

Question Number 104348    Answers: 3   Comments: 0

lim_(x→0) (((arc tan (x)−arc sin (x))/(x(1−cos (x)))))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{arc}\:\mathrm{tan}\:\left({x}\right)−\mathrm{arc}\:\mathrm{sin}\:\left({x}\right)}{{x}\left(\mathrm{1}−\mathrm{cos}\:\left({x}\right)\right)}\right) \\ $$

Question Number 104342    Answers: 1   Comments: 0

solve x (d^2 y/dx^2 )−(dy/dx)−4x^3 y = 8x^3 sin(x^2 )

$${solve}\:{x}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\frac{{dy}}{{dx}}−\mathrm{4}{x}^{\mathrm{3}} {y}\:=\:\mathrm{8}{x}^{\mathrm{3}} \mathrm{sin}\left({x}^{\mathrm{2}} \right) \\ $$

Question Number 104339    Answers: 3   Comments: 1

Examine ∫_0 ^3 ((2x)/((1−x^2 )^(2/3) )) dx

$${Examine}\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\:\frac{\mathrm{2}{x}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}/\mathrm{3}} }\:{dx} \\ $$

Question Number 104338    Answers: 0   Comments: 0

∫((tdt)/((1+t^3 )((1+t^3 ))^(1/3) ))

$$\int\frac{\mathrm{tdt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right)\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{t}^{\mathrm{3}} }} \\ $$

Question Number 104326    Answers: 1   Comments: 2

Suppose you had x rupees. Your father gave you more 6 rupees. You gave y rupees to your brother. Now how many rupees you have? You will buy three shirts with the rupees that you have now. Write the cost of each shirt.

$$\boldsymbol{\mathrm{Suppose}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{had}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{rupees}}.\:\boldsymbol{\mathrm{Your}} \\ $$$$\boldsymbol{\mathrm{father}}\:\boldsymbol{\mathrm{gave}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{more}}\:\mathrm{6}\:\boldsymbol{\mathrm{rupees}}.\:\boldsymbol{\mathrm{You}} \\ $$$$\boldsymbol{\mathrm{gave}}\:\boldsymbol{{y}}\:\boldsymbol{\mathrm{rupees}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{brother}}.\:\boldsymbol{\mathrm{Now}} \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{many}}\:\boldsymbol{\mathrm{rupees}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{have}}?\:\boldsymbol{\mathrm{You}}\:\boldsymbol{\mathrm{will}} \\ $$$$\boldsymbol{\mathrm{buy}}\:\boldsymbol{\mathrm{three}}\:\boldsymbol{\mathrm{shirts}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{rupees}}\:\boldsymbol{\mathrm{that}} \\ $$$$\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{now}}.\:\boldsymbol{\mathrm{Write}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{cost}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{each}} \\ $$$$\boldsymbol{\mathrm{shirt}}. \\ $$

Question Number 104312    Answers: 1   Comments: 0

∫_0 ^(π/4) ((√(sin^2 θ+2))/(sinθ))dθ

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\sqrt{\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{2}}}{\mathrm{sin}\theta}\mathrm{d}\theta \\ $$

Question Number 104302    Answers: 3   Comments: 2

Question Number 104301    Answers: 2   Comments: 2

a girl weighs 569.37N on the earth surfsce (a) what would she weigh at a height above the earth surface of one earth radius? what would her mass be?

$$\mathrm{a}\:\mathrm{girl}\:\mathrm{weighs}\:\mathrm{569}.\mathrm{37N}\:\mathrm{on}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{surfsce}\:\left(\mathrm{a}\right)\:\mathrm{what}\:\mathrm{would}\:\mathrm{she}\:\mathrm{weigh}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{above}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{one}\:\mathrm{earth}\:\mathrm{radius}?\:\mathrm{what}\:\mathrm{would}\:\mathrm{her}\:\mathrm{mass}\:\mathrm{be}? \\ $$

Question Number 104299    Answers: 2   Comments: 0

an astraonaut weighs 3200N on a planet whose mass is the same as that of the earth but whose radius is half that of the earth. the astronsut weight on the earth is what?

$$\mathrm{an}\:\mathrm{astraonaut}\:\mathrm{weighs}\:\mathrm{3200N}\:\mathrm{on}\:\mathrm{a}\:\mathrm{planet}\:\mathrm{whose}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{but}\:\mathrm{whose}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{half}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}.\:\mathrm{the}\:\mathrm{astronsut}\:\mathrm{weight}\:\mathrm{on}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{is}\:\mathrm{what}? \\ $$

Question Number 104297    Answers: 1   Comments: 0

((3a^2 b^3 c)/(5b^4 c))+((6xy^3 z^(16) )/(10x^2 y^2 z^(10) )) = ? Can you solve this?

$$\frac{\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{3}} {c}}{\mathrm{5}{b}^{\mathrm{4}} {c}}+\frac{\mathrm{6}{xy}^{\mathrm{3}} {z}^{\mathrm{16}} }{\mathrm{10}{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{10}} }\:=\:? \\ $$$$\boldsymbol{\mathrm{Can}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}? \\ $$

Question Number 104296    Answers: 0   Comments: 0

FUN TIME AGAIN! S_n =1+2+3+4+5+6+7+8+9+.. S_n =1+(2+3+4)+(5+6+7)+... S_n =1+9+18+27+... S_n =1+9(1+2+3+4+5+6+7.......) S_n =1+9S_n S_n =−(1/8) S_n =1−1+1−1+1−1+1−1+1−1+.. S=(1/2) S_n =1−2+4−8+16−32+..... S_n =(1/(1+2))=(1/3) S_n =1+2+4+8+16+... S_n =1+2(1+2+4+8+...) S_n =1+2(1+2(1+2+4+8+...) S_n =1+2(1+2S_n ) −3S_n =3⇒S_n =−1

$$ \\ $$$$ \\ $$$$\mathrm{FUN}\:\mathrm{TIME}\:\mathrm{AGAIN}! \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+.. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\left(\mathrm{2}+\mathrm{3}+\mathrm{4}\right)+\left(\mathrm{5}+\mathrm{6}+\mathrm{7}\right)+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}+\mathrm{18}+\mathrm{27}+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}.......\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9S}_{\mathrm{n}} \\ $$$$\mathrm{S}_{\mathrm{n}} =−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+.. \\ $$$$\mathrm{S}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+..... \\ $$$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+...\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+...\right)\right. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2S}_{\mathrm{n}} \right) \\ $$$$−\mathrm{3S}_{\mathrm{n}} =\mathrm{3}\Rightarrow\mathrm{S}_{\mathrm{n}} =−\mathrm{1} \\ $$

Question Number 104294    Answers: 1   Comments: 0

1. ((1(1/2)+2(6/7))/(2(2/3)−3(4/5)))=? 2. 4×Π×Π=? 3. Transfer into fractions: 5.8^. 9^. , 9.6^. , 78.57^. 8^.

$$\mathrm{1}.\:\:\frac{\mathrm{1}\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}\frac{\mathrm{6}}{\mathrm{7}}}{\mathrm{2}\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{3}\frac{\mathrm{4}}{\mathrm{5}}}=? \\ $$$$\mathrm{2}.\:\:\mathrm{4}×\Pi×\Pi=? \\ $$$$\mathrm{3}.\:\:\boldsymbol{\mathrm{Transfer}}\:\boldsymbol{\mathrm{into}}\:\boldsymbol{\mathrm{fractions}}: \\ $$$$\:\:\:\:\:\:\mathrm{5}.\overset{.} {\mathrm{8}}\overset{.} {\mathrm{9}},\:\mathrm{9}.\overset{.} {\mathrm{6}},\:\mathrm{78}.\mathrm{5}\overset{.} {\mathrm{7}}\overset{.} {\mathrm{8}} \\ $$

Question Number 104293    Answers: 1   Comments: 0

find the acceleration of gravity at an alitude of 1000k

$$\mathrm{find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{gravity}\:\mathrm{at} \\ $$$$\:\mathrm{an}\:\mathrm{alitude}\:\mathrm{of}\:\mathrm{1000k} \\ $$

  Pg 1123      Pg 1124      Pg 1125      Pg 1126      Pg 1127      Pg 1128      Pg 1129      Pg 1130      Pg 1131      Pg 1132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com