Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1128

Question Number 104302    Answers: 3   Comments: 2

Question Number 104301    Answers: 2   Comments: 2

a girl weighs 569.37N on the earth surfsce (a) what would she weigh at a height above the earth surface of one earth radius? what would her mass be?

$$\mathrm{a}\:\mathrm{girl}\:\mathrm{weighs}\:\mathrm{569}.\mathrm{37N}\:\mathrm{on}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{surfsce}\:\left(\mathrm{a}\right)\:\mathrm{what}\:\mathrm{would}\:\mathrm{she}\:\mathrm{weigh}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{above}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{one}\:\mathrm{earth}\:\mathrm{radius}?\:\mathrm{what}\:\mathrm{would}\:\mathrm{her}\:\mathrm{mass}\:\mathrm{be}? \\ $$

Question Number 104299    Answers: 2   Comments: 0

an astraonaut weighs 3200N on a planet whose mass is the same as that of the earth but whose radius is half that of the earth. the astronsut weight on the earth is what?

$$\mathrm{an}\:\mathrm{astraonaut}\:\mathrm{weighs}\:\mathrm{3200N}\:\mathrm{on}\:\mathrm{a}\:\mathrm{planet}\:\mathrm{whose}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{but}\:\mathrm{whose}\:\mathrm{radius}\:\mathrm{is}\:\mathrm{half}\:\mathrm{that}\:\mathrm{of}\:\mathrm{the}\:\mathrm{earth}.\:\mathrm{the}\:\mathrm{astronsut}\:\mathrm{weight}\:\mathrm{on}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{is}\:\mathrm{what}? \\ $$

Question Number 104297    Answers: 1   Comments: 0

((3a^2 b^3 c)/(5b^4 c))+((6xy^3 z^(16) )/(10x^2 y^2 z^(10) )) = ? Can you solve this?

$$\frac{\mathrm{3}{a}^{\mathrm{2}} {b}^{\mathrm{3}} {c}}{\mathrm{5}{b}^{\mathrm{4}} {c}}+\frac{\mathrm{6}{xy}^{\mathrm{3}} {z}^{\mathrm{16}} }{\mathrm{10}{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{10}} }\:=\:? \\ $$$$\boldsymbol{\mathrm{Can}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{this}}? \\ $$

Question Number 104296    Answers: 0   Comments: 0

FUN TIME AGAIN! S_n =1+2+3+4+5+6+7+8+9+.. S_n =1+(2+3+4)+(5+6+7)+... S_n =1+9+18+27+... S_n =1+9(1+2+3+4+5+6+7.......) S_n =1+9S_n S_n =−(1/8) S_n =1−1+1−1+1−1+1−1+1−1+.. S=(1/2) S_n =1−2+4−8+16−32+..... S_n =(1/(1+2))=(1/3) S_n =1+2+4+8+16+... S_n =1+2(1+2+4+8+...) S_n =1+2(1+2(1+2+4+8+...) S_n =1+2(1+2S_n ) −3S_n =3⇒S_n =−1

$$ \\ $$$$ \\ $$$$\mathrm{FUN}\:\mathrm{TIME}\:\mathrm{AGAIN}! \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}+\mathrm{9}+.. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\left(\mathrm{2}+\mathrm{3}+\mathrm{4}\right)+\left(\mathrm{5}+\mathrm{6}+\mathrm{7}\right)+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}+\mathrm{18}+\mathrm{27}+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9}\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}.......\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{9S}_{\mathrm{n}} \\ $$$$\mathrm{S}_{\mathrm{n}} =−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+\mathrm{1}−\mathrm{1}+.. \\ $$$$\mathrm{S}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+..... \\ $$$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+\mathrm{16}+... \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+...\right) \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}+...\right)\right. \\ $$$$\mathrm{S}_{\mathrm{n}} =\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{2S}_{\mathrm{n}} \right) \\ $$$$−\mathrm{3S}_{\mathrm{n}} =\mathrm{3}\Rightarrow\mathrm{S}_{\mathrm{n}} =−\mathrm{1} \\ $$

Question Number 104294    Answers: 1   Comments: 0

1. ((1(1/2)+2(6/7))/(2(2/3)−3(4/5)))=? 2. 4×Π×Π=? 3. Transfer into fractions: 5.8^. 9^. , 9.6^. , 78.57^. 8^.

$$\mathrm{1}.\:\:\frac{\mathrm{1}\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}\frac{\mathrm{6}}{\mathrm{7}}}{\mathrm{2}\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{3}\frac{\mathrm{4}}{\mathrm{5}}}=? \\ $$$$\mathrm{2}.\:\:\mathrm{4}×\Pi×\Pi=? \\ $$$$\mathrm{3}.\:\:\boldsymbol{\mathrm{Transfer}}\:\boldsymbol{\mathrm{into}}\:\boldsymbol{\mathrm{fractions}}: \\ $$$$\:\:\:\:\:\:\mathrm{5}.\overset{.} {\mathrm{8}}\overset{.} {\mathrm{9}},\:\mathrm{9}.\overset{.} {\mathrm{6}},\:\mathrm{78}.\mathrm{5}\overset{.} {\mathrm{7}}\overset{.} {\mathrm{8}} \\ $$

Question Number 104293    Answers: 1   Comments: 0

find the acceleration of gravity at an alitude of 1000k

$$\mathrm{find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{gravity}\:\mathrm{at} \\ $$$$\:\mathrm{an}\:\mathrm{alitude}\:\mathrm{of}\:\mathrm{1000k} \\ $$

Question Number 104286    Answers: 0   Comments: 0

Question Number 104281    Answers: 1   Comments: 1

Question Number 104280    Answers: 1   Comments: 5

What is the GCD of (1/2), (3/4), ((16)/(30)) ?

$$\boldsymbol{\mathrm{What}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{GCD}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{3}}{\mathrm{4}},\:\frac{\mathrm{16}}{\mathrm{30}}\:? \\ $$

Question Number 104278    Answers: 1   Comments: 0

x−(−(−x+(−x+x)))= ?

$${x}−\left(−\left(−{x}+\left(−{x}+{x}\right)\right)\right)=\:? \\ $$

Question Number 104275    Answers: 1   Comments: 2

The HCF of (x−1)(x^2 −4) and (x^2 −1)(x+2) is

$$\mathrm{The}\:\mathrm{HCF}\:\mathrm{of}\:\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{4}\right)\:\mathrm{and}\: \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}+\mathrm{2}\right)\:\:\mathrm{is} \\ $$

Question Number 104264    Answers: 2   Comments: 0

∫_0 ^( (√2)) ∫_y ^( (√(4−y^2 ))) (1/(√(1+x^2 +y^2 )))dxdy

$$\int_{\mathrm{0}} ^{\:\sqrt{\mathrm{2}}} \:\int_{{y}} ^{\:\sqrt{\mathrm{4}−{y}^{\mathrm{2}} }} \frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$

Question Number 104260    Answers: 0   Comments: 1

You bought 3g rice, 5g flour in a market. At first you had 500 rupees. Now you have 300 rupees. How much rupees you wasted? Suppose you distribute the 300 rupees among your 4 sons. Now how much rupees does your one son get?

$$\mathrm{You}\:\mathrm{bought}\:\mathrm{3g}\:\mathrm{rice},\:\mathrm{5g}\:\mathrm{flour}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{market}.\:\mathrm{At}\:\mathrm{first}\:\mathrm{you}\:\mathrm{had}\:\mathrm{500}\:\mathrm{rupees}. \\ $$$$\mathrm{Now}\:\mathrm{you}\:\mathrm{have}\:\mathrm{300}\:\mathrm{rupees}.\:\mathrm{How}\:\mathrm{much} \\ $$$$\mathrm{rupees}\:\mathrm{you}\:\mathrm{wasted}?\:\mathrm{Suppose}\:\mathrm{you} \\ $$$$\mathrm{distribute}\:\mathrm{the}\:\mathrm{300}\:\mathrm{rupees}\:\mathrm{among} \\ $$$$\mathrm{your}\:\mathrm{4}\:\mathrm{sons}.\:\mathrm{Now}\:\mathrm{how}\:\mathrm{much}\:\mathrm{rupees} \\ $$$$\mathrm{does}\:\mathrm{your}\:\mathrm{one}\:\mathrm{son}\:\mathrm{get}? \\ $$

Question Number 104253    Answers: 1   Comments: 1

When a∗b= ((a+b)/(a−b)) then what is the answer of 2∗3×9∗10 ?

$$\mathrm{When}\:{a}\ast{b}=\:\frac{{a}+{b}}{{a}−{b}}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{answer}\:\mathrm{of}\:\mathrm{2}\ast\mathrm{3}×\mathrm{9}\ast\mathrm{10}\:? \\ $$

Question Number 104251    Answers: 1   Comments: 0

If x=8 and y=5 then what is the answer of ((x+y+6)/(x^2 −y^3 )) ?

$$\mathrm{If}\:{x}=\mathrm{8}\:\mathrm{and}\:{y}=\mathrm{5}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{answer}\:\mathrm{of}\:\:\frac{{x}+{y}+\mathrm{6}}{{x}^{\mathrm{2}} −{y}^{\mathrm{3}} }\:? \\ $$

Question Number 104246    Answers: 3   Comments: 0

(1−(1/3))(1−(1/4))(1−(1/5))....(1−(1/(99))) =?

$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right)....\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{99}}\right)\:=? \\ $$

Question Number 104243    Answers: 2   Comments: 0

prove that π=2×(2/(√2))×(2/(√(2+(√2))))×(2/(√(2+(√(2+(√2))))))×.....

$${prove}\:{that} \\ $$$$\pi=\mathrm{2}×\frac{\mathrm{2}}{\sqrt{\mathrm{2}}}×\frac{\mathrm{2}}{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}×\frac{\mathrm{2}}{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}}×..... \\ $$

Question Number 104270    Answers: 1   Comments: 0

sgn(∣x∣)=?

$${sgn}\left(\mid{x}\mid\right)=? \\ $$

Question Number 104265    Answers: 4   Comments: 0

(dy/dx)−y=sinx

$$\frac{{dy}}{{dx}}−{y}={sinx} \\ $$

Question Number 104240    Answers: 3   Comments: 1

(dy/dx) = 1+x^2 +y^2 +(xy)^2

$$\frac{{dy}}{{dx}}\:=\:\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({xy}\right)^{\mathrm{2}} \\ $$

Question Number 104239    Answers: 0   Comments: 1

{3{2x}}=x x=?

$$\left\{\mathrm{3}\left\{\mathrm{2}{x}\right\}\right\}={x}\:\:\:{x}=? \\ $$

Question Number 104309    Answers: 1   Comments: 1

Question Number 104235    Answers: 1   Comments: 0

If you are given a triangle with side length 15 , 20 and 25. what is the triangle′s shortest altitude?

$${If}\:{you}\:{are}\:{given}\:{a}\:{triangle} \\ $$$${with}\:{side}\:{length}\:\mathrm{15}\:,\:\mathrm{20}\:{and} \\ $$$$\mathrm{25}.\:{what}\:{is}\:{the}\:{triangle}'{s} \\ $$$${shortest}\:{altitude}? \\ $$

Question Number 104231    Answers: 0   Comments: 2

Question Number 104221    Answers: 0   Comments: 1

The diagonals of a trapezoid ABCD intersect at point Q lies between the parallel line BC and AD such that ∠AQD = ∠CQB , line CD separates points P and Q . Prove that ∠BQP = ∠DAQ

$${The}\:{diagonals}\:{of}\:{a} \\ $$$${trapezoid}\:{ABCD}\:{intersect} \\ $$$${at}\:{point}\:{Q}\:{lies}\:{between}\:{the} \\ $$$${parallel}\:{line}\:{BC}\:{and}\:{AD} \\ $$$${such}\:{that}\:\angle{AQD}\:=\:\angle{CQB}\:, \\ $$$${line}\:{CD}\:{separates}\:{points}\:{P} \\ $$$${and}\:{Q}\:.\:{Prove}\:{that} \\ $$$$\angle{BQP}\:=\:\angle{DAQ}\: \\ $$

  Pg 1123      Pg 1124      Pg 1125      Pg 1126      Pg 1127      Pg 1128      Pg 1129      Pg 1130      Pg 1131      Pg 1132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com