Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1128

Question Number 105075    Answers: 1   Comments: 0

(7/?) = ((21)/(27)) = ((7/3)/?)

$$\frac{\mathrm{7}}{?}\:=\:\frac{\mathrm{21}}{\mathrm{27}}\:=\:\frac{\frac{\mathrm{7}}{\mathrm{3}}}{?} \\ $$

Question Number 105073    Answers: 1   Comments: 4

Find the centre of the mass of a cone of height ′H′ and Radius ′R′

$$\:{Find}\:{the}\:{centre}\:{of}\:{the}\:{mass}\:{of}\:{a}\:{cone}\:{of}\:{height}\:'{H}'\:{and}\:{Radius} \\ $$$$'{R}' \\ $$

Question Number 105071    Answers: 0   Comments: 3

Question Number 105066    Answers: 0   Comments: 0

Question Number 105057    Answers: 2   Comments: 0

Question Number 105039    Answers: 7   Comments: 0

(1) ∫ (dx/(x^6 −64)) (2) y′ + y tan x = sin 2x y(0) = 1

$$\left(\mathrm{1}\right)\:\int\:\frac{{dx}}{{x}^{\mathrm{6}} −\mathrm{64}} \\ $$$$\left(\mathrm{2}\right)\:{y}'\:+\:{y}\:\mathrm{tan}\:{x}\:=\:\mathrm{sin}\:\mathrm{2}{x} \\ $$$${y}\left(\mathrm{0}\right)\:=\:\mathrm{1} \\ $$

Question Number 105037    Answers: 1   Comments: 0

A heavy man , slips from a roof of a high building of height ′H′. When he was at a height of ′h′ he realised that the ground beneath him was pretty hard. To avoid injury, he thrown away his suitcase of mass ′m′. After doing this,he prevented his falling on the hard ground and fell on a pond. The mass of the man was ′M′. The distance of the pond from the hard ground was ′x′.And he just avoided from falling on the hard ground. Find the velocity required to throw away the suitcase as the man don′t fall on the hard ground.(There was no horizontal velocity of the suitcase−man system)

$${A}\:{heavy}\:{man}\:,\:{slips}\:\:{from}\:{a}\:{roof}\:{of}\:{a}\:{high}\:{building}\:{of} \\ $$$${height}\:'{H}'.\:{When}\:{he}\:{was}\:{at}\:{a}\:{height}\:{of}\:'{h}'\:\:{he}\:{realised}\:{that}\:{the} \\ $$$${ground}\:{beneath}\:{him}\:{was}\:{pretty}\:{hard}.\:{To}\:{avoid}\:{injury},\:{he}\:{thrown} \\ $$$${away}\:{his}\:{suitcase}\:{of}\:{mass}\:'{m}'.\:{After}\:{doing}\:{this},{he}\:{prevented}\:{his} \\ $$$${falling}\:{on}\:{the}\:{hard}\:{ground}\:{and}\:{fell}\:{on}\:{a}\:{pond}.\:{The}\:{mass}\:{of}\:{the} \\ $$$${man}\:{was}\:'{M}'.\:{The}\:{distance}\:{of}\:{the}\:{pond}\:{from}\:{the}\:{hard}\:{ground}\:{was}\: \\ $$$$'{x}'.{And}\:{he}\:{just}\:{avoided}\:{from}\:{falling}\:{on}\:{the}\:{hard}\:{ground}. \\ $$$$ \\ $$$${Find}\:{the}\:{velocity}\:{required}\:{to}\:{throw}\:{away}\:{the}\:{suitcase}\:{as}\:{the}\:{man} \\ $$$${don}'{t}\:{fall}\:{on}\:{the}\:{hard}\:{ground}.\left({There}\:{was}\:{no}\:{horizontal}\:{velocity}\:{of}\:{the}\right. \\ $$$$\left.{suitcase}−{man}\:{system}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 105036    Answers: 2   Comments: 0

lim_(x→0) x.[ (1/x) ] ? note [ ] = greatest integer function

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{x}.\left[\:\frac{\mathrm{1}}{{x}}\:\right]\:? \\ $$$${note}\:\left[\:\right]\:=\:{greatest}\:{integer}\:{function} \\ $$

Question Number 105026    Answers: 5   Comments: 0

Question Number 105023    Answers: 1   Comments: 0

(((x^2 −y^2 )^2 )/((1−x^2 )(y^2 −1)))+(((1−x^2 )^2 )/((x^2 −y^2 )(y^2 −1)))+(((y^2 −1)^2 )/((1−x^2 )(x^2 −y^2 )))=

$$\frac{\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\left({y}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)}= \\ $$$$ \\ $$

Question Number 105018    Answers: 3   Comments: 1

(((√((√5)+2)) + (√((√5)−2)))/(√((√5)+1))) ?

$$\frac{\sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}\:+\:\sqrt{\sqrt{\mathrm{5}}−\mathrm{2}}}{\sqrt{\sqrt{\mathrm{5}}+\mathrm{1}}}\:? \\ $$

Question Number 105014    Answers: 0   Comments: 4

1)Determinate α then show that I belong to the circle 2) show that (BF)⊥(DI).

$$\left.\mathrm{1}\right){Determinate}\:\alpha\:{then}\:{show}\:{that}\:{I}\:{belong}\:{to}\:{the}\:{circle} \\ $$$$\left.\mathrm{2}\right)\:{show}\:{that}\:\left({BF}\right)\bot\left({DI}\right).\: \\ $$$$ \\ $$$$ \\ $$

Question Number 104975    Answers: 0   Comments: 2

Dear Forum-Friends There′s a trend to make answers short in the forum. To follow this trend some friends are omitting key-steps and for this reason the answers become difficult to understand and many readers like me are compelled to leave out such answers at the price of no-understanding!!! So please omit only calculation steps in order to make your answers short-&-understandable.

$$\mathrm{Dear}\:\mathrm{Forum}-\mathrm{Friends} \\ $$$$\:\:\:\:\:\:\mathcal{T}{here}'{s}\:{a}\:{trend}\:{to}\:{make} \\ $$$${answers}\:{short}\:{in}\:{the}\:{forum}. \\ $$$$\:\:\:\:\:\:\:\mathcal{T}{o}\:{follow}\:{this}\:{trend}\:{some} \\ $$$${friends}\:{are}\:{omitting}\:\boldsymbol{{key}}-\boldsymbol{{steps}} \\ $$$${and}\:{for}\:{this}\:{reason}\:{the}\:{answers} \\ $$$${become}\:\boldsymbol{{difficult}}\:\boldsymbol{{to}} \\ $$$$\boldsymbol{{understand}}\:{and}\: \\ $$$${many}\:{readers}\:{like}\:{me} \\ $$$$\:{are}\:{compelled}\:{to}\:{leave}\:{out} \\ $$$${such}\:{answers}\:{at}\:{the}\:{price}\:{of} \\ $$$$\boldsymbol{{no}}-\boldsymbol{{understanding}}!!! \\ $$$$\mathcal{S}{o}\:{please}\:{omit}\:{only} \\ $$$$\boldsymbol{{calculation}}\:\boldsymbol{{steps}}\:{in}\:{order}\:{to} \\ $$$${make}\:{your}\:{answers} \\ $$$${short}-\&-{understandable}. \\ $$

Question Number 104972    Answers: 1   Comments: 0

In the a sport camp, 65% children know playing the football,70%−in voleyball,75%−in basketball.What is least number of children who know playing all above three sport games? (Answer 10%)

$$ \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{a}\:\:\mathrm{sport}\:\mathrm{camp},\:\mathrm{65\%}\:\mathrm{children}\:\mathrm{know} \\ $$$$\mathrm{playing}\:\mathrm{the}\:\mathrm{football},\mathrm{70\%}−\mathrm{in}\:\mathrm{voleyball},\mathrm{75\%}−\mathrm{in} \\ $$$$\mathrm{basketball}.\mathrm{What}\:\mathrm{is}\:\mathrm{least}\:\mathrm{number}\:\mathrm{of}\:\mathrm{children}\:\mathrm{who} \\ $$$$\mathrm{know}\:\mathrm{playing}\:\mathrm{all}\:\mathrm{above}\:\mathrm{three}\:\mathrm{sport}\:\mathrm{games}? \\ $$$$\left(\mathrm{Answer}\:\mathrm{10\%}\right) \\ $$

Question Number 104948    Answers: 0   Comments: 0

Question Number 104993    Answers: 0   Comments: 0

Question Number 104928    Answers: 0   Comments: 5

∫ (e^x −(2x+3)^4 )^3 dx

$$\int\:\left({e}^{{x}} −\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{4}} \right)^{\mathrm{3}} \:{dx} \\ $$

Question Number 104927    Answers: 1   Comments: 0

∫(dx/(1+x+x^2 ))

$$\int\frac{{dx}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} } \\ $$

Question Number 104919    Answers: 0   Comments: 3

let f(x) =(1/(√(1−x^2 ))) finf f^((n)) (x)

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{finf}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right) \\ $$

Question Number 104940    Answers: 1   Comments: 1

Question Number 104939    Answers: 0   Comments: 0

Σ_(n=0) ^∞ (((−1)^(n+1) )/((n+1)!(2n+1))) = ((√π)/2)

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!\left(\mathrm{2}{n}+\mathrm{1}\right)}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}}\: \\ $$

Question Number 104910    Answers: 0   Comments: 0

∫_0 ^1 (1/(√(1+x^3 )))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}{dx} \\ $$

Question Number 104905    Answers: 3   Comments: 0

Question Number 104904    Answers: 3   Comments: 0

4cos^2 x sin x −2sin^2 x = 3sin x where −(π/2)≤x≤(π/2)

$$\mathrm{4cos}\:^{\mathrm{2}} {x}\:\mathrm{sin}\:{x}\:−\mathrm{2sin}\:^{\mathrm{2}} {x}\:=\:\mathrm{3sin}\:{x} \\ $$$${where}\:−\frac{\pi}{\mathrm{2}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{2}} \\ $$

Question Number 104899    Answers: 2   Comments: 0

lim_(x→0) ((cos (sin x)−cos (x))/x^4 ) ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)−\mathrm{cos}\:\left({x}\right)}{{x}^{\mathrm{4}} }\:?\: \\ $$

Question Number 104895    Answers: 2   Comments: 0

1) decompose the fraction F(x) =(1/(x^3 (x+1)^4 )) 2) find the sumA = Σ_(n=1) ^∞ (1/(n^3 (n+1)^4 )) and B =Σ_(n=1) ^(∞ ) (((−1)^n )/(n^3 (n+1)^4 )) 3) what is the value of Σ_(n=0) ^∞ (1/((n+1)^4 (2n+1)^3 )) ?

$$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{the}\:\mathrm{fraction}\:\:\mathrm{F}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{sumA}\:=\:\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} }\:\:\mathrm{and}\:\mathrm{B}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty\:} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{3}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{3}\right)\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} \left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }\:? \\ $$

  Pg 1123      Pg 1124      Pg 1125      Pg 1126      Pg 1127      Pg 1128      Pg 1129      Pg 1130      Pg 1131      Pg 1132   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com