Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1128
Question Number 103846 Answers: 0 Comments: 2
$$\int\frac{{dx}}{{x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{2}} \\ $$
Question Number 103995 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{y}^{''} +\mathrm{2y}^{'} −\mathrm{y}\:=\frac{\mathrm{e}^{−\mathrm{x}} }{\mathrm{x}} \\ $$
Question Number 103835 Answers: 0 Comments: 0
Question Number 103832 Answers: 1 Comments: 0
$${p}\left({x}\right)\:=\:{x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}\:+{d} \\ $$$${if}\:{p}\left(\mathrm{1}\right)=\mathrm{10},{p}\left(\mathrm{2}\right)=\mathrm{20}\:{and} \\ $$$${p}\left(\mathrm{3}\right)=\mathrm{30}\:.\:{find}\:\frac{{p}\left(\mathrm{12}\right)+{p}\left(−\mathrm{8}\right)}{\mathrm{10}} \\ $$
Question Number 103828 Answers: 1 Comments: 0
$$\:\:\:\:\:{min}\left\{\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{\mathrm{3}} −{px}−{q}\right)^{\mathrm{2}} {dx}\:,\:\:\left({p},{q}\right)\in\mathbb{R}^{\mathrm{2}} \:\right\} \\ $$
Question Number 103825 Answers: 7 Comments: 0
$$\int\:\frac{{dx}}{\left(\mathrm{1}−{sinx}\right)^{\mathrm{2}} }\:? \\ $$
Question Number 103826 Answers: 1 Comments: 0
$${In}\:{the}\:{expansion}\:{of}\:\left(\mathrm{1}+{x}\right)^{\mathrm{20}} \:{if}\:{the} \\ $$$${coefficient}\:{of}\:{x}^{{r}} \:{is}\:{twice}\:{the}\:{coefficient} \\ $$$${of}\:{x}^{{r}−\mathrm{1}} ,\:{what}\:{the}\:{value}\:{of}\:{the} \\ $$$${coefficient}?\: \\ $$
Question Number 103823 Answers: 2 Comments: 0
$$\mathrm{tan}\:\left({x}\right)\:=\:\mathrm{4}\:\mathrm{cos}\:\left(\mathrm{2}{x}\right)−\mathrm{cot}\:\left(\mathrm{2}{x}\right) \\ $$
Question Number 103820 Answers: 1 Comments: 0
$$\:\:\:\int_{\mathbb{R}} ^{} \:\frac{{e}^{−\mathrm{2}{i}\pi{ax}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}\:=\:\pi{e}^{−\mathrm{2}\pi{a}} \left(\frac{\mathrm{1}}{\mathrm{2}}+\pi{a}\right)\:\:\:\:\:\:\:\:\:{a}>\mathrm{0} \\ $$
Question Number 103887 Answers: 1 Comments: 3
$${how}\:{do}\:{you}\:{prove}\:\mathrm{sin}\:\left({a}+{b}\right)\:=\:\mathrm{sin} \\ $$$${a}\:\mathrm{cos}\:{b}\:+\:\mathrm{cos}\:{a}\:\mathrm{sin}\:{b} \\ $$$${geometrically}\:? \\ $$
Question Number 103804 Answers: 0 Comments: 0
$$\:\:\:\boldsymbol{{S}}{olve}\:{for}\:\boldsymbol{{r}} \\ $$$$\:\:\frac{\boldsymbol{{h}}−\boldsymbol{{p}}^{\mathrm{2}} }{\boldsymbol{{p}}−\boldsymbol{{r}}}=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{p}}}\:\:\:\:,\:\:\:\:\frac{\boldsymbol{{h}}−\boldsymbol{{q}}}{\boldsymbol{{q}}^{\mathrm{2}} −\boldsymbol{{r}}}=\:\mathrm{2}\boldsymbol{{q}} \\ $$$$\left(\boldsymbol{{h}}−\boldsymbol{{p}}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\boldsymbol{{p}}−\boldsymbol{{r}}\right)^{\mathrm{2}} =\boldsymbol{{r}}^{\mathrm{2}} \\ $$$$\:\left(\boldsymbol{{h}}−\boldsymbol{{q}}\right)^{\mathrm{2}} +\left(\boldsymbol{{q}}^{\mathrm{2}} −\boldsymbol{{r}}\right)^{\mathrm{2}} =\boldsymbol{{r}}^{\mathrm{2}} \\ $$
Question Number 103792 Answers: 2 Comments: 0
Question Number 103790 Answers: 1 Comments: 1
Question Number 103788 Answers: 1 Comments: 0
$${y}''−{y}\:=\:\mathrm{cot}\:{x}\: \\ $$
Question Number 105290 Answers: 2 Comments: 0
$$\mathcal{G}{iven}\:\frac{\mathrm{sin}\:\mathrm{2}{a}−\mathrm{sin}\:\mathrm{2}{b}}{\mathrm{cos}\:\mathrm{2}{a}+\mathrm{cos}\:\mathrm{2}{b}}\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${find}\:{the}\:{value}\:{of}\:\mathrm{cos}\:\left({a}−{b}\right)\: \\ $$
Question Number 105289 Answers: 1 Comments: 0
$$\sqrt{\mathrm{52}}+\sqrt{\mathrm{3}}−\sqrt{\frac{\mathrm{4}}{\mathrm{6}}}\:=\:? \\ $$
Question Number 103781 Answers: 0 Comments: 4
Question Number 103780 Answers: 1 Comments: 0
$${the}\:{third},\:{sixth}\:{and}\:{seventh}\:{terms}\:{of}\:{a} \\ $$$${geometric}\:{progression}\:\left({whose}\:{common}\right. \\ $$$$\left.{ratio}\:{is}\:{neither}\:\mathrm{0}\:{nor}\:\mathrm{1}\:\right)\:{are}\:{in} \\ $$$${arithmetic}\:{progression}\:.\:{prove}\:{that}\:{the} \\ $$$${sum}\:{of}\:{the}\:{first}\:{three}\:{terms}\:{is}\:{equal}\:{to} \\ $$$${fourth}\:. \\ $$
Question Number 103776 Answers: 2 Comments: 0
$${y}'\:−\:\frac{{y}}{{x}^{\mathrm{2}} −\mathrm{1}}\:=\:{y}^{\mathrm{2}} \\ $$
Question Number 103774 Answers: 1 Comments: 0
Question Number 103773 Answers: 1 Comments: 0
$$\int_{{c}} \left(\left({x}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{2}} \right){dx}+\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}\right){dy}\right) \\ $$$${where}\:{C}\:{is}\:{the}\:{boundary}\:{of} \\ $$$${region}\:{define}\:{by}\:{y}^{\mathrm{2}} =\:\mathrm{4}{x}\:{and}\:{y} \\ $$$$=\mathrm{1}\:? \\ $$
Question Number 103771 Answers: 0 Comments: 0
$${y}''−{y}'+{y}\:=\:\mathrm{cos}\:\mathrm{3}{x} \\ $$
Question Number 103769 Answers: 1 Comments: 0
$$\mathrm{2}{y}''−{y}'+{y}\:=\:\mathrm{cos}\:\mathrm{3}{x} \\ $$
Question Number 103767 Answers: 2 Comments: 0
$${solve}\:{y}'−{y}\:=\:{y}^{\mathrm{4}} \:{at}\:{y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\: \\ $$
Question Number 103766 Answers: 1 Comments: 0
$${given}\:\begin{cases}{{x}\:=\:\mathrm{ln}\:\mathrm{34}}\\{{y}\:=\:\mathrm{ln}\:\mathrm{38}}\end{cases} \\ $$$${find}\:\mathrm{ln}\:\mathrm{32}\:{in}\:{terms}\:{of}\:{x}\:{and}\:{y}\: \\ $$
Question Number 103763 Answers: 1 Comments: 0
$$\mathrm{calculate}\left\{\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \right\}×\left\{\sum_{\mathrm{n}=\mathrm{o}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{n}+\mathrm{1}}\right\} \\ $$
Pg 1123 Pg 1124 Pg 1125 Pg 1126 Pg 1127 Pg 1128 Pg 1129 Pg 1130 Pg 1131 Pg 1132
Terms of Service
Privacy Policy
Contact: info@tinkutara.com