Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1125

Question Number 105593    Answers: 2   Comments: 0

f(x)=(((√(2x+1))×(√(2x+1)))/(2x+1)) Dom_f =?

$${f}\left({x}\right)=\frac{\sqrt{\mathrm{2}{x}+\mathrm{1}}×\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{2}{x}+\mathrm{1}}\:\:\:\:\:\:{Dom}_{{f}} =? \\ $$

Question Number 105584    Answers: 1   Comments: 0

lim_(x→0) [csc^2 (2x)−(1/(4x^2 )) ]?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\mathrm{csc}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{2}} }\:\right]? \\ $$

Question Number 105575    Answers: 0   Comments: 0

Question Number 105574    Answers: 1   Comments: 0

∫ ((x−1)/(x+x^2 ln x)) dx ?

$$\int\:\frac{{x}−\mathrm{1}}{{x}+{x}^{\mathrm{2}} \mathrm{ln}\:{x}}\:{dx}\:?\: \\ $$

Question Number 105571    Answers: 4   Comments: 0

Σ_(n = 1) ^∞ (n/((n+1)(n+2)(n+3))) =?

$$\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)}\:=? \\ $$

Question Number 105569    Answers: 1   Comments: 0

x^2 (dy/dx) −3xy−2y^2 = 0

$${x}^{\mathrm{2}} \:\frac{{dy}}{{dx}}\:−\mathrm{3}{xy}−\mathrm{2}{y}^{\mathrm{2}} \:=\:\mathrm{0}\: \\ $$

Question Number 105566    Answers: 0   Comments: 0

let f(x) =(x+1)^(2n) e^(−x) sin(x) 1) calculate f^((n)) (x)and f^((n)) (0) 2)developp f at integr serie 3) find ∫ f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2n}} \:\mathrm{e}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \:\left(\mathrm{x}\right)\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 105565    Answers: 1   Comments: 0

let f(x) =x^2 ln(1−x^3 ) 1) calculate f^((n)) (x) and f^((n)) (0) 2) developp f at integr serie 3)calculate ∫ f(x)dx

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\mathrm{calculate}\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 105564    Answers: 1   Comments: 0

Solve the differential equation; y′′+4y′+5y=xe^(−2x) sinx

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}; \\ $$$$\mathrm{y}''+\mathrm{4y}'+\mathrm{5y}=\mathrm{xe}^{−\mathrm{2x}} \mathrm{sinx} \\ $$

Question Number 105551    Answers: 2   Comments: 0

In how many different ways can 10 students be divided into 3 groups?

$${In}\:{how}\:{many}\:{different}\:{ways}\:{can}\:\mathrm{10} \\ $$$${students}\:{be}\:{divided}\:{into}\:\mathrm{3}\:{groups}? \\ $$

Question Number 105545    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((sin x)/x)dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}\:{x}}{{x}}{dx} \\ $$

Question Number 105544    Answers: 0   Comments: 0

Question Number 105536    Answers: 1   Comments: 0

Question Number 105534    Answers: 1   Comments: 2

Question Number 105526    Answers: 1   Comments: 0

(1/(1+2))+(1/(1+2+3))+(1/(1+2+3+4))+...+(1/(1+2+3+4+...+29))

$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+...+\mathrm{29}} \\ $$

Question Number 105506    Answers: 0   Comments: 3

(−(1/2))+(+(3/7))+(−(1/(10)))=?

$$\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(+\frac{\mathrm{3}}{\mathrm{7}}\right)+\left(−\frac{\mathrm{1}}{\mathrm{10}}\right)=? \\ $$

Question Number 105504    Answers: 9   Comments: 0

(1)lim_(x→0) ((∫_( 0) ^( x^2 ) sec^2 t dt)/(x sin x)) ? (2) ∫_(−π/2) ^(π/2) (√(sec x−cos x)) dx ? (3)In a triangle if tan A=2sin 2C and 3cos A=2sin Bsin C. find C

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\:\mathrm{0}} ^{\:{x}^{\mathrm{2}} } \mathrm{sec}\:^{\mathrm{2}} {t}\:{dt}}{{x}\:\mathrm{sin}\:{x}}\:? \\ $$$$\left(\mathrm{2}\right)\:\underset{−\pi/\mathrm{2}} {\overset{\pi/\mathrm{2}} {\int}}\sqrt{\mathrm{sec}\:{x}−\mathrm{cos}\:{x}}\:{dx}\:? \\ $$$$\left(\mathrm{3}\right){In}\:{a}\:{triangle}\:{if}\:\mathrm{tan}\:{A}=\mathrm{2sin}\:\mathrm{2}{C} \\ $$$${and}\:\mathrm{3cos}\:{A}=\mathrm{2sin}\:{B}\mathrm{sin}\:{C}.\:{find}\:{C} \\ $$

Question Number 105498    Answers: 1   Comments: 3

lim_(n→∞) (Π_(k=1) ^n ((1/k)))^(2/n)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{{k}}\right)\right)^{\frac{\mathrm{2}}{{n}}} \\ $$

Question Number 105493    Answers: 0   Comments: 0

Question Number 105491    Answers: 1   Comments: 0

The tax free allowance for Tammy is K3 300.00 and he pays Income Tax at the rate of 30% on the balance of his salary. Calculate the net pay for Tammy if his montly salary is K5 500.00.

$${The}\:{tax}\:{free}\:{allowance}\:{for} \\ $$$${Tammy}\:{is}\:\mathrm{K3}\:\mathrm{300}.\mathrm{00}\:{and}\:{he}\: \\ $$$${pays}\:{Income}\:{Tax}\:{at}\:{the}\:{rate} \\ $$$${of}\:\mathrm{30\%}\:{on}\:{the}\:{balance}\:{of}\:{his}\: \\ $$$${salary}.\:{Calculate}\:{the}\:{net}\:{pay} \\ $$$${for}\:{Tammy}\:{if}\:{his}\:{montly} \\ $$$${salary}\:{is}\:\mathrm{K5}\:\mathrm{500}.\mathrm{00}. \\ $$$$ \\ $$

Question Number 105488    Answers: 1   Comments: 0

if y = cos(x^2 ) then y^((n)) = .........

$${if}\:{y}\:=\:{cos}\left({x}^{\mathrm{2}} \right)\:\:\:\:\:\:{then}\: \\ $$$$\:\:\:\:\:\:{y}^{\left({n}\right)} \:=\:......... \\ $$

Question Number 105487    Answers: 1   Comments: 0

Σ_(k=1) ^∞ k^2 (0.8)^(k−1)

$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{k}^{\mathrm{2}} \left(\mathrm{0}.\mathrm{8}\right)^{\mathrm{k}−\mathrm{1}} \\ $$

Question Number 105471    Answers: 0   Comments: 2

Σ_(k=1) ^n ((1/k))^2

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} \\ $$

Question Number 105476    Answers: 1   Comments: 1

Question Number 105474    Answers: 2   Comments: 0

Question Number 105462    Answers: 0   Comments: 1

App Updates: • Support added for Hindi Language Select Hindi from font menu. • Drawing: Added option to draw an arc at a point connecting two lines (angle and explementary angle) We can add more languages. More languages: If u provide us a 6×10 table(s) with character map for another language (left to right) over email we can add support. Right to left: App still cannot support right to left languages but we are working on enhancing this.

$$\mathrm{App}\:\mathrm{Updates}: \\ $$$$\bullet\:\mathrm{Support}\:\mathrm{added}\:\mathrm{for}\:\mathrm{Hindi}\:\mathrm{Language} \\ $$$$\:\:\:\mathrm{Select}\:\mathrm{Hindi}\:\mathrm{from}\:\mathrm{font}\:\mathrm{menu}. \\ $$$$\bullet\:\mathrm{Drawing}:\:\mathrm{Added}\:\mathrm{option}\:\mathrm{to}\:\mathrm{draw} \\ $$$$\:\:\:\:\mathrm{an}\:\mathrm{arc}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{connecting}\:\mathrm{two} \\ $$$$\:\:\:\:\mathrm{lines}\:\left(\mathrm{angle}\:\mathrm{and}\:\mathrm{explementary}\:\mathrm{angle}\right) \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{add}\:\mathrm{more}\:\mathrm{languages}.\: \\ $$$$\mathrm{More}\:\mathrm{languages}:\:\mathrm{If}\:\mathrm{u}\:\mathrm{provide}\:\mathrm{us} \\ $$$$\mathrm{a}\:\mathrm{6}×\mathrm{10}\:\mathrm{table}\left(\mathrm{s}\right)\:\mathrm{with}\:\mathrm{character}\:\mathrm{map} \\ $$$$\mathrm{for}\:\mathrm{another}\:\mathrm{language}\:\left(\mathrm{left}\:\mathrm{to}\:\mathrm{right}\right) \\ $$$$\mathrm{over}\:\mathrm{email}\:\mathrm{we}\:\mathrm{can}\:\mathrm{add}\:\mathrm{support}.\: \\ $$$$\mathrm{Right}\:\mathrm{to}\:\mathrm{left}:\:\mathrm{App}\:\mathrm{still}\:\mathrm{cannot}\:\mathrm{support} \\ $$$$\mathrm{right}\:\mathrm{to}\:\mathrm{left}\:\mathrm{languages}\:\mathrm{but}\:\mathrm{we}\:\mathrm{are} \\ $$$$\mathrm{working}\:\mathrm{on}\:\mathrm{enhancing}\:\mathrm{this}. \\ $$

  Pg 1120      Pg 1121      Pg 1122      Pg 1123      Pg 1124      Pg 1125      Pg 1126      Pg 1127      Pg 1128      Pg 1129   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com