Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1125
Question Number 104428 Answers: 4 Comments: 0
$${given}\:{a}_{{n}+\mathrm{1}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{a}_{{n}} \\ $$$${if}\:{a}_{\mathrm{3}} =\:\mathrm{0}\:\&\:{a}_{\mathrm{5}} \:=\:−\mathrm{1} \\ $$$${find}\:{a}_{{n}} \\ $$
Question Number 104426 Answers: 0 Comments: 0
Question Number 104421 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{ch}\left(\mathrm{arctan}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 104419 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{father}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{is}} \\ $$$$\mathrm{90}\:\boldsymbol{\mathrm{years}}.\:\mathrm{5}\:\boldsymbol{\mathrm{years}}\:\boldsymbol{\mathrm{ago}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{father}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{age}} \\ $$$$\boldsymbol{\mathrm{was}}\:\mathrm{3}\:\boldsymbol{\mathrm{times}}\:\boldsymbol{\mathrm{than}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{age}}.\:\boldsymbol{\mathrm{Write}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{age}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{father}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{age}}\:\mathrm{3}\:\boldsymbol{\mathrm{years}} \\ $$$$\boldsymbol{\mathrm{after}}. \\ $$
Question Number 104413 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{two}}\:\boldsymbol{\mathrm{integers}}\:\boldsymbol{\mathrm{is}}\:\mathrm{304} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{their}}\:\boldsymbol{\mathrm{GCD}}\:\boldsymbol{\mathrm{is}}\:\mathrm{19}.\:\boldsymbol{\mathrm{What}}\:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{numbers}}? \\ $$
Question Number 104411 Answers: 0 Comments: 5
Question Number 104410 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{If}}\:\mathrm{11}×\mathrm{11}=\mathrm{121}, \\ $$$$\mathrm{111}×\mathrm{111}=\mathrm{12321},\mathrm{1111}×\mathrm{1111}=\mathrm{1234321} \\ $$$$\boldsymbol{\mathrm{then}}\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{answer}}\:\boldsymbol{\mathrm{of}} \\ $$$$\mathrm{111111}×\mathrm{111111}\:? \\ $$$$\left(\boldsymbol{\mathrm{It}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{short}}\:\boldsymbol{\mathrm{question}}\right) \\ $$
Question Number 104406 Answers: 1 Comments: 1
$$\:\:\:\:\mathrm{Evaluate} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{8}}\:+\:\frac{\mathrm{3}}{\mathrm{16}}\:+\:\frac{\mathrm{5}}{\mathrm{64}}\:+\:..... \\ $$
Question Number 104404 Answers: 1 Comments: 0
$$\frac{\mathrm{4}}{\mathrm{5}}=\frac{?}{\mathrm{45}}=\frac{\mathrm{20}}{?}=\frac{\mathrm{144}}{?}=\frac{\mathrm{200}}{?} \\ $$
Question Number 104391 Answers: 0 Comments: 1
$$\left(\boldsymbol{{x}}−\boldsymbol{{a}}\right)\left(\boldsymbol{{x}}−\boldsymbol{{b}}\right)\left(\boldsymbol{{x}}−\boldsymbol{{c}}\right)....\left(\boldsymbol{{x}}−\boldsymbol{{z}}\right)\:=\:? \\ $$
Question Number 104390 Answers: 1 Comments: 0
Question Number 104394 Answers: 1 Comments: 0
Question Number 104388 Answers: 1 Comments: 0
$$\int\frac{\mathrm{d}{x}}{{x}^{\mathrm{2}} \sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{1}}} \\ $$
Question Number 104383 Answers: 1 Comments: 1
$$\mathrm{When}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{function} \\ $$$$\mathrm{satisfying}\:\:{x}\centerdot{f}\left({x}\right)={x}^{\mathrm{2}} +\int_{\mathrm{0}} ^{\:{x}} \left({x}−{t}\right)\centerdot{f}\:'\left({t}\right){dt} \\ $$$$\mathrm{Find}\:\Rightarrow\:{f}\left(\mathrm{1}\right) \\ $$
Question Number 104377 Answers: 1 Comments: 6
$$\mathrm{Solve}:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:\:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{196}\:\:\:\:\:\:\:\:...\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{c}\:\:−\:\:\mathrm{a}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{169}\:\:\:...\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{b}\:\:−\:\:\mathrm{c}\right)^{\mathrm{2}} \:\:=\:\:\mathrm{225}\:\:\:\:\:....\:\left(\mathrm{iii}\right) \\ $$
Question Number 104371 Answers: 1 Comments: 0
Question Number 104370 Answers: 1 Comments: 0
Question Number 104369 Answers: 1 Comments: 0
Question Number 104368 Answers: 1 Comments: 0
$${CH}_{\mathrm{3}} {CH}_{\mathrm{2}} −{CH}={CH}_{\mathrm{2}} +{HCl}\rightarrow \\ $$$${help}\:{me} \\ $$
Question Number 104367 Answers: 1 Comments: 0
$${CH}_{\mathrm{3}} −{CH}_{\mathrm{2}} −{CH}_{\mathrm{2}} −{CH}_{\mathrm{2}} {Cl}+{KOH}\rightarrow \\ $$$${help}\:{me} \\ $$
Question Number 104366 Answers: 0 Comments: 2
$${CH}_{\mathrm{3}} −{CH}_{\mathrm{2}} −{CHMgCl}−{CH}_{\mathrm{3}} +{H}_{\mathrm{2}} {O}\rightarrow \\ $$$${help}\:{me} \\ $$
Question Number 104364 Answers: 2 Comments: 1
Question Number 104853 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{Li}\left({x}^{\mathrm{2}} \right)−{Li}\left({x}\right)={ln}\mathrm{2} \\ $$
Question Number 104359 Answers: 1 Comments: 0
$${solve}\:{this}\:{using}\:{Riemann} \\ $$$${sum}\:{f}\left({x}\right)=\mathrm{2}{x}\:;\:\left[\mathrm{0},\mathrm{4}\right]\:{for}\:{n}=\mathrm{4} \\ $$
Question Number 104357 Answers: 2 Comments: 0
$$\left({x}+{y}+\mathrm{1}\right)\:\frac{{dy}}{{dx}}\:=\:\mathrm{1}\: \\ $$
Question Number 104852 Answers: 0 Comments: 0
$$\:\:{if}\:\:{g}\in{C}\left(\mathbb{R},\mathbb{R}\right)\:{and}.\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{g}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{3}}+\int_{\mathrm{0}} ^{\mathrm{1}} {g}^{\mathrm{2}} \left({x}^{\mathrm{2}} \right){dx}\: \\ $$$${then}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {g}\left({x}\right){dx}=\frac{\mathrm{2}}{\mathrm{3}}\:{and}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {g}^{\mathrm{2}} \left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$
Pg 1120 Pg 1121 Pg 1122 Pg 1123 Pg 1124 Pg 1125 Pg 1126 Pg 1127 Pg 1128 Pg 1129
Terms of Service
Privacy Policy
Contact: info@tinkutara.com