Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1125
Question Number 103685 Answers: 1 Comments: 0
Question Number 103683 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} {tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}−\mathrm{1}}{\mathrm{1}+{x}−{x}^{\mathrm{2}} }\right){dx} \\ $$
Question Number 103673 Answers: 1 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{4095}} {\sum}}\frac{\mathrm{1}}{\left(\sqrt{{k}}+\sqrt{{k}+\mathrm{1}}\right)\left(\sqrt[{\mathrm{4}}]{{k}}+\sqrt[{\mathrm{4}}]{{k}+\mathrm{1}}\right)}\:? \\ $$
Question Number 103672 Answers: 1 Comments: 3
Question Number 103670 Answers: 4 Comments: 0
$${Given}\:{b}_{{n}} \:=\:\mathrm{3}.\mathrm{2}^{{n}} \:{is}\:{a}\:{GP}\:.\:{find}\:{the}\:{value} \\ $$$${of}\:\frac{\mathrm{1}}{{b}_{\mathrm{1}} }+\frac{\mathrm{1}}{{b}_{\mathrm{2}} }+\frac{\mathrm{1}}{{b}_{\mathrm{3}} }+...+\frac{\mathrm{1}}{{b}_{\mathrm{10}} }\:?\: \\ $$
Question Number 103669 Answers: 2 Comments: 0
$${prove}\:{that}\:: \\ $$$$\left.{a}\right)\:\int_{−\mathrm{3}} ^{−\mathrm{1}} {x}^{\mathrm{2}} {dx}\:\geqslant\int_{\mathrm{1}} ^{\mathrm{3}} \left(\mathrm{2}{x}−\mathrm{1}\right){dx} \\ $$$$\left.{b}\right)\int_{−\mathrm{2}} ^{\mathrm{0}} {xdx}\:\leqslant\int_{\mathrm{0}} ^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\:{x}\:\right){dx} \\ $$$$\left.{c}\right)\int_{\mathrm{1}} ^{\mathrm{4}} \left({x}^{\mathrm{2}} \:+\:\mathrm{2}\right){dx}\:\:\geqslant\int_{\mathrm{2}} ^{\mathrm{5}} \left(\mathrm{2}{x}\:−\mathrm{5}\right){dx} \\ $$$$\left.{d}\right)\int_{−\pi} ^{−\frac{\mathrm{3}\pi}{\mathrm{4}}} \mathrm{cos}\:\mathrm{2}{x}\:{dx}\:\geqslant\int_{\frac{\mathrm{3}\pi}{\mathrm{4}}} ^{\pi} \mathrm{sin}\:\mathrm{2}{x}\:{dx} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 103665 Answers: 0 Comments: 0
Question Number 103664 Answers: 1 Comments: 0
Question Number 103659 Answers: 2 Comments: 1
$$\mathrm{When}\:\mathrm{y}=\mathrm{ax}+\mathrm{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} \:\mathrm{passing}\:\mathrm{through}\:\left(\mathrm{0};\:−\mathrm{2}\right), \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{b}? \\ $$
Question Number 103652 Answers: 0 Comments: 1
Question Number 103649 Answers: 0 Comments: 0
Question Number 103648 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{Evaluate}}\:\frac{\mathrm{1}}{\mathrm{1}\centerdot\mathrm{2}\centerdot\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{3}\centerdot\mathrm{4}\centerdot\mathrm{5}}+...+\frac{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}}{\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right.} \\ $$
Question Number 103647 Answers: 0 Comments: 0
Question Number 103644 Answers: 1 Comments: 1
Question Number 103643 Answers: 4 Comments: 0
$${if}\:\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\:=\:\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${then}\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\:{x}}\:?\: \\ $$
Question Number 103633 Answers: 2 Comments: 1
$$ \\ $$$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{question}}\:\boldsymbol{\mathrm{is}} \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}}{\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right.}\right)=... \\ $$
Question Number 103624 Answers: 0 Comments: 0
Question Number 103623 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{series}}\:\boldsymbol{\mathrm{whose}}\:\boldsymbol{\mathrm{nth}} \\ $$$$\boldsymbol{\mathrm{term}}\:\boldsymbol{\mathrm{is}}\:\frac{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}}{\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right.}. \\ $$$$\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{have}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{problem}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{need}} \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{please}} \\ $$
Question Number 103622 Answers: 2 Comments: 0
$${Given}\:{a}\:=\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{24}} {\sum}}\frac{\mathrm{1}}{\sqrt{{n}+\mathrm{1}}+\sqrt{{n}}}\:{then}\:{the}\:{value}\:{of} \\ $$$${a}\:+\:\frac{\mathrm{1}}{\mathrm{log}\:_{{a}} \left({bc}\right)+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{log}\:_{{b}} \left({ac}\right)+\mathrm{1}}\:+ \\ $$$$\frac{\mathrm{1}}{\mathrm{log}\:_{{c}} \left({ab}\right)+\mathrm{1}}\:=\:? \\ $$
Question Number 103620 Answers: 1 Comments: 0
$${If}\:{a}^{\mathrm{2}} −{bc},\:{b}^{\mathrm{2}} −{ac},\:{c}^{\mathrm{2}} −{ab}\:{is}\:{AP}\:{where}\:{a}+{c} \\ $$$$=\:\mathrm{12},\:{find}\:{the}\:{value}\:{of}\:{a}+{b}+{c}\: \\ $$
Question Number 103607 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{value}\:{of}\:\int_{{c}} \left({x}+\mathrm{2}{y}\right){dx}+\left(\mathrm{4}−\mathrm{2}{x}\right){dy} \\ $$$${around}\:{the}\:{ellipse}\:{C}:\:\frac{{x}^{\mathrm{2}} }{\mathrm{16}}+\frac{{y}^{\mathrm{2}} }{\mathrm{8}}=\mathrm{1} \\ $$$${in}\:{the}\:{counterclockwise} \\ $$$${direction}\:?\: \\ $$
Question Number 103606 Answers: 3 Comments: 1
$${an}\:{integer}\:{n}\:{between}\:\mathrm{1}\:{and}\:\mathrm{98}\:, \\ $$$${inclusive}\:{is}\:{to}\:{be}\:{chosen}\:{at} \\ $$$${random}.\:{what}\:{is}\:{the}\:{probability} \\ $$$${that}\:{n}\left({n}+\mathrm{1}\right)\:{will}\:{be}\:{divisible}\:{by}\:\mathrm{3} \\ $$
Question Number 103603 Answers: 0 Comments: 1
Question Number 103597 Answers: 0 Comments: 2
$$\boldsymbol{{pls}}\:\boldsymbol{{help}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}} \\ $$$$\left(\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} \mathrm{sin}\:\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:+\:\boldsymbol{{y}}\right)\boldsymbol{{dx}}\:=\:\boldsymbol{{xcos}}\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:−\boldsymbol{{xdy}} \\ $$
Question Number 103593 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}\:+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{5}\right)^{\mathrm{2}} } \\ $$
Question Number 103591 Answers: 1 Comments: 4
$$\mathrm{calculate}\:\:\int_{\mathrm{3}} ^{+\infty} \:\:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Pg 1120 Pg 1121 Pg 1122 Pg 1123 Pg 1124 Pg 1125 Pg 1126 Pg 1127 Pg 1128 Pg 1129
Terms of Service
Privacy Policy
Contact: info@tinkutara.com