Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1109

Question Number 105462    Answers: 0   Comments: 1

App Updates: • Support added for Hindi Language Select Hindi from font menu. • Drawing: Added option to draw an arc at a point connecting two lines (angle and explementary angle) We can add more languages. More languages: If u provide us a 6×10 table(s) with character map for another language (left to right) over email we can add support. Right to left: App still cannot support right to left languages but we are working on enhancing this.

$$\mathrm{App}\:\mathrm{Updates}: \\ $$$$\bullet\:\mathrm{Support}\:\mathrm{added}\:\mathrm{for}\:\mathrm{Hindi}\:\mathrm{Language} \\ $$$$\:\:\:\mathrm{Select}\:\mathrm{Hindi}\:\mathrm{from}\:\mathrm{font}\:\mathrm{menu}. \\ $$$$\bullet\:\mathrm{Drawing}:\:\mathrm{Added}\:\mathrm{option}\:\mathrm{to}\:\mathrm{draw} \\ $$$$\:\:\:\:\mathrm{an}\:\mathrm{arc}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{connecting}\:\mathrm{two} \\ $$$$\:\:\:\:\mathrm{lines}\:\left(\mathrm{angle}\:\mathrm{and}\:\mathrm{explementary}\:\mathrm{angle}\right) \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{add}\:\mathrm{more}\:\mathrm{languages}.\: \\ $$$$\mathrm{More}\:\mathrm{languages}:\:\mathrm{If}\:\mathrm{u}\:\mathrm{provide}\:\mathrm{us} \\ $$$$\mathrm{a}\:\mathrm{6}×\mathrm{10}\:\mathrm{table}\left(\mathrm{s}\right)\:\mathrm{with}\:\mathrm{character}\:\mathrm{map} \\ $$$$\mathrm{for}\:\mathrm{another}\:\mathrm{language}\:\left(\mathrm{left}\:\mathrm{to}\:\mathrm{right}\right) \\ $$$$\mathrm{over}\:\mathrm{email}\:\mathrm{we}\:\mathrm{can}\:\mathrm{add}\:\mathrm{support}.\: \\ $$$$\mathrm{Right}\:\mathrm{to}\:\mathrm{left}:\:\mathrm{App}\:\mathrm{still}\:\mathrm{cannot}\:\mathrm{support} \\ $$$$\mathrm{right}\:\mathrm{to}\:\mathrm{left}\:\mathrm{languages}\:\mathrm{but}\:\mathrm{we}\:\mathrm{are} \\ $$$$\mathrm{working}\:\mathrm{on}\:\mathrm{enhancing}\:\mathrm{this}. \\ $$

Question Number 105643    Answers: 2   Comments: 0

lim_(x→0) ((tan (x−sin x))/(2−(√(4+sin^3 2x))))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left({x}−\mathrm{sin}\:{x}\right)}{\mathrm{2}−\sqrt{\mathrm{4}+\mathrm{sin}\:^{\mathrm{3}} \:\mathrm{2}{x}}} \\ $$

Question Number 105456    Answers: 2   Comments: 0

Prove that the curve y=x^4 +3x^2 +2x does not meet the straight line y=2x−1 and find the distace between their nearest points.(Answer (1/(√5)))

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{4}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{2x} \\ $$$$\mathrm{does}\:\mathrm{not}\:\mathrm{meet}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{y}=\mathrm{2x}−\mathrm{1}\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{distace}\:\mathrm{between} \\ $$$$\mathrm{their}\:\mathrm{nearest}\:\mathrm{points}.\left(\mathrm{Answer}\:\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\right) \\ $$

Question Number 105455    Answers: 3   Comments: 0

∫_(−1) ^1 ((e^x −e^(−x) )/(cos x)) dx

$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{cos}\:{x}}\:{dx}\: \\ $$

Question Number 105448    Answers: 3   Comments: 2

Given { ((((4x^2 )/(4x^2 +1)) = y)),((((4y^2 )/(4y^2 +1)) = z)),((((4z^2 )/(4z^2 +1)) = x)) :} . find x+y+z ?

$$\mathcal{G}{iven}\:\begin{cases}{\frac{\mathrm{4}{x}^{\mathrm{2}} }{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}\:=\:{y}}\\{\frac{\mathrm{4}{y}^{\mathrm{2}} }{\mathrm{4}{y}^{\mathrm{2}} +\mathrm{1}}\:=\:{z}}\\{\frac{\mathrm{4}{z}^{\mathrm{2}} }{\mathrm{4}{z}^{\mathrm{2}} +\mathrm{1}}\:=\:{x}}\end{cases}\:\:\:.\:{find} \\ $$$${x}+{y}+{z}\:?\: \\ $$

Question Number 105440    Answers: 1   Comments: 3

∫tanx∙tan2x∙tan3x∙dx Any way to solve this without the use of partial fractions?

$$\int\mathrm{tanx}\centerdot\mathrm{tan2x}\centerdot\mathrm{tan3x}\centerdot\mathrm{dx} \\ $$$$\mathrm{Any}\:\mathrm{way}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{without}\:\mathrm{the}\:\mathrm{use}\:\mathrm{of} \\ $$$$\mathrm{partial}\:\mathrm{fractions}? \\ $$

Question Number 105438    Answers: 0   Comments: 3

99×99=9801 999×999=998001 9999×9999=99980001 99999×99999=? 999999×999999=?

$$\mathrm{99}×\mathrm{99}=\mathrm{9801} \\ $$$$\mathrm{999}×\mathrm{999}=\mathrm{998001} \\ $$$$\mathrm{9999}×\mathrm{9999}=\mathrm{99980001} \\ $$$$\mathrm{99999}×\mathrm{99999}=? \\ $$$$\mathrm{999999}×\mathrm{999999}=? \\ $$

Question Number 105431    Answers: 1   Comments: 6

Σ_(k=1) ^(k=n) ((1/k))^2 =? any help pleaze

$$\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{k}}=\boldsymbol{{n}}} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{{k}}}\right)^{\mathrm{2}} =? \\ $$$$\boldsymbol{{any}}\:\boldsymbol{{help}}\:\boldsymbol{{pleaze}} \\ $$

Question Number 105422    Answers: 1   Comments: 1

Question Number 105415    Answers: 0   Comments: 0

Question Number 105414    Answers: 0   Comments: 2

Question Number 105413    Answers: 0   Comments: 0

Question Number 105412    Answers: 2   Comments: 0

∫_0 ^(π/2) ln (cos x) dx

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)\:{dx} \\ $$

Question Number 105411    Answers: 1   Comments: 0

∫((x^2 +3)/(x^6 (x^2 +1)))dx Is there any special method of decomposition other than the use of partial fractions ?

$$\int\frac{{x}^{\mathrm{2}} +\mathrm{3}}{{x}^{\mathrm{6}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}\mathrm{d}{x} \\ $$$${I}\mathrm{s}\:{there}\:{any}\:{special}\:{method}\:{of}\:{decomposition} \\ $$$${other}\:{than}\:{the}\:{use}\:{of}\:{partial}\:{fractions}\:? \\ $$

Question Number 105410    Answers: 2   Comments: 0

lim_(x→0) ((x(1+a cos x)−bsin x)/x^5 ) = 1 find a & b

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+{a}\:\mathrm{cos}\:{x}\right)−{b}\mathrm{sin}\:{x}}{{x}^{\mathrm{5}} }\:=\:\mathrm{1} \\ $$$${find}\:{a}\:\&\:{b}\: \\ $$

Question Number 105406    Answers: 0   Comments: 0

Question Number 105404    Answers: 1   Comments: 0

Cube ABCD.EFGH with length side 2 cm. Point P is the center of ABFE plane. The distance of HP line and the BG line is __

$${Cube}\:{ABCD}.{EFGH}\:{with} \\ $$$${length}\:{side}\:\mathrm{2}\:{cm}.\:{Point}\:{P}\:{is}\:{the} \\ $$$${center}\:{of}\:{ABFE}\:{plane}.\:{The} \\ $$$${distance}\:{of}\:{HP}\:{line}\:{and}\:{the}\:{BG} \\ $$$${line}\:{is}\:\_\_\: \\ $$

Question Number 105399    Answers: 0   Comments: 0

calculate ∫_(−∞) ^(+∞) ((x^2 dx)/((x^2 +x+1)^2 (2x^2 +3)))

$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$

Question Number 105393    Answers: 1   Comments: 0

∫_(−π) ^π ((x sin x dx)/((1+x+(√(1+x^2 )))(√(3+sin^2 x))))

$$\underset{−\pi} {\overset{\pi} {\int}}\:\frac{{x}\:\mathrm{sin}\:{x}\:{dx}}{\left(\mathrm{1}+{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\sqrt{\mathrm{3}+\mathrm{sin}\:^{\mathrm{2}} {x}}} \\ $$

Question Number 105388    Answers: 3   Comments: 0

Question Number 105386    Answers: 2   Comments: 0

∫ (x^3 /(√((a^2 +x^2 )^3 ))) dx

$$\int\:\frac{{x}^{\mathrm{3}} }{\sqrt{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}\:{dx}\: \\ $$

Question Number 105383    Answers: 1   Comments: 0

Given { ((lim_(x→5) ((f(x)−a)/(x−5)) = 8)),((lim_(x→5) ((x^2 −ax+b)/(f(x)−a)) = 1)) :} find the value of b+23

$$\mathcal{G}{iven}\:\begin{cases}{\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\frac{{f}\left({x}\right)−{a}}{{x}−\mathrm{5}}\:=\:\mathrm{8}}\\{\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{ax}+{b}}{{f}\left({x}\right)−{a}}\:=\:\mathrm{1}}\end{cases} \\ $$$${find}\:{the}\:{value}\:{of}\:{b}+\mathrm{23}\: \\ $$

Question Number 105380    Answers: 1   Comments: 1

Question Number 105366    Answers: 1   Comments: 0

Question Number 105370    Answers: 4   Comments: 0

Question Number 105361    Answers: 0   Comments: 0

solve by Frobenius method x^2 y′′−x(2x−1)y′+(x+1)y=0

$${solve}\:{by}\:{Frobenius}\:{method} \\ $$$${x}^{\mathrm{2}} {y}''−{x}\left(\mathrm{2}{x}−\mathrm{1}\right){y}'+\left({x}+\mathrm{1}\right){y}=\mathrm{0} \\ $$

  Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108      Pg 1109      Pg 1110      Pg 1111      Pg 1112      Pg 1113   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com