Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1107
Question Number 107171 Answers: 0 Comments: 0
Question Number 107170 Answers: 0 Comments: 0
Question Number 107169 Answers: 2 Comments: 1
$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\in\mathbb{R} \\ $$$$\mathrm{a}+\mathrm{b}=\mathrm{8} \\ $$$$\mathrm{ab}+\mathrm{c}+\mathrm{d}=\mathrm{23} \\ $$$$\mathrm{ad}+\mathrm{bc}=\mathrm{28} \\ $$$$\mathrm{cd}=\mathrm{12} \\ $$$$\mathrm{Find}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} . \\ $$$$ \\ $$
Question Number 107163 Answers: 2 Comments: 0
Question Number 107162 Answers: 1 Comments: 1
Question Number 107157 Answers: 0 Comments: 0
Question Number 107155 Answers: 2 Comments: 0
Question Number 107153 Answers: 1 Comments: 0
$$\:\:\:\:\:\:@{bemath}@ \\ $$$$\left(\frac{\mathrm{14}}{\mathrm{5}}\right)^{\frac{\mathrm{28}}{\sqrt{{x}}}−\mathrm{5}} =\:\left(\frac{\mathrm{5}}{\mathrm{14}}\right)^{\frac{\mathrm{5}}{\sqrt{{x}}}−\mathrm{160}} \\ $$
Question Number 107151 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:@\mathrm{JS}@ \\ $$$$\left(\mathrm{D}^{\mathrm{2}} +\mathrm{7D}+\mathrm{12}\right)\mathrm{y}\:=\:\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{2x}\: \\ $$
Question Number 107147 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \:\mathrm{e}^{\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}}{\mathrm{e}^{\mathrm{x}} \mathrm{lnx}} \\ $$
Question Number 107144 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{xy}^{'} \:+\mathrm{2y}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right) \\ $$
Question Number 107141 Answers: 0 Comments: 0
$$\int\left({x}^{\mathrm{3}} +{x}^{\mathrm{6}} \right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2}}\right){dx} \\ $$
Question Number 107133 Answers: 0 Comments: 0
Question Number 107124 Answers: 2 Comments: 0
Question Number 107123 Answers: 0 Comments: 0
Question Number 107122 Answers: 1 Comments: 0
Question Number 107121 Answers: 0 Comments: 0
Question Number 107117 Answers: 2 Comments: 0
Question Number 107113 Answers: 0 Comments: 0
Question Number 107108 Answers: 1 Comments: 3
$$\mathrm{y}''+\mathrm{y}=\frac{\mathrm{1}}{\mathrm{cosx}} \\ $$
Question Number 107107 Answers: 1 Comments: 2
Question Number 107105 Answers: 1 Comments: 0
Question Number 107102 Answers: 0 Comments: 0
Question Number 107101 Answers: 0 Comments: 0
$$\mathrm{Fun}\:\mathrm{time} \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{2x}+\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +....=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{1}+\mathrm{4}+\mathrm{12}+\mathrm{32}+...=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\mathrm{4}+\mathrm{12}+\mathrm{32}+....=\mathrm{0}\:\:\left(\mathrm{No}\:\mathrm{1}\:\mathrm{fun}\right) \\ $$$$ \\ $$$$\mathrm{5}+\mathrm{11}+\mathrm{17}+\mathrm{23}+...=\mathrm{0}\:\:\: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{6n}−\mathrm{1}=\mathrm{6}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{n}−\overset{\infty} {\sum}\mathrm{1}=\mathrm{6}.\left(−\frac{\mathrm{1}}{\mathrm{12}}\right)−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\overset{\infty} {\sum}\mathrm{n}=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\left(\mathrm{Ramanujan}\:\mathrm{sum}\right) \\ $$$$\overset{\infty} {\sum}\mathrm{1}=\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+...=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} .\overset{\infty} {\sum}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\geqslant\left(\overset{\infty} {\sum}\mathrm{1}\right)^{\mathrm{2}} \:\:\:\left(\mathrm{Cauchy}\:\mathrm{schwarz}\:\mathrm{ineqality}\right) \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} .\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} \geqslant\frac{\mathrm{3}}{\mathrm{2}\pi^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 107092 Answers: 1 Comments: 2
Question Number 107088 Answers: 3 Comments: 1
Pg 1102 Pg 1103 Pg 1104 Pg 1105 Pg 1106 Pg 1107 Pg 1108 Pg 1109 Pg 1110 Pg 1111
Terms of Service
Privacy Policy
Contact: info@tinkutara.com