Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1106

Question Number 107745    Answers: 2   Comments: 3

(i) L=lim_(x→0) [(((1+x)^(1/x) )/e)]^(1/x) = ? (ii) L=lim_(x→∞) [(x/e)−x((x/(x+1)))^x ] = ?

$$\left({i}\right)\:\:\:{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{1}/{x}} }{{e}}\right]^{\mathrm{1}/{x}} \:\:=\:? \\ $$$$\left({ii}\right)\:\:{L}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left[\frac{{x}}{{e}}−{x}\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{{x}} \right]\:=\:? \\ $$

Question Number 107741    Answers: 0   Comments: 2

Question Number 107737    Answers: 1   Comments: 0

Question Number 107729    Answers: 6   Comments: 3

1) solve the D.E : (dy/dx)−y tan(x)=−y^2 sec(x) 2)find x Π_(k=1) ^(25) (x+(x/3^k ))=1 3)solve : ∣Z^2 ∣−4Z=0

$$\left.\mathrm{1}\right)\:{solve}\:{the}\:{D}.{E}\:\:\:: \\ $$$$\frac{{dy}}{{dx}}−{y}\:{tan}\left({x}\right)=−{y}^{\mathrm{2}} {sec}\left({x}\right)\: \\ $$$$ \\ $$$$\left.\mathrm{2}\right){find}\:{x} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{25}} {\prod}}\left({x}+\frac{{x}}{\mathrm{3}^{{k}} }\right)=\mathrm{1} \\ $$$$ \\ $$$$\left.\mathrm{3}\right){solve}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{Z}^{\mathrm{2}} \mid−\mathrm{4}{Z}=\mathrm{0} \\ $$

Question Number 107728    Answers: 1   Comments: 0

Question Number 107727    Answers: 0   Comments: 0

Determine all possible solutions to the equation ; (1+t^3 )x′(t)+t^2 x(t)+t(x(t))^2 =0

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\:; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right){x}'\left(\mathrm{t}\right)+\mathrm{t}^{\mathrm{2}} {x}\left(\mathrm{t}\right)+\mathrm{t}\left({x}\left(\mathrm{t}\right)\right)^{\mathrm{2}} =\mathrm{0} \\ $$

Question Number 107718    Answers: 1   Comments: 0

Question Number 107714    Answers: 2   Comments: 0

((✓BeMath✓)/(cooll)) lim_(x→0) (1−tan x)^(4/(sin^2 x)) =?

$$\:\:\:\frac{\checkmark\mathcal{B}{e}\mathcal{M}{ath}\checkmark}{{cooll}} \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}−\mathrm{tan}\:{x}\right)^{\frac{\mathrm{4}}{\mathrm{sin}\:^{\mathrm{2}} {x}}} \:=? \\ $$

Question Number 107711    Answers: 1   Comments: 1

Question Number 107710    Answers: 1   Comments: 0

✓((BeMath✓)/(cooll)) lim_(x→∞) (((x+5)/(x−3)))^((3x+1)/(cos 2x)) ?

$$\:\:\:\checkmark\frac{\mathcal{B}{e}\mathcal{M}{ath}\checkmark}{{cooll}} \\ $$$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{x}+\mathrm{5}}{{x}−\mathrm{3}}\right)^{\frac{\mathrm{3}{x}+\mathrm{1}}{\mathrm{cos}\:\mathrm{2}{x}}} \:? \\ $$

Question Number 107706    Answers: 4   Comments: 0

✓BeMath✓ (1) ∫_0 ^∞ ((√x)/(1+x^3 )) dx ? (2) lim_(x→0) ((sin (π cos^2 x))/x^2 ) (3) If g(x)= 1+(√x) and (g○f)(x)=3+2(√x) +x find f(x)

$$\:\:\:\:\:\:\:\:\:\:\:\:\checkmark\mathcal{B}{e}\mathcal{M}{ath}\checkmark \\ $$$$\:\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\sqrt{{x}}}{\mathrm{1}+{x}^{\mathrm{3}} }\:{dx}\:? \\ $$$$\:\:\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\pi\:\mathrm{cos}\:^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} }\: \\ $$$$\left(\mathrm{3}\right)\:{If}\:{g}\left({x}\right)=\:\mathrm{1}+\sqrt{{x}}\:{and}\:\left({g}\circ{f}\right)\left({x}\right)=\mathrm{3}+\mathrm{2}\sqrt{{x}}\:+{x} \\ $$$$\:\:\:{find}\:{f}\left({x}\right) \\ $$

Question Number 107704    Answers: 0   Comments: 0

Question Number 107705    Answers: 0   Comments: 0

Question Number 107696    Answers: 1   Comments: 1

Question Number 107695    Answers: 1   Comments: 0

♠BeMath♠ ∫_0 ^1 ((x−1)/((x+1)ln x)) dx ?

$$\:\:\:\spadesuit\mathcal{B}{e}\mathcal{M}{ath}\spadesuit \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right)\mathrm{ln}\:{x}}\:{dx}\:?\: \\ $$

Question Number 107690    Answers: 1   Comments: 0

“BeMath“ Let the complex number z satisfies the equation 3(z−1)= i(z+1) (1) find z in the form a+bi where a,b ∈R (2) find the value of ∣z∣ and ∣z−z^∗ ∣

$$\:\:\:\:\:\:\:\:``\mathcal{B}{e}\mathcal{M}{ath}`` \\ $$$${Let}\:{the}\:{complex}\:{number}\:{z}\:{satisfies}\:{the} \\ $$$${equation}\:\mathrm{3}\left({z}−\mathrm{1}\right)=\:{i}\left({z}+\mathrm{1}\right)\: \\ $$$$\left(\mathrm{1}\right)\:{find}\:{z}\:{in}\:{the}\:{form}\:{a}+{bi}\:{where}\:{a},{b}\:\in\mathbb{R}\: \\ $$$$\left(\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\mid{z}\mid\:{and}\:\mid{z}−{z}^{\ast} \mid\: \\ $$$$ \\ $$

Question Number 107687    Answers: 0   Comments: 0

Question Number 107684    Answers: 1   Comments: 0

“BeMath“ ln tan 1°+ln tan 2°+ln tan 3°+...+ln tan 89°=?

$$\:\:\:\:\:``\mathcal{B}{e}\mathcal{M}{ath}`` \\ $$$$\:\mathrm{ln}\:\mathrm{tan}\:\mathrm{1}°+\mathrm{ln}\:\mathrm{tan}\:\mathrm{2}°+\mathrm{ln}\:\mathrm{tan}\:\mathrm{3}°+...+\mathrm{ln}\:\mathrm{tan}\:\mathrm{89}°=? \\ $$

Question Number 107679    Answers: 0   Comments: 0

dear tinku tara Please add a option which gives us to save a file as pdf.

$$\mathrm{dear}\:\mathrm{tinku}\:\mathrm{tara}\: \\ $$$$\mathrm{Please}\:\mathrm{add}\:\mathrm{a}\:\mathrm{option}\:\mathrm{which}\:\mathrm{gives}\: \\ $$$$\mathrm{us}\:\mathrm{to}\:\mathrm{save}\:\mathrm{a}\:\mathrm{file}\:\mathrm{as}\:\mathrm{pdf}. \\ $$

Question Number 107674    Answers: 2   Comments: 0

f(x)=(√x)(√x) D_f =???

$${f}\left({x}\right)=\sqrt{{x}}\sqrt{{x}}\:\:\:\:\:\:\:{D}_{{f}} =??? \\ $$

Question Number 107673    Answers: 3   Comments: 0

Question Number 107672    Answers: 1   Comments: 2

♠BeMath♠ ((4sin (((2π)/7))+sec ((π/(14))))/(cot ((π/7)))) ?

$$\:\:\:\:\:\spadesuit\mathcal{B}{e}\mathcal{M}{ath}\spadesuit \\ $$$$\:\:\:\:\frac{\mathrm{4sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{sec}\:\left(\frac{\pi}{\mathrm{14}}\right)}{\mathrm{cot}\:\left(\frac{\pi}{\mathrm{7}}\right)}\:? \\ $$

Question Number 107659    Answers: 1   Comments: 0

∮Bobhans∮ If all the letters of the word MISSISSIPPI are written down at random , the probability that all the four S appear consecutively is ___

$$\:\:\:\:\:\oint\mathbb{B}\mathrm{obhans}\oint \\ $$$$\mathrm{If}\:\mathrm{all}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{MISSISSIPPI}\:\mathrm{are}\:\mathrm{written}\:\mathrm{down}\: \\ $$$$\mathrm{at}\:\mathrm{random}\:,\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{all}\:\mathrm{the}\:\mathrm{four}\:\mathrm{S}\:\mathrm{appear}\:\mathrm{consecutively}\:\mathrm{is}\:\_\_\_ \\ $$

Question Number 107658    Answers: 1   Comments: 0

⋇JS⋇ A metal box (without top) is tobe contructed from a square sheet of metal that is 10 dm on the side by first cutting the square pieces of the same size from the corners of the sheet and folding up sides. what size squares should be cut in order to maximize the volume of the box.

$$\:\:\:\divideontimes\mathcal{JS}\divideontimes \\ $$$${A}\:{metal}\:{box}\:\left({without}\:{top}\right)\:{is}\:{tobe} \\ $$$${contructed}\:{from}\:{a}\:{square}\:{sheet} \\ $$$${of}\:{metal}\:{that}\:{is}\:\mathrm{10}\:{dm}\:{on}\:{the} \\ $$$${side}\:{by}\:{first}\:{cutting}\:{the}\:{square} \\ $$$${pieces}\:{of}\:{the}\:{same}\:{size}\:{from}\:{the} \\ $$$${corners}\:{of}\:{the}\:{sheet}\:{and}\:{folding} \\ $$$${up}\:{sides}.\:{what}\:{size}\:{squares} \\ $$$${should}\:{be}\:{cut}\:{in}\:{order}\:{to} \\ $$$${maximize}\:{the}\:{volume}\:{of}\:{the}\:{box}. \\ $$

Question Number 107656    Answers: 3   Comments: 0

Question Number 107650    Answers: 0   Comments: 0

  Pg 1101      Pg 1102      Pg 1103      Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108      Pg 1109      Pg 1110   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com