Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1106
Question Number 107113 Answers: 0 Comments: 0
Question Number 107108 Answers: 1 Comments: 3
$$\mathrm{y}''+\mathrm{y}=\frac{\mathrm{1}}{\mathrm{cosx}} \\ $$
Question Number 107107 Answers: 1 Comments: 2
Question Number 107105 Answers: 1 Comments: 0
Question Number 107102 Answers: 0 Comments: 0
Question Number 107101 Answers: 0 Comments: 0
$$\mathrm{Fun}\:\mathrm{time} \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{2x}+\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +....=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{1}+\mathrm{4}+\mathrm{12}+\mathrm{32}+...=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\mathrm{4}+\mathrm{12}+\mathrm{32}+....=\mathrm{0}\:\:\left(\mathrm{No}\:\mathrm{1}\:\mathrm{fun}\right) \\ $$$$ \\ $$$$\mathrm{5}+\mathrm{11}+\mathrm{17}+\mathrm{23}+...=\mathrm{0}\:\:\: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{6n}−\mathrm{1}=\mathrm{6}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{n}−\overset{\infty} {\sum}\mathrm{1}=\mathrm{6}.\left(−\frac{\mathrm{1}}{\mathrm{12}}\right)−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\overset{\infty} {\sum}\mathrm{n}=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\left(\mathrm{Ramanujan}\:\mathrm{sum}\right) \\ $$$$\overset{\infty} {\sum}\mathrm{1}=\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+...=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} .\overset{\infty} {\sum}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\geqslant\left(\overset{\infty} {\sum}\mathrm{1}\right)^{\mathrm{2}} \:\:\:\left(\mathrm{Cauchy}\:\mathrm{schwarz}\:\mathrm{ineqality}\right) \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} .\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} \geqslant\frac{\mathrm{3}}{\mathrm{2}\pi^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 107092 Answers: 1 Comments: 2
Question Number 107088 Answers: 3 Comments: 1
Question Number 107080 Answers: 1 Comments: 0
Question Number 107073 Answers: 0 Comments: 0
Question Number 107071 Answers: 0 Comments: 0
Question Number 107069 Answers: 2 Comments: 0
Question Number 107065 Answers: 1 Comments: 0
$${Solve}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$$\begin{cases}{{x}^{\mathrm{2}} +\mathrm{2}{xy}+{y}^{\mathrm{2}} −\mathrm{4}{z}^{\mathrm{2}} =\mathrm{0}}\\{\mathrm{3}{x}−\mathrm{2}{y}+{z}=\mathrm{3}}\end{cases} \\ $$$$\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{z}^{\mathrm{2}} −\mathrm{4}{xy}+{yz}+{x}+\mathrm{2}{y}−\mathrm{3}{z}+\mathrm{7}=\mathrm{0} \\ $$
Question Number 107064 Answers: 1 Comments: 0
$${Solve}\:{in}\:\mathbb{R} \\ $$$${x}+\sqrt{−{x}^{\mathrm{2}} +{x}+\mathrm{6}}=\sqrt{\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{6}}−{x}} \\ $$
Question Number 107055 Answers: 0 Comments: 0
Question Number 107036 Answers: 2 Comments: 1
$$\int\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} }\:? \\ $$
Question Number 107033 Answers: 0 Comments: 0
Question Number 107030 Answers: 4 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{2}+\frac{\mathrm{3}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{4}{x}−\mathrm{2}}} \\ $$
Question Number 107028 Answers: 3 Comments: 1
$$\:\:\:@{bemath}@ \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}+\mathrm{3}{x}\right)^{\frac{\mathrm{1}}{\mathrm{4}{x}−\mathrm{2}}} \\ $$
Question Number 107018 Answers: 1 Comments: 2
$$\mathcal{G}{iven}\:{f}\left({x}\right)=\frac{\mathrm{10}}{\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}}.\:{Find}\:{maximum}\:{value}\: \\ $$$${f}\left({x}\right). \\ $$
Question Number 107034 Answers: 0 Comments: 6
Question Number 107002 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{cosx}}{\sqrt{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}}}\mathrm{dx} \\ $$
Question Number 106997 Answers: 0 Comments: 3
Question Number 106990 Answers: 1 Comments: 4
$$\mathrm{Two}\:\mathrm{places}\:\:\mathrm{A}\:\:\mathrm{and}\:\:\mathrm{B}\:\:\mathrm{both}\:\mathrm{on}\:\mathrm{a}\:\mathrm{parallel}\:\mathrm{of}\:\mathrm{latitude}\:\:\alpha°\mathrm{N} \\ $$$$\mathrm{differs}\:\mathrm{in}\:\mathrm{longitudes}\:\mathrm{by}\:\:\theta°.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance} \\ $$$$\mathrm{between}\:\mathrm{them}\:\mathrm{is}:\:\:\:\:\:\frac{\left[\mathrm{2}\:\mathrm{sin}^{−\:\mathrm{1}} \left(\mathrm{cos}\:\alpha\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\right)\right]}{\mathrm{360}}\:\:×\:\:\mathrm{2}\pi\mathrm{R} \\ $$$$ \\ $$$$\mathrm{Topic}:\:\:\mathrm{Longitude}\:\mathrm{and}\:\mathrm{Latitude} \\ $$
Question Number 106983 Answers: 2 Comments: 0
Question Number 106977 Answers: 3 Comments: 0
Pg 1101 Pg 1102 Pg 1103 Pg 1104 Pg 1105 Pg 1106 Pg 1107 Pg 1108 Pg 1109 Pg 1110
Terms of Service
Privacy Policy
Contact: info@tinkutara.com