Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1106
Question Number 106305 Answers: 1 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{5}\:\mathrm{coming}\:\mathrm{up}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{if}\:\mathrm{a}\:\mathrm{die}\: \\ $$$$\mathrm{is}\:\mathrm{rolled}\:\mathrm{3}\:\mathrm{times}\: \\ $$
Question Number 106302 Answers: 4 Comments: 0
Question Number 106303 Answers: 1 Comments: 0
Question Number 106295 Answers: 2 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{x}}\:+\:\frac{\sqrt{\mathrm{3}}}{\mathrm{sin}\:\mathrm{x}}\:=\:\mathrm{4}\: \\ $$
Question Number 106292 Answers: 1 Comments: 0
$$\mathrm{a}\:\mathrm{box}\:\mathrm{contains}\:\mathrm{4}\:\mathrm{blue},\:\mathrm{3}\:\mathrm{green}\:\mathrm{and}\:\mathrm{2}\:\mathrm{red}\:\mathrm{identicall}\:\mathrm{balls}.\: \\ $$$$\mathrm{if}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{at}\:\mathrm{random}\:\mathrm{without}\: \\ $$$$\mathrm{replacement}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{that}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{be}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{colours}? \\ $$
Question Number 106288 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{0}<\mathrm{x}<\mathrm{1}<\mathrm{y}<\mathrm{100}<\mathrm{z},\:\mathrm{and}\:\mathrm{satisfy} \\ $$$$\mathrm{these}\:\mathrm{equations}: \\ $$$$\begin{cases}{\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{xyz}\right)=\mathrm{103}}\\{\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{y}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{z}}=\frac{\mathrm{1}}{\mathrm{103}}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{xyz}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)−\mathrm{xy}−\mathrm{yz}−\mathrm{zx} \\ $$
Question Number 106286 Answers: 2 Comments: 0
$$\mathrm{arc}\:\mathrm{tan}\:\left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}\right)+\mathrm{arc}\:\mathrm{tan}\:\left(\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}}\right)=\mathrm{arc}\:\mathrm{tan}\:\left(−\mathrm{7}\right) \\ $$$$\mathrm{for}\:\mathrm{x}\:\mathrm{real}\:\mathrm{number} \\ $$
Question Number 106285 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \:\mathrm{dx}\:? \\ $$
Question Number 106281 Answers: 2 Comments: 0
$$\sqrt{\mathrm{x}+\mathrm{50}}+\sqrt{\mathrm{y}+\mathrm{100}}+\sqrt{\mathrm{z}+\mathrm{150}}=\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{\mathrm{4}}+\mathrm{78} \\ $$$$\mathrm{find}\:\mathrm{x}+\mathrm{y}−\mathrm{z}\: \\ $$
Question Number 106272 Answers: 1 Comments: 1
$$\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{5}\:+\sqrt{\mathrm{11}\:+\:\sqrt{\mathrm{19}\:+\:\sqrt{\mathrm{29}\:+\:\sqrt{\ldots}}}}}}\:=\:? \\ $$
Question Number 106259 Answers: 2 Comments: 1
Question Number 106256 Answers: 0 Comments: 2
Question Number 106250 Answers: 0 Comments: 1
Question Number 106246 Answers: 3 Comments: 3
Question Number 106240 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow+\infty} {\boldsymbol{{m}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{k}}+\mathrm{1}} }{\boldsymbol{{k}}}=???? \\ $$
Question Number 106237 Answers: 1 Comments: 0
Question Number 106233 Answers: 2 Comments: 0
$$\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}\:−\:\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{2017}{yz} \\ $$$$\left({y}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({y}\:−\:\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{2017}{xz} \\ $$$$\left({z}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({z}\:−\:\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{2017}{xy} \\ $$$${x}\:\geqslant\:\mathrm{1}\:;\:{y}\:\geqslant\:\mathrm{1}\:;\:{z}\:\geqslant\:\mathrm{1} \\ $$$${prove}\:{that}\:\:\:{x}\:=\:{y}\:=\:{z}\:= \\ $$$$\frac{\mathrm{1}+\:\sqrt{\mathrm{2018}}\:+\:\sqrt{\mathrm{2015}+\:\mathrm{2}\sqrt{\mathrm{2018}}}}{\mathrm{2}} \\ $$
Question Number 106232 Answers: 0 Comments: 0
$$\mathrm{find}\:\int\:\mathrm{cos}^{\mathrm{n}} \mathrm{x}\:\mathrm{ch}\left(\mathrm{nx}\right)\mathrm{dx}\:/\mathrm{with}\:\mathrm{n}\:\mathrm{integr} \\ $$
Question Number 106222 Answers: 1 Comments: 5
$$\mathcal{D}{etermine}\:{x}\:\&\:{y}\:{such}\:{that}: \\ $$$$\mathrm{lcm}\left({x},{y}\right)−\mathrm{gcd}\left({x},{y}\right)={x}+{y}. \\ $$
Question Number 106217 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{and}\:\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0}\:\mathrm{when}\:\mathrm{x} \\ $$$$=\:\mathrm{0}\:,\mathrm{what}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{\mathrm{t}} {\int}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}}{\mathrm{t}^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 106214 Answers: 1 Comments: 0
$$\mathrm{solve}\::\:\mathrm{arc}\:\mathrm{cos}\:\left(\mathrm{x}−\mathrm{1}\right)=\:\mathrm{2arc}\:\mathrm{cos}\:\left(\mathrm{x}\right) \\ $$$$\mathrm{where}\:\mathrm{x}\:\mathrm{is}\:\mathrm{real}. \\ $$
Question Number 106220 Answers: 3 Comments: 0
$$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{cos}\:\left(\mathrm{x}−\mathrm{45}°\right)=\mathrm{sin}\:\left(\mathrm{2x}+\mathrm{60}°\right) \\ $$
Question Number 106196 Answers: 0 Comments: 5
Question Number 106188 Answers: 2 Comments: 0
$${Solve}\:{for}\:{x} \\ $$$${x}^{{x}^{...{x}^{{a}} } } ={a}\:{with}\:{a}\in\mathbb{R}^{+} \\ $$
Question Number 106238 Answers: 0 Comments: 0
Question Number 106239 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{A}\:\mathrm{rope}\:\mathrm{of}\:\mathrm{length}\:\mathrm{10cm}\:\mathrm{is}\:\mathrm{used}\:\mathrm{to}\:\mathrm{form}\:\mathrm{as} \\ $$$$\mathrm{ector}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{35cm}\:\mathrm{What}\:\mathrm{ish} \\ $$$$\mathrm{te}\:\mathrm{size}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sector} \\ $$
Pg 1101 Pg 1102 Pg 1103 Pg 1104 Pg 1105 Pg 1106 Pg 1107 Pg 1108 Pg 1109 Pg 1110
Terms of Service
Privacy Policy
Contact: info@tinkutara.com