Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1106

Question Number 107144    Answers: 1   Comments: 0

solve x^2 y^(′′) −xy^′ +2y =xe^(−x) sin(2x)

$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{xy}^{'} \:+\mathrm{2y}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right) \\ $$

Question Number 107141    Answers: 0   Comments: 0

∫(x^3 +x^6 )(((x^3 +2))^(1/3) )dx

$$\int\left({x}^{\mathrm{3}} +{x}^{\mathrm{6}} \right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2}}\right){dx} \\ $$

Question Number 107133    Answers: 0   Comments: 0

Question Number 107124    Answers: 2   Comments: 0

Question Number 107123    Answers: 0   Comments: 0

Question Number 107122    Answers: 1   Comments: 0

Question Number 107121    Answers: 0   Comments: 0

Question Number 107117    Answers: 2   Comments: 0

Question Number 107113    Answers: 0   Comments: 0

Question Number 107108    Answers: 1   Comments: 3

y′′+y=(1/(cosx))

$$\mathrm{y}''+\mathrm{y}=\frac{\mathrm{1}}{\mathrm{cosx}} \\ $$

Question Number 107107    Answers: 1   Comments: 2

Question Number 107105    Answers: 1   Comments: 0

Question Number 107102    Answers: 0   Comments: 0

Question Number 107101    Answers: 0   Comments: 0

Fun time 1+2x+3x^2 +4x^3 +....=(1/((1−x)^2 )) 1+4+12+32+...=(1/((1−2)^2 )) 4+12+32+....=0 (No 1 fun) 5+11+17+23+...=0 Σ_(n=1) ^∞ 6n−1=6Σ_(n=1) ^∞ n−Σ^∞ 1=6.(−(1/(12)))−(−(1/2))=0 Σ^∞ n=−(1/(12)) (Ramanujan sum) Σ^∞ 1=1+1+1+1+1+...=−(1/2) Σ^∞ n^2 .Σ^∞ (1/n^2 )≥(Σ^∞ 1)^2 (Cauchy schwarz ineqality) Σ^∞ n^2 .(π^2 /6)≥(1/4) Σ^∞ n^2 ≥(3/(2π^2 ))

$$\mathrm{Fun}\:\mathrm{time} \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{2x}+\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +....=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{1}+\mathrm{4}+\mathrm{12}+\mathrm{32}+...=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\mathrm{4}+\mathrm{12}+\mathrm{32}+....=\mathrm{0}\:\:\left(\mathrm{No}\:\mathrm{1}\:\mathrm{fun}\right) \\ $$$$ \\ $$$$\mathrm{5}+\mathrm{11}+\mathrm{17}+\mathrm{23}+...=\mathrm{0}\:\:\: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{6n}−\mathrm{1}=\mathrm{6}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{n}−\overset{\infty} {\sum}\mathrm{1}=\mathrm{6}.\left(−\frac{\mathrm{1}}{\mathrm{12}}\right)−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\overset{\infty} {\sum}\mathrm{n}=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\left(\mathrm{Ramanujan}\:\mathrm{sum}\right) \\ $$$$\overset{\infty} {\sum}\mathrm{1}=\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+\mathrm{1}+...=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} .\overset{\infty} {\sum}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\geqslant\left(\overset{\infty} {\sum}\mathrm{1}\right)^{\mathrm{2}} \:\:\:\left(\mathrm{Cauchy}\:\mathrm{schwarz}\:\mathrm{ineqality}\right) \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} .\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\overset{\infty} {\sum}\mathrm{n}^{\mathrm{2}} \geqslant\frac{\mathrm{3}}{\mathrm{2}\pi^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 107092    Answers: 1   Comments: 2

Question Number 107088    Answers: 3   Comments: 1

Question Number 107080    Answers: 1   Comments: 0

Question Number 107073    Answers: 0   Comments: 0

Question Number 107071    Answers: 0   Comments: 0

Question Number 107069    Answers: 2   Comments: 0

Question Number 107065    Answers: 1   Comments: 0

Solve in R^3 { ((x^2 +2xy+y^2 −4z^2 =0)),((3x−2y+z=3)) :} x^2 +y^2 +3z^2 −4xy+yz+x+2y−3z+7=0

$${Solve}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$$\begin{cases}{{x}^{\mathrm{2}} +\mathrm{2}{xy}+{y}^{\mathrm{2}} −\mathrm{4}{z}^{\mathrm{2}} =\mathrm{0}}\\{\mathrm{3}{x}−\mathrm{2}{y}+{z}=\mathrm{3}}\end{cases} \\ $$$$\:\:\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{3}{z}^{\mathrm{2}} −\mathrm{4}{xy}+{yz}+{x}+\mathrm{2}{y}−\mathrm{3}{z}+\mathrm{7}=\mathrm{0} \\ $$

Question Number 107064    Answers: 1   Comments: 0

Solve in R x+(√(−x^2 +x+6))=(√(2x(√(x^2 +x+6))−x))

$${Solve}\:{in}\:\mathbb{R} \\ $$$${x}+\sqrt{−{x}^{\mathrm{2}} +{x}+\mathrm{6}}=\sqrt{\mathrm{2}{x}\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{6}}−{x}} \\ $$

Question Number 107055    Answers: 0   Comments: 0

Question Number 107036    Answers: 2   Comments: 1

∫ (((√(1+x^2 )) dx)/x^4 ) ?

$$\int\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} }\:? \\ $$

Question Number 107033    Answers: 0   Comments: 0

Question Number 107030    Answers: 4   Comments: 1

lim_(x→0) (2+(3/x))^(1/(4x−2))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{2}+\frac{\mathrm{3}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{4}{x}−\mathrm{2}}} \\ $$

  Pg 1101      Pg 1102      Pg 1103      Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108      Pg 1109      Pg 1110   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com