Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1106
Question Number 106454 Answers: 0 Comments: 0
Question Number 106449 Answers: 3 Comments: 0
Question Number 106445 Answers: 0 Comments: 0
Question Number 106444 Answers: 1 Comments: 0
Question Number 106435 Answers: 1 Comments: 2
$${li}\underset{{x}\rightarrow\mathrm{2}} {{m}}\frac{{ln}\left(\mathrm{2}{x}+\mathrm{10}\right)}{{x}−\mathrm{2}}=?? \\ $$
Question Number 106432 Answers: 0 Comments: 5
Question Number 106424 Answers: 1 Comments: 0
$$\int{x}^{\mathrm{2}} \\ $$
Question Number 106422 Answers: 1 Comments: 1
Question Number 106410 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:\mathrm{2x}.\left(\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}}{\mathrm{x}^{\mathrm{2}} } \\ $$
Question Number 106409 Answers: 2 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{positive}\:\mathrm{integral}\:\mathrm{solutions} \\ $$$$\mathrm{for}\:\mathrm{xy}\:=\:\mathrm{72}\left(\mathrm{x}+\mathrm{y}\right)\:? \\ $$
Question Number 106408 Answers: 1 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{4}\:\mathrm{intersect} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{y}=\:\mathrm{x}^{\mathrm{2}} +\mathrm{k}\: \\ $$
Question Number 106405 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{bag}\:\mathrm{contains}\:\mathrm{6}\:\mathrm{white},\:\mathrm{4}\:\mathrm{red}\:\&\:\mathrm{10} \\ $$$$\mathrm{black}\:\mathrm{balls}.\:\mathrm{If}\:\mathrm{two}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{drawn} \\ $$$$\mathrm{at}\:\mathrm{random},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{of}\:\mathrm{both}\:\mathrm{being}\:\mathrm{black}\:? \\ $$
Question Number 106398 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2x}+\mathrm{p}\:\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:=\:\mathrm{q}\:.\:\mathrm{where}\:\mathrm{q}\:\mathrm{finite}\: \\ $$
Question Number 106396 Answers: 1 Comments: 3
Question Number 106392 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \sqrt{\frac{\mathrm{2t}+\mathrm{3}}{\mathrm{5t}^{\mathrm{3}} +\mathrm{3t}^{\mathrm{2}} +\mathrm{2}}}\mathrm{dt} \\ $$
Question Number 106391 Answers: 1 Comments: 0
$$\int\mathrm{e}^{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}} \mathrm{dx} \\ $$
Question Number 106388 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4x}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{4}} } \\ $$
Question Number 106387 Answers: 2 Comments: 0
$$\mathrm{cot}\:\theta\:+\:\mathrm{cot}\:\left(\frac{\pi}{\mathrm{4}}+\theta\right)\:=\:\mathrm{2}\: \\ $$$$\theta\:=\:? \\ $$
Question Number 106386 Answers: 0 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{calculate}; \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\mathrm{U}_{\mathrm{k}} \:\:? \\ $$
Question Number 106382 Answers: 0 Comments: 0
Question Number 106379 Answers: 1 Comments: 0
Question Number 106378 Answers: 2 Comments: 0
Question Number 106380 Answers: 0 Comments: 0
Question Number 106373 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{A}\:\mathrm{ladder}\:\mathrm{placed}\:\mathrm{against}\:\mathrm{a}\:\mathrm{vertical}\:\mathrm{walls} \\ $$$$\mathrm{ubtends}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{45}\:\mathrm{degree}\:\mathrm{with}\: \\ $$$$\mathrm{thewall}\:\mathrm{The}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{footo} \\ $$$$\mathrm{f}\:\mathrm{the}\:\mathrm{ladder}\:\mathrm{and}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{is}\:\mathrm{15mt} \\ $$$$\mathrm{calculae}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ladder}\: \\ $$$$\mathrm{correctto}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{whole}\:\mathrm{number}. \\ $$
Question Number 106366 Answers: 1 Comments: 0
Question Number 106365 Answers: 2 Comments: 1
$$\mathrm{help} \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)!} \\ $$
Pg 1101 Pg 1102 Pg 1103 Pg 1104 Pg 1105 Pg 1106 Pg 1107 Pg 1108 Pg 1109 Pg 1110
Terms of Service
Privacy Policy
Contact: info@tinkutara.com