Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1104

Question Number 107284    Answers: 0   Comments: 0

find lim_(n→+∞) Σ_(k=1) ^n (1/(√((k+n)(k+n+1))))

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\sqrt{\left(\mathrm{k}+\mathrm{n}\right)\left(\mathrm{k}+\mathrm{n}+\mathrm{1}\right)}} \\ $$

Question Number 107283    Answers: 0   Comments: 0

f integrable continue on [a,b] let m =inf f(x) and M=sup f(x) (x ∈[a,b] prove that (b−a)^2 ≤∫_a ^b f(x)dx×∫_a ^b (dx/(f(x)))≤(((b−a)^2 )/4)(((m+M)^2 )/(mM))

$$\mathrm{f}\:\mathrm{integrable}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{let}\:\mathrm{m}\:=\mathrm{inf}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{M}=\mathrm{sup}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{x}\:\in\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \leqslant\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}×\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)}\leqslant\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} }{\mathrm{4}}\frac{\left(\mathrm{m}+\mathrm{M}\right)^{\mathrm{2}} }{\mathrm{mM}}\right. \\ $$

Question Number 107279    Answers: 1   Comments: 1

Question Number 107275    Answers: 0   Comments: 0

Question Number 107272    Answers: 1   Comments: 0

Question Number 107315    Answers: 0   Comments: 1

Question Number 107318    Answers: 1   Comments: 0

⊚bemath⊚ 6^(log _((x−1)) (((20−12x)/(x−7)))) −36 >0

$$\:\:\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\mathrm{6}^{\mathrm{log}\:_{\left({x}−\mathrm{1}\right)} \left(\frac{\mathrm{20}−\mathrm{12}{x}}{{x}−\mathrm{7}}\right)} −\mathrm{36}\:>\mathrm{0} \\ $$

Question Number 107264    Answers: 2   Comments: 1

∫_0 ^∞ ⌊(1/x^2 )⌋dx

$$\int_{\mathrm{0}} ^{\infty} \lfloor\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\rfloor\mathrm{dx} \\ $$

Question Number 107263    Answers: 0   Comments: 1

Σ_(n=1) ^n (√n)

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\mathrm{n}} \\ $$

Question Number 107262    Answers: 0   Comments: 0

What is the requirement of last axioms i.e. 1v=v ∀ v∈V in the definition of vector space?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{requirement}\:\mathrm{of}\:\mathrm{last} \\ $$$$\mathrm{axioms}\:\mathrm{i}.\mathrm{e}.\:\mathrm{1}{v}={v}\:\forall\:{v}\in{V}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{definition}\:\mathrm{of}\:\mathrm{vector}\:\mathrm{space}? \\ $$

Question Number 107254    Answers: 0   Comments: 1

Question Number 107245    Answers: 0   Comments: 0

♣ Question♣ Why ??? ....∫_0 ^( (π/2)) (√((((2^x −1)sin^3 (x))/((2^x +1)(sin^3 (x)+cos^3 (x)))) ))<(π/8) ....M.N....

$$\:\:\:\:\:\:\:\:\clubsuit\:\mathscr{Q}{uestion}\clubsuit \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{W}{hy}\:??? \\ $$$$....\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}\:}<\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:....\mathscr{M}.\mathscr{N}.... \\ $$

Question Number 107242    Answers: 4   Comments: 0

...question... prove that: if a,b,c∈R^+ then: ♣ (√a) +(√b)+(√c)> (√(a+b+c)) ♣ ....sincerly yours... ... M.N...

$$\:\:\:\:\:...{question}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}: \\ $$$$\:{if}\:\:{a},{b},{c}\in\mathbb{R}^{+} \:{then}: \\ $$$$\:\:\:\:\:\clubsuit\:\:\:\sqrt{{a}}\:+\sqrt{{b}}+\sqrt{{c}}>\:\sqrt{{a}+{b}+{c}}\:\clubsuit\: \\ $$$$\:\:\:\:\:\:\:....{sincerly}\:{yours}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\mathscr{M}.\mathscr{N}... \\ $$$$\:\: \\ $$

Question Number 107234    Answers: 1   Comments: 0

Question Number 107230    Answers: 0   Comments: 0

Question Number 107222    Answers: 5   Comments: 0

Question Number 107212    Answers: 4   Comments: 0

⊚bemath⊚ ∫ x^6 (√(1−x^2 )) dx ?

$$\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\int\:{x}^{\mathrm{6}} \:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:? \\ $$

Question Number 107207    Answers: 4   Comments: 0

⊚bemath⊚ lim_(x→∞) (2^x +3^x )^(1/x) ?

$$\:\:\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \right)^{\frac{\mathrm{1}}{{x}}} \:?\: \\ $$

Question Number 107202    Answers: 2   Comments: 0

Question Number 107238    Answers: 3   Comments: 0

⊞bemath⊞ ∫ ((sin x)/(sin^3 x+cos^3 x)) dx ?

$$\:\:\:\:\:\:\:\boxplus{bemath}\boxplus \\ $$$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}}\:{dx}\:?\: \\ $$

Question Number 107198    Answers: 1   Comments: 2

Solve the given equation: (x+(x/3^1 ))∙(x+(x/3^2 ))∙(x+(x/3^3 ))∙(x+(x/3^4 ))∙...∙(x+(x/3^(25) ))=1 A)(3^(51) /(2∙(3^(50) −1))) B)(3^(52) /(2∙(3^(51) −1))) C) (3^(50) /(2∙(3^(50) −1))) D) (3^(51) /(3^(51) −1)) Please help with solution

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}: \\ $$$$\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{1}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{2}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{3}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{4}} }\right)\centerdot...\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{25}} }\right)=\mathrm{1} \\ $$$$\left.\mathrm{A}\left.\right)\left.\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\left.\:\:\mathrm{B}\right)\frac{\mathrm{3}^{\mathrm{52}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{51}} −\mathrm{1}\right)}\:\:\mathrm{C}\right)\:\frac{\mathrm{3}^{\mathrm{50}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\:\:\mathrm{D}\right)\:\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{3}^{\mathrm{51}} −\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{solution} \\ $$

Question Number 107197    Answers: 0   Comments: 0

⊵JS⊴ ∫ _0 ^( π/6) sin^2 (6x) cos^4 (3x) dx ? [ by using the Gamma function ]

$$\:\:\:\:\:\trianglerighteq\mathrm{JS}\trianglelefteq \\ $$$$\int\overset{\:\pi/\mathrm{6}} {\:}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{6x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{3x}\right)\:\mathrm{dx}\:? \\ $$$$\left[\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathcal{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$

Question Number 107196    Answers: 2   Comments: 8

How many different words can be formed with the same letters as in TINKUTARA if no two same letters are next to each other.

$${How}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{same}\:{letters}\:{as}\:{in} \\ $$$${TINKUTARA}\:{if}\:{no}\:{two}\:{same}\:{letters} \\ $$$${are}\:{next}\:{to}\:{each}\:{other}. \\ $$

Question Number 107193    Answers: 1   Comments: 0

∫_0 ^4 ((ln x)/(√(4x−x^2 ))) dx ?

$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{ln}\:\mathrm{x}}{\sqrt{\mathrm{4x}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:? \\ $$

Question Number 107187    Answers: 1   Comments: 3

Prove that (√8)=1+(3/4)+((3.5)/(4.8))+((3.5.7)/(4.8.12))+......

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{\mathrm{8}}=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}+\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}+...... \\ $$

Question Number 107184    Answers: 2   Comments: 0

@bemath@ ∫_0 ^2 x ((8−x^3 ))^(1/3) dx =?

$$\:\:\:\:\:\:\:@{bemath}@ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{x}\:\sqrt[{\mathrm{3}}]{\mathrm{8}−{x}^{\mathrm{3}} }\:{dx}\:=?\: \\ $$

  Pg 1099      Pg 1100      Pg 1101      Pg 1102      Pg 1103      Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com