Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1104
Question Number 107230 Answers: 0 Comments: 0
Question Number 107222 Answers: 5 Comments: 0
Question Number 107212 Answers: 4 Comments: 0
$$\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\int\:{x}^{\mathrm{6}} \:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:? \\ $$
Question Number 107207 Answers: 4 Comments: 0
$$\:\:\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \right)^{\frac{\mathrm{1}}{{x}}} \:?\: \\ $$
Question Number 107202 Answers: 2 Comments: 0
Question Number 107238 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\boxplus{bemath}\boxplus \\ $$$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}}\:{dx}\:?\: \\ $$
Question Number 107198 Answers: 1 Comments: 2
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}: \\ $$$$\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{1}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{2}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{3}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{4}} }\right)\centerdot...\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{25}} }\right)=\mathrm{1} \\ $$$$\left.\mathrm{A}\left.\right)\left.\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\left.\:\:\mathrm{B}\right)\frac{\mathrm{3}^{\mathrm{52}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{51}} −\mathrm{1}\right)}\:\:\mathrm{C}\right)\:\frac{\mathrm{3}^{\mathrm{50}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\:\:\mathrm{D}\right)\:\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{3}^{\mathrm{51}} −\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{solution} \\ $$
Question Number 107197 Answers: 0 Comments: 0
$$\:\:\:\:\:\trianglerighteq\mathrm{JS}\trianglelefteq \\ $$$$\int\overset{\:\pi/\mathrm{6}} {\:}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{6x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{3x}\right)\:\mathrm{dx}\:? \\ $$$$\left[\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathcal{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$
Question Number 107196 Answers: 2 Comments: 8
$${How}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{same}\:{letters}\:{as}\:{in} \\ $$$${TINKUTARA}\:{if}\:{no}\:{two}\:{same}\:{letters} \\ $$$${are}\:{next}\:{to}\:{each}\:{other}. \\ $$
Question Number 107193 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{ln}\:\mathrm{x}}{\sqrt{\mathrm{4x}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:? \\ $$
Question Number 107187 Answers: 1 Comments: 3
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{\mathrm{8}}=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}+\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}+...... \\ $$
Question Number 107184 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:@{bemath}@ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{x}\:\sqrt[{\mathrm{3}}]{\mathrm{8}−{x}^{\mathrm{3}} }\:{dx}\:=?\: \\ $$
Question Number 107178 Answers: 1 Comments: 1
Question Number 107171 Answers: 0 Comments: 0
Question Number 107170 Answers: 0 Comments: 0
Question Number 107169 Answers: 2 Comments: 1
$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\in\mathbb{R} \\ $$$$\mathrm{a}+\mathrm{b}=\mathrm{8} \\ $$$$\mathrm{ab}+\mathrm{c}+\mathrm{d}=\mathrm{23} \\ $$$$\mathrm{ad}+\mathrm{bc}=\mathrm{28} \\ $$$$\mathrm{cd}=\mathrm{12} \\ $$$$\mathrm{Find}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} . \\ $$$$ \\ $$
Question Number 107163 Answers: 2 Comments: 0
Question Number 107162 Answers: 1 Comments: 1
Question Number 107157 Answers: 0 Comments: 0
Question Number 107155 Answers: 2 Comments: 0
Question Number 107153 Answers: 1 Comments: 0
$$\:\:\:\:\:\:@{bemath}@ \\ $$$$\left(\frac{\mathrm{14}}{\mathrm{5}}\right)^{\frac{\mathrm{28}}{\sqrt{{x}}}−\mathrm{5}} =\:\left(\frac{\mathrm{5}}{\mathrm{14}}\right)^{\frac{\mathrm{5}}{\sqrt{{x}}}−\mathrm{160}} \\ $$
Question Number 107151 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:@\mathrm{JS}@ \\ $$$$\left(\mathrm{D}^{\mathrm{2}} +\mathrm{7D}+\mathrm{12}\right)\mathrm{y}\:=\:\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{2x}\: \\ $$
Question Number 107147 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \:\mathrm{e}^{\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}}{\mathrm{e}^{\mathrm{x}} \mathrm{lnx}} \\ $$
Question Number 107144 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{xy}^{'} \:+\mathrm{2y}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right) \\ $$
Question Number 107141 Answers: 0 Comments: 0
$$\int\left({x}^{\mathrm{3}} +{x}^{\mathrm{6}} \right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2}}\right){dx} \\ $$
Question Number 107133 Answers: 0 Comments: 0
Pg 1099 Pg 1100 Pg 1101 Pg 1102 Pg 1103 Pg 1104 Pg 1105 Pg 1106 Pg 1107 Pg 1108
Terms of Service
Privacy Policy
Contact: info@tinkutara.com