Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1104

Question Number 107673    Answers: 3   Comments: 0

Question Number 107672    Answers: 1   Comments: 2

♠BeMath♠ ((4sin (((2π)/7))+sec ((π/(14))))/(cot ((π/7)))) ?

$$\:\:\:\:\:\spadesuit\mathcal{B}{e}\mathcal{M}{ath}\spadesuit \\ $$$$\:\:\:\:\frac{\mathrm{4sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{sec}\:\left(\frac{\pi}{\mathrm{14}}\right)}{\mathrm{cot}\:\left(\frac{\pi}{\mathrm{7}}\right)}\:? \\ $$

Question Number 107659    Answers: 1   Comments: 0

∮Bobhans∮ If all the letters of the word MISSISSIPPI are written down at random , the probability that all the four S appear consecutively is ___

$$\:\:\:\:\:\oint\mathbb{B}\mathrm{obhans}\oint \\ $$$$\mathrm{If}\:\mathrm{all}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{MISSISSIPPI}\:\mathrm{are}\:\mathrm{written}\:\mathrm{down}\: \\ $$$$\mathrm{at}\:\mathrm{random}\:,\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{all}\:\mathrm{the}\:\mathrm{four}\:\mathrm{S}\:\mathrm{appear}\:\mathrm{consecutively}\:\mathrm{is}\:\_\_\_ \\ $$

Question Number 107658    Answers: 1   Comments: 0

⋇JS⋇ A metal box (without top) is tobe contructed from a square sheet of metal that is 10 dm on the side by first cutting the square pieces of the same size from the corners of the sheet and folding up sides. what size squares should be cut in order to maximize the volume of the box.

$$\:\:\:\divideontimes\mathcal{JS}\divideontimes \\ $$$${A}\:{metal}\:{box}\:\left({without}\:{top}\right)\:{is}\:{tobe} \\ $$$${contructed}\:{from}\:{a}\:{square}\:{sheet} \\ $$$${of}\:{metal}\:{that}\:{is}\:\mathrm{10}\:{dm}\:{on}\:{the} \\ $$$${side}\:{by}\:{first}\:{cutting}\:{the}\:{square} \\ $$$${pieces}\:{of}\:{the}\:{same}\:{size}\:{from}\:{the} \\ $$$${corners}\:{of}\:{the}\:{sheet}\:{and}\:{folding} \\ $$$${up}\:{sides}.\:{what}\:{size}\:{squares} \\ $$$${should}\:{be}\:{cut}\:{in}\:{order}\:{to} \\ $$$${maximize}\:{the}\:{volume}\:{of}\:{the}\:{box}. \\ $$

Question Number 107656    Answers: 3   Comments: 0

Question Number 107650    Answers: 0   Comments: 0

Question Number 107647    Answers: 1   Comments: 0

≍BobHans≍ find the formula (d^3 /dx^3 )[g(f(x))]

$$\:\:\:\:\:\:\:\asymp\mathcal{B}\mathrm{ob}\mathcal{H}\mathrm{ans}\asymp \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{formula}\:\frac{\mathrm{d}^{\mathrm{3}} }{\mathrm{dx}^{\mathrm{3}} }\left[\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right] \\ $$

Question Number 107654    Answers: 0   Comments: 0

Question Number 107639    Answers: 1   Comments: 0

Question Number 107638    Answers: 0   Comments: 0

Question Number 107634    Answers: 1   Comments: 0

Question Number 107628    Answers: 0   Comments: 0

Question Number 107624    Answers: 0   Comments: 0

please prove: A,B,C are angles of triangle. Σ_(cylic) ((sinA+sinB)/(cosc))≥8cos(A/2)cos(B/2)cos(C/2)

$$\:\:\:\:\:\:\:{please}\:{prove}: \\ $$$$\:\mathrm{A},\mathrm{B},{C}\:\:{are}\:{angles}\:{of} \\ $$$${triangle}. \\ $$$$\underset{{cylic}} {\sum}\frac{{sinA}+{sinB}}{{cosc}}\geqslant\mathrm{8}{cos}\frac{{A}}{\mathrm{2}}{cos}\frac{{B}}{\mathrm{2}}{cos}\frac{{C}}{\mathrm{2}}\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 107621    Answers: 0   Comments: 1

Question Number 107618    Answers: 1   Comments: 0

Question Number 107617    Answers: 1   Comments: 0

Question Number 107609    Answers: 2   Comments: 0

Question Number 107598    Answers: 0   Comments: 3

Calculate: (√(1 + (√(2 + (√(3 + (√(4 + (√(5 + ...))))))))))

$$\:\:\:\:\mathrm{Calculate}:\:\:\sqrt{\mathrm{1}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{3}\:+\:\sqrt{\mathrm{4}\:+\:\sqrt{\mathrm{5}\:+\:...}}}}} \\ $$

Question Number 107596    Answers: 2   Comments: 0

Given I_(m,n) = ∫_1 ^e x^m (ln x)^n dx where m,n ∈ N^∗ Show that (1 + m)I_(m,n) = e^(m+1) −nI_(m,n−1) for m >0 and n>0 also, evaluate I_(2,3)

$$\mathrm{Given}\: \\ $$$$\:{I}_{{m},{n}} \:=\:\underset{\mathrm{1}} {\overset{{e}} {\int}}{x}^{{m}} \:\left(\mathrm{ln}\:{x}\right)^{{n}} \:{dx}\:\mathrm{where}\:{m},{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{1}\:+\:{m}\right){I}_{{m},{n}} \:=\:{e}^{{m}+\mathrm{1}} −{nI}_{{m},{n}−\mathrm{1}} \:\mathrm{for}\:{m}\:>\mathrm{0}\:\mathrm{and}\:{n}>\mathrm{0} \\ $$$$\mathrm{also},\:\mathrm{evaluate}\:{I}_{\mathrm{2},\mathrm{3}} \\ $$

Question Number 107594    Answers: 2   Comments: 0

Find the greatest common divisor of 1122 and 1001 and express the greatest common divisor d in the form. d = 1122x + 1001y Using the above result solve the congruence equation 37x ≡ 11 (mod 33)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:\mathrm{of}\:\mathrm{1122}\:\mathrm{and}\:\mathrm{1001}\:\mathrm{and}\: \\ $$$$\mathrm{express}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:{d}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}. \\ $$$$\:\:{d}\:=\:\mathrm{1122}{x}\:+\:\mathrm{1001}{y} \\ $$$$\mathrm{Using}\:\mathrm{the}\:\mathrm{above}\:\mathrm{result}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{congruence}\:\mathrm{equation} \\ $$$$\:\mathrm{37}{x}\:\equiv\:\mathrm{11}\:\left(\mathrm{mod}\:\mathrm{33}\right) \\ $$

Question Number 107591    Answers: 2   Comments: 2

Question Number 107589    Answers: 2   Comments: 0

Question Number 107586    Answers: 0   Comments: 2

App Updates: v2.135 • fix for background color problems • new drawing tools added in build and edit menu add equality marker to line etc • A new drawling tool to draw smooth curves.

$$\mathrm{App}\:\mathrm{Updates}:\:\mathrm{v2}.\mathrm{135} \\ $$$$\bullet\:\mathrm{fix}\:\mathrm{for}\:\mathrm{background}\:\mathrm{color}\:\mathrm{problems} \\ $$$$\bullet\:\mathrm{new}\:\mathrm{drawing}\:\mathrm{tools}\:\mathrm{added}\:\mathrm{in} \\ $$$$\:\:\:\mathrm{build}\:\mathrm{and}\:\mathrm{edit}\:\mathrm{menu} \\ $$$$\:\:\:\mathrm{add}\:\mathrm{equality}\:\mathrm{marker}\:\mathrm{to}\:\mathrm{line}\:\mathrm{etc} \\ $$$$\bullet\:\mathrm{A}\:\mathrm{new}\:\mathrm{drawling}\:\mathrm{tool}\:\mathrm{to}\:\mathrm{draw} \\ $$$$\:\:\:\:\mathrm{smooth}\:\mathrm{curves}. \\ $$

Question Number 107572    Answers: 1   Comments: 1

Question Number 107571    Answers: 0   Comments: 0

Given 0<x≤(π/2), 0<y≤(π/2), Let z_1 =((cos x)/(sin y))+((cos y)/(sin x)) i ,and ∣z_1 ∣=2 ; If z_2 =(√x)+(√(y ))i ,then what is the maximum value of ∣z_1 −z_2 ∣.

$${G}\mathrm{iven}\:\mathrm{0}<\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}},\:\mathrm{0}<\mathrm{y}\leqslant\frac{\pi}{\mathrm{2}}, \\ $$$$\mathrm{Let}\:{z}_{\mathrm{1}} =\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{y}}+\frac{\mathrm{cos}\:{y}}{\mathrm{sin}\:{x}}\:{i}\:,\mathrm{and}\:\mid{z}_{\mathrm{1}} \mid=\mathrm{2}\:; \\ $$$$\mathrm{If}\:{z}_{\mathrm{2}} =\sqrt{{x}}+\sqrt{{y}\:}{i}\:,\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid. \\ $$

Question Number 107567    Answers: 3   Comments: 0

∫(√(3x^2 −2x)) dx

$$\int\sqrt{\mathrm{3x}^{\mathrm{2}} −\mathrm{2x}}\:\mathrm{dx} \\ $$

  Pg 1099      Pg 1100      Pg 1101      Pg 1102      Pg 1103      Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com