Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1104

Question Number 107945    Answers: 3   Comments: 0

((○BeMath○)/(∧⌣∧)) { ((x^4 +(1/x^4 ) = 23)),((x^3 −(1/x^3 ) = ?)) :}

$$\:\:\:\:\:\:\frac{\circ\mathbb{B}{e}\mathbb{M}{ath}\circ}{\wedge\smile\wedge} \\ $$$$\:\:\:\begin{cases}{{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{23}}\\{{x}^{\mathrm{3}} −\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:?}\end{cases} \\ $$

Question Number 107941    Answers: 0   Comments: 1

Question Number 107932    Answers: 1   Comments: 3

((BeMath)/•) Given { ((tan (x−y)=(3/4))),((tan x = 2 )) :} find tan y ?

$$\:\:\:\frac{\mathbb{B}{e}\mathbb{M}{ath}}{\bullet} \\ $$$${Given}\:\begin{cases}{\mathrm{tan}\:\left({x}−{y}\right)=\frac{\mathrm{3}}{\mathrm{4}}}\\{\mathrm{tan}\:{x}\:=\:\mathrm{2}\:}\end{cases} \\ $$$${find}\:\:\mathrm{tan}\:{y}\:? \\ $$

Question Number 107930    Answers: 3   Comments: 0

((BeMath)/(•∩•)) lim_(x→0) (sin x)^(1/(ln (√x))) ?

$$\:\:\frac{\mathbb{B}{e}\mathbb{M}{ath}}{\bullet\cap\bullet} \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{ln}\:\sqrt{{x}}}} \:? \\ $$

Question Number 107929    Answers: 0   Comments: 0

(1/(1+2^2 +3^3 ))+(1/(2^2 +3^3 +4^4 ))+(1/(3^3 +4^4 +5^5 ))+....

$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} +\mathrm{5}^{\mathrm{5}} }+.... \\ $$

Question Number 107928    Answers: 0   Comments: 0

Question Number 107927    Answers: 0   Comments: 0

Question Number 107926    Answers: 2   Comments: 0

Question Number 107925    Answers: 2   Comments: 0

Question Number 107924    Answers: 1   Comments: 0

Question Number 107923    Answers: 3   Comments: 0

((⊚BeMath⊚)/) ∫_0 ^1 x^(9/2) (1−x)^(5/2) dx ?

$$\:\:\:\:\:\frac{\circledcirc\mathbb{B}{e}\mathcal{M}{ath}\circledcirc}{} \\ $$$$\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{x}^{\frac{\mathrm{9}}{\mathrm{2}}} \:\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:{dx}\:? \\ $$

Question Number 107922    Answers: 1   Comments: 0

if: y=(x/(x^2 +1)) then find (d(√y)/d(√x)) ?

$${if}:\:{y}=\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{then}\:{find}\:\frac{{d}\sqrt{{y}}}{{d}\sqrt{{x}}}\:? \\ $$

Question Number 107913    Answers: 0   Comments: 0

X_0 = ((X_1 .F_(y1) + X_2 .F_(y2) + .....)/(F_(y2) + F_(y2 ) + .....)) Y_0 = ((Y_1 .F_(x1) + Y_2 .F_(x2) + ......)/(F_(x1) + F_(x2) + ......)) X_0 = ((x_1 .m_1 + x_2 .m_2 + x_3 .m_3 + ....)/(m_1 + m_2 + m_3 + ......)) Y_0 = ((y_1 .m_1 + y_2 .m_2 + y_3 .m_3 + ....)/(m_1 + m_2 + m_3 + .....)) X_z = ((l_1 .x_1 + l_2 .x_2 + l_3 .x_3 + .......)/(l_1 + l_2 + l_3 + ......)) Y_z = ((l_1 .y_1 + l_2 .y_2 + l_3 .y_3 + ...... )/(l_1 + l_2 + l_3 + ......))

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{X}_{\mathrm{0}} \:=\:\frac{\mathrm{X}_{\mathrm{1}} .\mathrm{F}_{\mathrm{y1}} \:+\:\mathrm{X}_{\mathrm{2}} .\mathrm{F}_{\mathrm{y2}} \:+\:.....}{\mathrm{F}_{\mathrm{y2}} \:+\:\mathrm{F}_{\mathrm{y2}\:} +\:.....} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Y}_{\mathrm{0}} \:=\:\frac{\mathrm{Y}_{\mathrm{1}} .\mathrm{F}_{\mathrm{x1}} \:+\:\mathrm{Y}_{\mathrm{2}} .\mathrm{F}_{\mathrm{x2}} \:+\:......}{\mathrm{F}_{\mathrm{x1}} \:+\:\mathrm{F}_{\mathrm{x2}} +\:......} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{X}_{\mathrm{0}} \:=\:\frac{\mathrm{x}_{\mathrm{1}} .\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{x}_{\mathrm{2}} .\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{x}_{\mathrm{3}} .\mathrm{m}_{\mathrm{3}} \:+\:....}{\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{m}_{\mathrm{3}} \:+\:......} \\ $$$$\:\:\:\:\:\:\:\mathrm{Y}_{\mathrm{0}} \:=\:\frac{\mathrm{y}_{\mathrm{1}} .\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{2}} .\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{y}_{\mathrm{3}} .\mathrm{m}_{\mathrm{3}} \:+\:....}{\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{m}_{\mathrm{3}} \:+\:.....} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{X}_{\mathrm{z}} \:=\:\frac{{l}_{\mathrm{1}} .\mathrm{x}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:.\mathrm{x}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} .\mathrm{x}_{\mathrm{3}} \:+\:.......}{{l}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} \:+\:......} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Y}_{\mathrm{z}} \:=\:\frac{{l}_{\mathrm{1}} .{y}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} .{y}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} .{y}_{\mathrm{3}} \:+\:......\:}{{l}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} \:+\:......} \\ $$$$ \\ $$

Question Number 107905    Answers: 1   Comments: 3

Which of the following set of horizontal forces would lead an object in equilibrium? (a) 5N 10N 20N (b) 6N 12N 18N (c) 8N 8N 8N (b) 2N 4N 8N 16N

$$\mathrm{W}{hich}\:{of}\:{the}\:{following}\:{set}\:{of}\:{horizontal} \\ $$$${forces}\:{would}\:{lead}\:{an}\:{object}\:{in}\:{equilibrium}? \\ $$$$\left({a}\right)\:\mathrm{5}{N}\:\:\:\mathrm{10}{N}\:\:\mathrm{20}{N} \\ $$$$\left({b}\right)\:\mathrm{6}{N}\:\:\:\mathrm{12}{N}\:\:\:\:\mathrm{18}{N} \\ $$$$\left({c}\right)\:\mathrm{8}{N}\:\:\:\mathrm{8}{N}\:\:\:\mathrm{8}{N} \\ $$$$\left({b}\right)\:\mathrm{2}{N}\:\:\:\:\mathrm{4}{N}\:\:\:\mathrm{8}{N}\:\:\:\mathrm{16}{N} \\ $$

Question Number 107900    Answers: 2   Comments: 0

((Σ BeMath Σ)/□) Given tan x−sec x = ϑ then sin x = ?

$$\:\:\:\:\:\:\:\frac{\Sigma\:\mathcal{B}{e}\mathcal{M}{ath}\:\Sigma}{\Box} \\ $$$$\:\:{Given}\:\mathrm{tan}\:{x}−\mathrm{sec}\:{x}\:=\:\vartheta\: \\ $$$$\:{then}\:\mathrm{sin}\:{x}\:=\:? \\ $$

Question Number 107883    Answers: 1   Comments: 0

Expand e^(1/x) (√(x(x+2)))

$$\mathrm{Expand}\:\mathrm{e}^{\mathrm{1}/\mathrm{x}} \sqrt{\mathrm{x}\left(\mathrm{x}+\mathrm{2}\right)} \\ $$

Question Number 107882    Answers: 1   Comments: 5

lim_(x→∞) (((a^(1/x) +b^(1/x) )/2))^x

$$\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{a}^{\mathrm{1}/\mathrm{x}} +\mathrm{b}^{\mathrm{1}/\mathrm{x}} }{\mathrm{2}}\right)^{\mathrm{x}} \\ $$

Question Number 107877    Answers: 0   Comments: 0

Question Number 107867    Answers: 0   Comments: 0

Question Number 107859    Answers: 0   Comments: 0

find A_n =∫_0 ^1 x^n (√(1+x+x^2 ))dx (n natural)

$$\mathrm{find}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{n}\:\mathrm{natural}\right) \\ $$

Question Number 107858    Answers: 0   Comments: 1

calculate ∫_0 ^1 ((ln(1+x^2 ))/(1+x^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$

Question Number 107855    Answers: 0   Comments: 1

calculate ∫_0 ^∞ ((lnx)/((1+x)^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} }\mathrm{dx}\: \\ $$

Question Number 107852    Answers: 2   Comments: 0

Question Number 107847    Answers: 0   Comments: 0

Question Number 107844    Answers: 0   Comments: 0

A general case: we have totally n letters, among them n_1 times A, n_2 times B, n_3 times C, n_4 times D etc. (n_1 ,n_2 ,n_3 ,n_(4,) ...≥2, n>n_1 +n_2 +n_3 +n_4 +....) how many different words can be formed using these n letters such that same letters are not next to each other. see also Q107451.

$${A}\:{general}\:{case}: \\ $$$${we}\:{have}\:{totally}\:{n}\:{letters},\:{among}\:{them} \\ $$$${n}_{\mathrm{1}} \:{times}\:{A},\:{n}_{\mathrm{2}} \:{times}\:{B},\:{n}_{\mathrm{3}} \:{times}\:{C}, \\ $$$${n}_{\mathrm{4}} \:{times}\:{D}\:{etc}. \\ $$$$\left({n}_{\mathrm{1}} ,{n}_{\mathrm{2}} ,{n}_{\mathrm{3}} ,{n}_{\mathrm{4},} ...\geqslant\mathrm{2},\:{n}>{n}_{\mathrm{1}} +{n}_{\mathrm{2}} +{n}_{\mathrm{3}} +{n}_{\mathrm{4}} +....\right) \\ $$$${how}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{using}\:{these}\:{n}\:{letters}\:{such}\:{that} \\ $$$${same}\:{letters}\:{are}\:{not}\:{next}\:{to}\:{each} \\ $$$${other}. \\ $$$$ \\ $$$${see}\:{also}\:{Q}\mathrm{107451}. \\ $$

Question Number 107839    Answers: 1   Comments: 2

App update for teachers 2.136 A new option is added to generate long division method for square root under matrix menu. Enter a number and app will generate table like below.

$$\mathrm{App}\:\mathrm{update}\:\mathrm{for}\:\mathrm{teachers}\:\mathrm{2}.\mathrm{136} \\ $$$$\mathrm{A}\:\mathrm{new}\:\mathrm{option}\:\mathrm{is}\:\mathrm{added}\:\mathrm{to}\:\mathrm{generate} \\ $$$$\mathrm{long}\:\mathrm{division}\:\mathrm{method}\:\mathrm{for}\:\mathrm{square} \\ $$$$\mathrm{root}\:\mathrm{under}\:\mathrm{matrix}\:\mathrm{menu}. \\ $$$$\mathrm{Enter}\:\mathrm{a}\:\mathrm{number}\:\mathrm{and}\:\mathrm{app}\:\mathrm{will} \\ $$$$\mathrm{generate}\:\mathrm{table}\:\mathrm{like}\:\mathrm{below}. \\ $$

  Pg 1099      Pg 1100      Pg 1101      Pg 1102      Pg 1103      Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com