Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1104

Question Number 107230    Answers: 0   Comments: 0

Question Number 107222    Answers: 5   Comments: 0

Question Number 107212    Answers: 4   Comments: 0

⊚bemath⊚ ∫ x^6 (√(1−x^2 )) dx ?

$$\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\int\:{x}^{\mathrm{6}} \:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:? \\ $$

Question Number 107207    Answers: 4   Comments: 0

⊚bemath⊚ lim_(x→∞) (2^x +3^x )^(1/x) ?

$$\:\:\:\:\:\circledcirc{bemath}\circledcirc \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{2}^{{x}} +\mathrm{3}^{{x}} \right)^{\frac{\mathrm{1}}{{x}}} \:?\: \\ $$

Question Number 107202    Answers: 2   Comments: 0

Question Number 107238    Answers: 3   Comments: 0

⊞bemath⊞ ∫ ((sin x)/(sin^3 x+cos^3 x)) dx ?

$$\:\:\:\:\:\:\:\boxplus{bemath}\boxplus \\ $$$$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}}\:{dx}\:?\: \\ $$

Question Number 107198    Answers: 1   Comments: 2

Solve the given equation: (x+(x/3^1 ))∙(x+(x/3^2 ))∙(x+(x/3^3 ))∙(x+(x/3^4 ))∙...∙(x+(x/3^(25) ))=1 A)(3^(51) /(2∙(3^(50) −1))) B)(3^(52) /(2∙(3^(51) −1))) C) (3^(50) /(2∙(3^(50) −1))) D) (3^(51) /(3^(51) −1)) Please help with solution

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}: \\ $$$$\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{1}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{2}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{3}} }\right)\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{4}} }\right)\centerdot...\centerdot\left(\mathrm{x}+\frac{\mathrm{x}}{\mathrm{3}^{\mathrm{25}} }\right)=\mathrm{1} \\ $$$$\left.\mathrm{A}\left.\right)\left.\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\left.\:\:\mathrm{B}\right)\frac{\mathrm{3}^{\mathrm{52}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{51}} −\mathrm{1}\right)}\:\:\mathrm{C}\right)\:\frac{\mathrm{3}^{\mathrm{50}} }{\mathrm{2}\centerdot\left(\mathrm{3}^{\mathrm{50}} −\mathrm{1}\right)}\:\:\mathrm{D}\right)\:\frac{\mathrm{3}^{\mathrm{51}} }{\mathrm{3}^{\mathrm{51}} −\mathrm{1}} \\ $$$$\mathrm{Please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{solution} \\ $$

Question Number 107197    Answers: 0   Comments: 0

⊵JS⊴ ∫ _0 ^( π/6) sin^2 (6x) cos^4 (3x) dx ? [ by using the Gamma function ]

$$\:\:\:\:\:\trianglerighteq\mathrm{JS}\trianglelefteq \\ $$$$\int\overset{\:\pi/\mathrm{6}} {\:}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{6x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{3x}\right)\:\mathrm{dx}\:? \\ $$$$\left[\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathcal{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$

Question Number 107196    Answers: 2   Comments: 8

How many different words can be formed with the same letters as in TINKUTARA if no two same letters are next to each other.

$${How}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{same}\:{letters}\:{as}\:{in} \\ $$$${TINKUTARA}\:{if}\:{no}\:{two}\:{same}\:{letters} \\ $$$${are}\:{next}\:{to}\:{each}\:{other}. \\ $$

Question Number 107193    Answers: 1   Comments: 0

∫_0 ^4 ((ln x)/(√(4x−x^2 ))) dx ?

$$\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{ln}\:\mathrm{x}}{\sqrt{\mathrm{4x}−\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:? \\ $$

Question Number 107187    Answers: 1   Comments: 3

Prove that (√8)=1+(3/4)+((3.5)/(4.8))+((3.5.7)/(4.8.12))+......

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\sqrt{\mathrm{8}}=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}.\mathrm{8}}+\frac{\mathrm{3}.\mathrm{5}.\mathrm{7}}{\mathrm{4}.\mathrm{8}.\mathrm{12}}+...... \\ $$

Question Number 107184    Answers: 2   Comments: 0

@bemath@ ∫_0 ^2 x ((8−x^3 ))^(1/3) dx =?

$$\:\:\:\:\:\:\:@{bemath}@ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:{x}\:\sqrt[{\mathrm{3}}]{\mathrm{8}−{x}^{\mathrm{3}} }\:{dx}\:=?\: \\ $$

Question Number 107178    Answers: 1   Comments: 1

Question Number 107171    Answers: 0   Comments: 0

Question Number 107170    Answers: 0   Comments: 0

Question Number 107169    Answers: 2   Comments: 1

If a,b,c,d∈R a+b=8 ab+c+d=23 ad+bc=28 cd=12 Find a^2 +b^2 +c^2 +d^2 .

$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\in\mathbb{R} \\ $$$$\mathrm{a}+\mathrm{b}=\mathrm{8} \\ $$$$\mathrm{ab}+\mathrm{c}+\mathrm{d}=\mathrm{23} \\ $$$$\mathrm{ad}+\mathrm{bc}=\mathrm{28} \\ $$$$\mathrm{cd}=\mathrm{12} \\ $$$$\mathrm{Find}\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} . \\ $$$$ \\ $$

Question Number 107163    Answers: 2   Comments: 0

Question Number 107162    Answers: 1   Comments: 1

Question Number 107157    Answers: 0   Comments: 0

Question Number 107155    Answers: 2   Comments: 0

Question Number 107153    Answers: 1   Comments: 0

@bemath@ (((14)/5))^(((28)/(√x))−5) = ((5/(14)))^((5/(√x))−160)

$$\:\:\:\:\:\:@{bemath}@ \\ $$$$\left(\frac{\mathrm{14}}{\mathrm{5}}\right)^{\frac{\mathrm{28}}{\sqrt{{x}}}−\mathrm{5}} =\:\left(\frac{\mathrm{5}}{\mathrm{14}}\right)^{\frac{\mathrm{5}}{\sqrt{{x}}}−\mathrm{160}} \\ $$

Question Number 107151    Answers: 0   Comments: 0

@JS@ (D^2 +7D+12)y = e^x cos 2x

$$\:\:\:\:\:\:\:\:\:@\mathrm{JS}@ \\ $$$$\left(\mathrm{D}^{\mathrm{2}} +\mathrm{7D}+\mathrm{12}\right)\mathrm{y}\:=\:\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{2x}\: \\ $$

Question Number 107147    Answers: 0   Comments: 0

find lim_(x→0^+ ) ((∫_0 ^x e^t ln(t)dt)/(e^x lnx))

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \:\mathrm{e}^{\mathrm{t}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}}{\mathrm{e}^{\mathrm{x}} \mathrm{lnx}} \\ $$

Question Number 107144    Answers: 1   Comments: 0

solve x^2 y^(′′) −xy^′ +2y =xe^(−x) sin(2x)

$$\mathrm{solve}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{''} −\mathrm{xy}^{'} \:+\mathrm{2y}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right) \\ $$

Question Number 107141    Answers: 0   Comments: 0

∫(x^3 +x^6 )(((x^3 +2))^(1/3) )dx

$$\int\left({x}^{\mathrm{3}} +{x}^{\mathrm{6}} \right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{2}}\right){dx} \\ $$

Question Number 107133    Answers: 0   Comments: 0

  Pg 1099      Pg 1100      Pg 1101      Pg 1102      Pg 1103      Pg 1104      Pg 1105      Pg 1106      Pg 1107      Pg 1108   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com