Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1104
Question Number 107975 Answers: 3 Comments: 1
$$\:\:\:\:\:\:\frac{\clubsuit{JS}\heartsuit}{\bullet\equiv\bullet} \\ $$$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{tan}\:{x}\right)−\mathrm{tan}\:\left(\mathrm{sin}\:{x}\right)}{{x}−\mathrm{sin}\:{x}\:} \\ $$$$\:\left(\mathrm{2}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} \sqrt{\left(\mathrm{1}−\mathrm{cos}\:\left(\frac{\mathrm{2}}{{x}}\right)\right)\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\left(\frac{\mathrm{2}}{{x}}\right)\right)\sqrt{\left(\mathrm{1}−\mathrm{cos}\:\left(\frac{\mathrm{2}}{{x}}\right)\right)\sqrt{...}}}}\:?\: \\ $$$$ \\ $$
Question Number 107974 Answers: 1 Comments: 0
$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{k}\right)^{\mathrm{2}} }} \\ $$
Question Number 107871 Answers: 1 Comments: 1
$$\:\:\:\:\:\:\:\frac{\checkmark\mathcal{JS}\checkmark}{\heartsuit} \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\frac{{x}\:\mathrm{tan}\:{x}}{\mathrm{sin}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{2}{x}\:+\mathrm{1}}}\:?\: \\ $$
Question Number 107965 Answers: 2 Comments: 0
$$\:\:\:\:\frac{\circledcirc\mathcal{B}{e}\mathcal{M}{ath}\circledcirc}{} \\ $$$$\int\:{x}\:\sqrt{\frac{{x}}{\mathrm{2}{a}−{x}}}\:{dx}\:?\: \\ $$
Question Number 107947 Answers: 1 Comments: 0
Question Number 107946 Answers: 0 Comments: 0
$$\mathrm{Let}\:\mathrm{a}\:\mathrm{sequence}\:\left\{{a}_{\mathrm{n}} \right\}\:\mathrm{satisfies} \\ $$$${a}_{\mathrm{n}} =\begin{cases}{\mathrm{2},\:\mathrm{n}=\mathrm{1}}\\{\mathrm{2ln}\left({a}_{\mathrm{n}−\mathrm{1}} \right)+\frac{\mathrm{1}}{{a}_{\mathrm{n}−\mathrm{1}} }\:,\:\mathrm{n}\geqslant\mathrm{2}}\end{cases} \\ $$$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$${a}_{\mathrm{n}} \geqslant\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathbb{N}. \\ $$
Question Number 107945 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\frac{\circ\mathbb{B}{e}\mathbb{M}{ath}\circ}{\wedge\smile\wedge} \\ $$$$\:\:\:\begin{cases}{{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\:=\:\mathrm{23}}\\{{x}^{\mathrm{3}} −\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:?}\end{cases} \\ $$
Question Number 107941 Answers: 0 Comments: 1
Question Number 107932 Answers: 1 Comments: 3
$$\:\:\:\frac{\mathbb{B}{e}\mathbb{M}{ath}}{\bullet} \\ $$$${Given}\:\begin{cases}{\mathrm{tan}\:\left({x}−{y}\right)=\frac{\mathrm{3}}{\mathrm{4}}}\\{\mathrm{tan}\:{x}\:=\:\mathrm{2}\:}\end{cases} \\ $$$${find}\:\:\mathrm{tan}\:{y}\:? \\ $$
Question Number 107930 Answers: 3 Comments: 0
$$\:\:\frac{\mathbb{B}{e}\mathbb{M}{ath}}{\bullet\cap\bullet} \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{ln}\:\sqrt{{x}}}} \:? \\ $$
Question Number 107929 Answers: 0 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{4}} +\mathrm{5}^{\mathrm{5}} }+.... \\ $$
Question Number 107928 Answers: 0 Comments: 0
Question Number 107927 Answers: 0 Comments: 0
Question Number 107926 Answers: 2 Comments: 0
Question Number 107925 Answers: 2 Comments: 0
Question Number 107924 Answers: 1 Comments: 0
Question Number 107923 Answers: 3 Comments: 0
$$\:\:\:\:\:\frac{\circledcirc\mathbb{B}{e}\mathcal{M}{ath}\circledcirc}{} \\ $$$$\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{x}^{\frac{\mathrm{9}}{\mathrm{2}}} \:\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:{dx}\:? \\ $$
Question Number 107922 Answers: 1 Comments: 0
$${if}:\:{y}=\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{then}\:{find}\:\frac{{d}\sqrt{{y}}}{{d}\sqrt{{x}}}\:? \\ $$
Question Number 107913 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{X}_{\mathrm{0}} \:=\:\frac{\mathrm{X}_{\mathrm{1}} .\mathrm{F}_{\mathrm{y1}} \:+\:\mathrm{X}_{\mathrm{2}} .\mathrm{F}_{\mathrm{y2}} \:+\:.....}{\mathrm{F}_{\mathrm{y2}} \:+\:\mathrm{F}_{\mathrm{y2}\:} +\:.....} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Y}_{\mathrm{0}} \:=\:\frac{\mathrm{Y}_{\mathrm{1}} .\mathrm{F}_{\mathrm{x1}} \:+\:\mathrm{Y}_{\mathrm{2}} .\mathrm{F}_{\mathrm{x2}} \:+\:......}{\mathrm{F}_{\mathrm{x1}} \:+\:\mathrm{F}_{\mathrm{x2}} +\:......} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{X}_{\mathrm{0}} \:=\:\frac{\mathrm{x}_{\mathrm{1}} .\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{x}_{\mathrm{2}} .\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{x}_{\mathrm{3}} .\mathrm{m}_{\mathrm{3}} \:+\:....}{\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{m}_{\mathrm{3}} \:+\:......} \\ $$$$\:\:\:\:\:\:\:\mathrm{Y}_{\mathrm{0}} \:=\:\frac{\mathrm{y}_{\mathrm{1}} .\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{y}_{\mathrm{2}} .\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{y}_{\mathrm{3}} .\mathrm{m}_{\mathrm{3}} \:+\:....}{\mathrm{m}_{\mathrm{1}} \:+\:\mathrm{m}_{\mathrm{2}} \:+\:\mathrm{m}_{\mathrm{3}} \:+\:.....} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{X}_{\mathrm{z}} \:=\:\frac{{l}_{\mathrm{1}} .\mathrm{x}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:.\mathrm{x}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} .\mathrm{x}_{\mathrm{3}} \:+\:.......}{{l}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} \:+\:......} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Y}_{\mathrm{z}} \:=\:\frac{{l}_{\mathrm{1}} .{y}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} .{y}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} .{y}_{\mathrm{3}} \:+\:......\:}{{l}_{\mathrm{1}} \:+\:{l}_{\mathrm{2}} \:+\:{l}_{\mathrm{3}} \:+\:......} \\ $$$$ \\ $$
Question Number 107905 Answers: 1 Comments: 3
$$\mathrm{W}{hich}\:{of}\:{the}\:{following}\:{set}\:{of}\:{horizontal} \\ $$$${forces}\:{would}\:{lead}\:{an}\:{object}\:{in}\:{equilibrium}? \\ $$$$\left({a}\right)\:\mathrm{5}{N}\:\:\:\mathrm{10}{N}\:\:\mathrm{20}{N} \\ $$$$\left({b}\right)\:\mathrm{6}{N}\:\:\:\mathrm{12}{N}\:\:\:\:\mathrm{18}{N} \\ $$$$\left({c}\right)\:\mathrm{8}{N}\:\:\:\mathrm{8}{N}\:\:\:\mathrm{8}{N} \\ $$$$\left({b}\right)\:\mathrm{2}{N}\:\:\:\:\mathrm{4}{N}\:\:\:\mathrm{8}{N}\:\:\:\mathrm{16}{N} \\ $$
Question Number 107900 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\frac{\Sigma\:\mathcal{B}{e}\mathcal{M}{ath}\:\Sigma}{\Box} \\ $$$$\:\:{Given}\:\mathrm{tan}\:{x}−\mathrm{sec}\:{x}\:=\:\vartheta\: \\ $$$$\:{then}\:\mathrm{sin}\:{x}\:=\:? \\ $$
Question Number 107883 Answers: 1 Comments: 0
$$\mathrm{Expand}\:\mathrm{e}^{\mathrm{1}/\mathrm{x}} \sqrt{\mathrm{x}\left(\mathrm{x}+\mathrm{2}\right)} \\ $$
Question Number 107882 Answers: 1 Comments: 5
$$\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{a}^{\mathrm{1}/\mathrm{x}} +\mathrm{b}^{\mathrm{1}/\mathrm{x}} }{\mathrm{2}}\right)^{\mathrm{x}} \\ $$
Question Number 107877 Answers: 0 Comments: 0
Question Number 107867 Answers: 0 Comments: 0
Question Number 107859 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{n}\:\mathrm{natural}\right) \\ $$
Pg 1099 Pg 1100 Pg 1101 Pg 1102 Pg 1103 Pg 1104 Pg 1105 Pg 1106 Pg 1107 Pg 1108
Terms of Service
Privacy Policy
Contact: info@tinkutara.com