Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1094

Question Number 108429    Answers: 1   Comments: 0

Question Number 108422    Answers: 1   Comments: 0

Question Number 108420    Answers: 2   Comments: 0

Question Number 108417    Answers: 3   Comments: 0

Question Number 108416    Answers: 2   Comments: 0

Question Number 108415    Answers: 0   Comments: 1

Question Number 108413    Answers: 1   Comments: 0

228x=87 find x

$$\mathrm{228}{x}=\mathrm{87}\:{find}\:{x} \\ $$

Question Number 108407    Answers: 1   Comments: 0

The sides AB, BC, CA of a triangleABC have 3, 4 and 5 interior points respectively on them. The total number of triangles that can be constructed by using these points as vertices is

$$\mathrm{The}\:\mathrm{sides}\:\mathrm{AB},\:\mathrm{BC},\:\mathrm{CA}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangleABC} \\ $$$$\mathrm{have}\:\mathrm{3},\:\mathrm{4}\:\mathrm{and}\:\mathrm{5}\:\mathrm{interior}\:\mathrm{points}\:\mathrm{respectively} \\ $$$$\mathrm{on}\:\mathrm{them}.\:\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangles} \\ $$$$\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{constructed}\:\mathrm{by}\:\mathrm{using}\:\mathrm{these} \\ $$$$\mathrm{points}\:\mathrm{as}\:\mathrm{vertices}\:\mathrm{is} \\ $$

Question Number 108406    Answers: 1   Comments: 0

solve the differential equation y^′ −2e^x y=2e^x (√y)

$$ \\ $$$$ \\ $$$$\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{differential}} \\ $$$$\boldsymbol{{equation}}\: \\ $$$$\boldsymbol{{y}}^{'} −\mathrm{2}{e}^{{x}} \boldsymbol{{y}}=\mathrm{2}{e}^{{x}} \sqrt{\boldsymbol{{y}}} \\ $$

Question Number 108401    Answers: 2   Comments: 2

((bobhans)/(⋱⋰)) I=∫_0 ^(π/2) ln (a^2 cos^2 θ + b^2 sin^2 θ ) dθ ?

$$\:\:\:\frac{\boldsymbol{{bobhans}}}{\ddots\iddots} \\ $$$$\:{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{ln}\:\left({a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\:+\:{b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\:\right)\:{d}\theta\:?\: \\ $$

Question Number 108399    Answers: 0   Comments: 2

Question Number 108391    Answers: 5   Comments: 0

((∡ BeMath ∡)/▽) I = ∫_0 ^π ((x dx)/(1+sin x))

$$\:\:\:\frac{\measuredangle\:\mathcal{B}{e}\mathcal{M}{ath}\:\measuredangle}{\bigtriangledown} \\ $$$${I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:{dx}}{\mathrm{1}+\mathrm{sin}\:{x}} \\ $$

Question Number 108389    Answers: 1   Comments: 0

Question Number 108384    Answers: 3   Comments: 0

(1)∫ ((√(sin x))/( (√(sin x)) + (√(cos x)))) dx ? (2) (d^2 y/dx^2 )−2(dy/dx) +y = e^x

$$\left(\mathrm{1}\right)\int\:\frac{\sqrt{\mathrm{sin}\:{x}}}{\:\sqrt{\mathrm{sin}\:{x}}\:+\:\sqrt{\mathrm{cos}\:{x}}}\:{dx}\:? \\ $$$$\left(\mathrm{2}\right)\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{2}\frac{{dy}}{{dx}}\:+{y}\:=\:{e}^{{x}} \\ $$

Question Number 108382    Answers: 2   Comments: 1

((bobhans)/(⋰⋱)) ∫_(π/2) ^π ∣ cos x−sin x ∣ dx ?

$$\:\:\:\frac{\boldsymbol{{bobhans}}}{\iddots\ddots} \\ $$$$\:\underset{\pi/\mathrm{2}} {\overset{\pi} {\int}}\mid\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:\mid\:{dx}\:? \\ $$$$ \\ $$

Question Number 108377    Answers: 1   Comments: 0

There are 20 white and 10 black balls in the box.In turn draw 4 balls and each draw ball is returned to the box before the next ball is drawn and the balls in the box are mixed.What is the probability that out of four balls taken out there will be two white balls?

$$\mathrm{There}\:\mathrm{are}\:\mathrm{20}\:\mathrm{white}\:\mathrm{and}\:\mathrm{10}\:\mathrm{black}\:\mathrm{balls} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{box}.\mathrm{In}\:\mathrm{turn}\:\mathrm{draw}\:\mathrm{4}\:\mathrm{balls}\:\mathrm{and} \\ $$$$\mathrm{each}\:\mathrm{draw}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{returned}\:\mathrm{to}\:\mathrm{the}\:\mathrm{box} \\ $$$$\mathrm{before}\:\mathrm{the}\:\mathrm{next}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{and}\:\mathrm{the}\: \\ $$$$\mathrm{balls}\:\mathrm{in}\:\mathrm{the}\:\mathrm{box}\:\mathrm{are}\:\mathrm{mixed}.\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{out}\:\mathrm{of}\:\mathrm{four}\:\mathrm{balls} \\ $$$$\mathrm{taken}\:\mathrm{out}\:\mathrm{there}\:\mathrm{will}\:\mathrm{be}\:\mathrm{two}\:\mathrm{white}\:\mathrm{balls}? \\ $$

Question Number 108453    Answers: 1   Comments: 0

If R=(7+4(√3))^(2n) = I+f, where I ∈ N and 0<f<1, then R(1−f) equals

$$\mathrm{If}\:\:{R}=\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} \:=\:{I}+{f},\:\mathrm{where}\:{I}\:\in\:{N} \\ $$$$\mathrm{and}\:\:\:\mathrm{0}<{f}<\mathrm{1},\:\mathrm{then}\:{R}\left(\mathrm{1}−{f}\right)\:\mathrm{equals} \\ $$

Question Number 108370    Answers: 0   Comments: 1

Question Number 108369    Answers: 1   Comments: 0

Question Number 108366    Answers: 0   Comments: 1

Question Number 108365    Answers: 1   Comments: 0

Question Number 108350    Answers: 3   Comments: 0

Calculate (d^n /dx^n )(sinx) , (d^n /dx^n )(lnx)

$$\mathrm{Calculate}\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{dx}^{\mathrm{n}} }\left(\mathrm{sinx}\right)\:,\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{dx}^{\mathrm{n}} }\left(\mathrm{lnx}\right) \\ $$

Question Number 108349    Answers: 0   Comments: 0

Derive Leibniz′s formula : (fg)^((n)) (x_0 )=Σ_(k=0) ^n C_n ^k f^((k)) (x_0 )g^((n−k)) (x_0 )

$$\mathrm{Derive}\:\mathrm{Leibniz}'\mathrm{s}\:\mathrm{formula}\:: \\ $$$$\left(\mathrm{fg}\right)^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)\mathrm{g}^{\left(\mathrm{n}−\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right) \\ $$

Question Number 108371    Answers: 2   Comments: 0

prove by reccurence (1/2)+(1/4)+(1/6)+...+(1/(2n))<or =(n/2) thanks

$${prove}\:{by}\:{reccurence}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}<{or}\:=\frac{{n}}{\mathrm{2}} \\ $$$${thanks} \\ $$

Question Number 108341    Answers: 0   Comments: 0

lim_(x→+∞) {ln(cosh x) − x}

$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\left\{\mathrm{ln}\left(\mathrm{cosh}\:\mathrm{x}\right)\:−\:\mathrm{x}\right\} \\ $$

Question Number 108334    Answers: 1   Comments: 0

((⊸JS⊸)/△) If a random variable X follows normal distribution with mean 30 and variance 25. What is the probalility of X is less than 28 ?

$$\:\:\:\frac{\multimap{JS}\multimap}{\bigtriangleup} \\ $$$${If}\:{a}\:{random}\:{variable}\:{X}\:{follows}\:{normal} \\ $$$${distribution}\:{with}\:{mean}\:\mathrm{30}\:{and}\: \\ $$$${variance}\:\mathrm{25}.\:{What}\:{is}\:{the}\:{probalility} \\ $$$${of}\:{X}\:{is}\:{less}\:{than}\:\mathrm{28}\:? \\ $$

  Pg 1089      Pg 1090      Pg 1091      Pg 1092      Pg 1093      Pg 1094      Pg 1095      Pg 1096      Pg 1097      Pg 1098   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com