Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1094
Question Number 105650 Answers: 2 Comments: 0
$$\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)+\:\mathrm{cos}^{−\mathrm{1}} \left({x}\right)=\frac{\pi}{\mathrm{6}} \\ $$$${find}\:{x} \\ $$
Question Number 105646 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}; \\ $$$$\mathrm{y}''−\mathrm{2ay}'+\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)\mathrm{y}=\mathrm{te}^{\mathrm{at}} +\mathrm{sint} \\ $$
Question Number 105638 Answers: 2 Comments: 0
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{9}{y}\:=\:\mathrm{cos}\:\mathrm{4}{x} \\ $$
Question Number 105634 Answers: 0 Comments: 0
Question Number 105632 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \mathrm{dx}\:,\:\mathrm{n}\in\mathbb{N} \\ $$$$\mathrm{a}\backslash\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right],\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \mathrm{e}^{\mathrm{x}} \leqslant\mathrm{e}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{Sequence}\:\left(\mathrm{I}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{converges}\:\mathrm{to}\:\mathrm{zero}. \\ $$$$\mathrm{b}\backslash\mathrm{Establish}\:\mathrm{a}\:\mathrm{recurrence}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{I}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{c}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{e}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}!}\right) \\ $$
Question Number 105630 Answers: 0 Comments: 2
Question Number 105625 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$\begin{pmatrix}{{m}}\\{{m}}\end{pmatrix}\begin{pmatrix}{\:\:\:{n}}\\{{n}−{k}}\end{pmatrix}+\begin{pmatrix}{\:\:\:\:{m}}\\{{m}−\mathrm{1}}\end{pmatrix}\begin{pmatrix}{\:\:\:\:\:\:\:{n}}\\{{n}−{k}+\mathrm{1}}\end{pmatrix} \\ $$$$+\begin{pmatrix}{\:\:\:{m}}\\{{m}−\mathrm{2}}\end{pmatrix}\begin{pmatrix}{\:\:\:\:\:\:\:\:{n}}\\{{n}−{k}+\mathrm{2}}\end{pmatrix}+......+\begin{pmatrix}{\:\:\:\:{m}}\\{{m}−{k}}\end{pmatrix}\begin{pmatrix}{{n}}\\{{n}}\end{pmatrix} \\ $$$$=\begin{pmatrix}{{m}+{n}}\\{\:\:\:\:\:{k}}\end{pmatrix} \\ $$
Question Number 105619 Answers: 2 Comments: 0
$${find}\:\mathcal{G}{eneral}\:{solution}\:\mathrm{cot}\:{x}+\mathrm{cot}\:\mathrm{2}{x}+\mathrm{cot3}{x}=\:\mathrm{0} \\ $$$$ \\ $$
Question Number 105616 Answers: 2 Comments: 0
Question Number 105614 Answers: 2 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}\:\left(\mathrm{cos}\:\mathrm{2}{x}−\mathrm{1}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\:? \\ $$
Question Number 105613 Answers: 1 Comments: 0
$${f}\left({x}\right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}!} \:\:\:\:\:\:\:\:\:\:\:\:{f}^{'} \left({x}\right)=???? \\ $$
Question Number 105609 Answers: 0 Comments: 0
Question Number 105605 Answers: 2 Comments: 0
$${prove}\:{by}\:{mathematical}\:{induction}\: \\ $$$$\mathrm{2}^{\mathrm{3}} +\mathrm{4}^{\mathrm{3}} +\mathrm{6}^{\mathrm{3}} +\mathrm{8}^{\mathrm{3}} +...+\left(\mathrm{2}{n}\right)^{\mathrm{3}} =\:\mathrm{2}{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$
Question Number 105603 Answers: 2 Comments: 0
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{4}\frac{{dy}}{{dx}}+{y}\:=\:{a}\:\mathrm{sin}\:\mathrm{2}{x} \\ $$
Question Number 105599 Answers: 1 Comments: 0
Question Number 105598 Answers: 1 Comments: 0
Question Number 105596 Answers: 0 Comments: 1
Question Number 105594 Answers: 0 Comments: 3
Question Number 105593 Answers: 2 Comments: 0
$${f}\left({x}\right)=\frac{\sqrt{\mathrm{2}{x}+\mathrm{1}}×\sqrt{\mathrm{2}{x}+\mathrm{1}}}{\mathrm{2}{x}+\mathrm{1}}\:\:\:\:\:\:{Dom}_{{f}} =? \\ $$
Question Number 105584 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\mathrm{csc}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{2}} }\:\right]? \\ $$
Question Number 105575 Answers: 0 Comments: 0
Question Number 105574 Answers: 1 Comments: 0
$$\int\:\frac{{x}−\mathrm{1}}{{x}+{x}^{\mathrm{2}} \mathrm{ln}\:{x}}\:{dx}\:?\: \\ $$
Question Number 105571 Answers: 4 Comments: 0
$$\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)}\:=? \\ $$
Question Number 105569 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} \:\frac{{dy}}{{dx}}\:−\mathrm{3}{xy}−\mathrm{2}{y}^{\mathrm{2}} \:=\:\mathrm{0}\: \\ $$
Question Number 105566 Answers: 0 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2n}} \:\mathrm{e}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \:\left(\mathrm{x}\right)\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 105565 Answers: 1 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right) \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\mathrm{calculate}\:\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Pg 1089 Pg 1090 Pg 1091 Pg 1092 Pg 1093 Pg 1094 Pg 1095 Pg 1096 Pg 1097 Pg 1098
Terms of Service
Privacy Policy
Contact: info@tinkutara.com