Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1094
Question Number 109369 Answers: 2 Comments: 0
Question Number 109366 Answers: 0 Comments: 1
Question Number 109352 Answers: 0 Comments: 0
Question Number 109353 Answers: 0 Comments: 2
Question Number 109343 Answers: 2 Comments: 1
Question Number 109342 Answers: 0 Comments: 3
Question Number 109336 Answers: 1 Comments: 3
Question Number 109329 Answers: 0 Comments: 1
$${if}\:{all}\:{A},{B}\:{be}\:{a}\:{set}\:{prove}\:{that}\left(\:{A}^{{B}} =\:\emptyset\leftrightarrow{A}=\emptyset\:{and}\:{B}=\emptyset\right)\: \\ $$$${help}\:{me}\:{sir}\: \\ $$
Question Number 109320 Answers: 0 Comments: 0
Question Number 109307 Answers: 1 Comments: 0
Question Number 109305 Answers: 2 Comments: 0
Question Number 109303 Answers: 0 Comments: 1
Question Number 109302 Answers: 5 Comments: 0
Question Number 109290 Answers: 2 Comments: 0
Question Number 109284 Answers: 7 Comments: 0
Question Number 109282 Answers: 0 Comments: 0
Question Number 109271 Answers: 0 Comments: 1
Question Number 109268 Answers: 1 Comments: 5
Question Number 109337 Answers: 2 Comments: 0
$${x}=\mathrm{cos}\theta,\:\mathrm{where}\:\frac{\mathrm{3}\pi}{\mathrm{2}}<\theta<\mathrm{2}\pi,\:\mathrm{and}\:\mathrm{that}\:\mathrm{2cos}\theta−\mathrm{sin}\theta=\mathrm{2}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }=\mathrm{2}\left(\mathrm{1}−{x}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:{x}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{tan2}\theta=\frac{\mathrm{24}}{\mathrm{7}} \\ $$
Question Number 109264 Answers: 1 Comments: 0
Question Number 109262 Answers: 2 Comments: 0
$${f}\left({x}\right)+{f}\left(\mathrm{2}{x}+{y}\right)+\mathrm{5}{xy}\:=\:{f}\left(\mathrm{3}{x}−{y}\right)+{x}^{\mathrm{2}} +\mathrm{1} \\ $$$${for}\:{every}\:{x},{y}\in\mathbb{R}\:.\:{find}\:{f}\left(\mathrm{10}\right) \\ $$
Question Number 109248 Answers: 0 Comments: 0
Question Number 109246 Answers: 5 Comments: 0
Question Number 109242 Answers: 0 Comments: 0
Question Number 109240 Answers: 1 Comments: 0
$$\:\:\frac{\flat{emath}}{\bullet\bullet\bullet\bullet\bullet} \\ $$$${use}\:{cayley}\:−\:{hamilton}\:{theorem} \\ $$$${to}\:{calculate}\:{A}^{−\mathrm{1}} \:{for}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\mathrm{2}}\\{\mathrm{1}\:\:\:\:\:\:\mathrm{2}\:\:−\mathrm{1}}\\{−\mathrm{1}\:\:\mathrm{1}\:\:\:\:\mathrm{4}}\end{pmatrix} \\ $$
Question Number 109222 Answers: 1 Comments: 0
$$\:\:\:\:\frac{\ldots\flat{em}\mathcal{ATH}\ldots}{\cong\cong\cong\cong\cong\cong} \\ $$$$\sqrt{\mathrm{5}+\sqrt{\mathrm{10}}}\:=\:{x}.\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{15}}\:}\:+\sqrt{\mathrm{5}−\sqrt{\mathrm{15}}}\:\right) \\ $$$${x}\:=? \\ $$
Pg 1089 Pg 1090 Pg 1091 Pg 1092 Pg 1093 Pg 1094 Pg 1095 Pg 1096 Pg 1097 Pg 1098
Terms of Service
Privacy Policy
Contact: info@tinkutara.com