Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1094

Question Number 109090    Answers: 1   Comments: 0

Find all those roots of the equation z^(12) −56z^6 −512=0 whose imaginary part is positive.

$${Find}\:{all}\:{those}\:{roots}\:{of}\:{the}\:{equation} \\ $$$$\:\boldsymbol{{z}}^{\mathrm{12}} −\mathrm{56}\boldsymbol{{z}}^{\mathrm{6}} −\mathrm{512}=\mathrm{0}\:\:{whose}\:{imaginary} \\ $$$${part}\:{is}\:{positive}. \\ $$

Question Number 109086    Answers: 1   Comments: 0

♭_→ o_→ ♭h_⊸ ans_⊸ (1) (x^2 e^(−(y/x)) +y^2 ) dx = xy dy (2)(((f(x))/x))′ = x^2 e^(−x^2 ) ; f(1) = (1/e) g(x) = (4/e^4 )∫_1 ^x e^t^2 f(t) dt . find f(2)−g(2)

$$\:\:\:\underset{\rightarrow} {\flat}\underset{\rightarrow} {{o}}\flat\underset{\multimap} {{h}an}\underset{\multimap} {{s}} \\ $$$$\left(\mathrm{1}\right)\:\left({x}^{\mathrm{2}} {e}^{−\frac{{y}}{{x}}} +{y}^{\mathrm{2}} \right)\:{dx}\:=\:{xy}\:{dy}\: \\ $$$$\left(\mathrm{2}\right)\left(\frac{{f}\left({x}\right)}{{x}}\right)'\:=\:{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } \:;\:{f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{1}}{{e}}\: \\ $$$$\:\:\:\:\:\:\:{g}\left({x}\right)\:=\:\frac{\mathrm{4}}{{e}^{\mathrm{4}} }\underset{\mathrm{1}} {\overset{{x}} {\int}}{e}^{{t}^{\mathrm{2}} } \:{f}\left({t}\right)\:{dt}\:.\:{find}\:{f}\left(\mathrm{2}\right)−{g}\left(\mathrm{2}\right) \\ $$

Question Number 109082    Answers: 1   Comments: 0

prove that : ∫_(−(π/2)) ^(−(π/4)) 2cos(x)+sin(x)dx≤∫_(−(π/2)) ^(−(π/4)) cos(x)−sin(x)dx

$${prove}\:{that}\:: \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} \mathrm{2}{cos}\left({x}\right)+{sin}\left({x}\right){dx}\leqslant\int_{−\frac{\pi}{\mathrm{2}}} ^{−\frac{\pi}{\mathrm{4}}} {cos}\left({x}\right)−{sin}\left({x}\right){dx} \\ $$

Question Number 109075    Answers: 1   Comments: 0

Given the equations of twe circles C_1 : x^2 + y^2 −6x−4y + 9 = 0 and C_2 : x^2 + y^2 −2x−6y + 9. (a) Find the equation of the circle C_3 which passes through the centre of C_1 and through the point of intersection of C_1 and C_2 . (b) The equations of two tangents from the origin to C_1 and the lenght of each tangent.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{twe}\:\mathrm{circles}\: \\ $$$${C}_{\mathrm{1}} \::\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\mathrm{6}{x}−\mathrm{4}{y}\:+\:\mathrm{9}\:=\:\mathrm{0}\:\mathrm{and}\:{C}_{\mathrm{2}} \::\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{6}{y}\:+\:\mathrm{9}. \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:{C}_{\mathrm{3}} \:\mathrm{which}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centre} \\ $$$$\mathrm{of}\:{C}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{of}\:{C}_{\mathrm{1}} \:\mathrm{and}\:{C}_{\mathrm{2}} . \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{two}\:\mathrm{tangents}\:\mathrm{from}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:{C}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{the}\:\mathrm{lenght} \\ $$$$\mathrm{of}\:\mathrm{each}\:\mathrm{tangent}. \\ $$

Question Number 109070    Answers: 0   Comments: 6

Question Number 109068    Answers: 2   Comments: 0

Question Number 109067    Answers: 1   Comments: 0

Question Number 109047    Answers: 1   Comments: 0

∫_(−2) ^∞ (x+2)^5 e^(−(x+2)) dx ∫_0 ^1 ((tan(x))/x)dx

$$\int_{−\mathrm{2}} ^{\infty} \left({x}+\mathrm{2}\right)^{\mathrm{5}} {e}^{−\left({x}+\mathrm{2}\right)} {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tan}\left({x}\right)}{{x}}{dx} \\ $$

Question Number 109029    Answers: 1   Comments: 0

Find the value(s) of a,b and c if: (x+a)(x+2020)+1=(x+b)(x+c) where a,b and c are natural numbers.

$${Find}\:{the}\:{value}\left({s}\right)\:{of}\:{a},{b}\:{and}\:{c}\:\:{if}: \\ $$$$\left({x}+{a}\right)\left({x}+\mathrm{2020}\right)+\mathrm{1}=\left({x}+{b}\right)\left({x}+{c}\right) \\ $$$${where}\:{a},{b}\:{and}\:{c}\:{are}\:{natural}\:{numbers}. \\ $$

Question Number 109022    Answers: 8   Comments: 0

Question Number 109018    Answers: 3   Comments: 0

Question Number 109017    Answers: 1   Comments: 0

Question Number 109016    Answers: 2   Comments: 0

Question Number 109005    Answers: 2   Comments: 0

i^i =?

$${i}^{{i}} =? \\ $$

Question Number 109004    Answers: 4   Comments: 0

^ Solve ∣3x+5∣ = ∣4x−3∣ where x ∈ R

$$\overset{} {\:}\:\:{Solve}\:\:\:\:\mid\mathrm{3}{x}+\mathrm{5}\mid\:=\:\mid\mathrm{4}{x}−\mathrm{3}\mid \\ $$$$\:\:\:{where}\:{x}\:\in\:\mathbb{R} \\ $$$$ \\ $$

Question Number 109001    Answers: 0   Comments: 0

Question Number 109000    Answers: 0   Comments: 0

Question Number 108999    Answers: 0   Comments: 0

Question Number 108998    Answers: 0   Comments: 0

Question Number 108997    Answers: 1   Comments: 0

Question Number 108987    Answers: 1   Comments: 0

Question Number 108984    Answers: 7   Comments: 1

B_≈ eM_≈ ath_≈ (1)Σ_(n = 1) ^(100) [ (2/(4n^2 −1)) ] ? (2) (2/(4.9)) + (2/(9.14)) + (2/(14.19)) + ... + (2/(49.54)) ? (3) Given a quadratic equation x^2 (Σ_(i = 1) ^2 2)+ x(Σ_(i = 1) ^5 i)−(2/3)(Σ_(i = 1) ^3 i) = 0 has the roots are x_1 and x_2 with x_1 < x_2 . Find the value of x_1 +8x_2 .

$$\:\:\:\underset{\approx} {\mathcal{B}}{e}\underset{\approx} {\mathcal{M}}{at}\underset{\approx} {{h}} \\ $$$$\left(\mathrm{1}\right)\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\left[\:\frac{\mathrm{2}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:\right]\:? \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{2}}{\mathrm{4}.\mathrm{9}}\:+\:\frac{\mathrm{2}}{\mathrm{9}.\mathrm{14}}\:+\:\frac{\mathrm{2}}{\mathrm{14}.\mathrm{19}}\:+\:...\:+\:\frac{\mathrm{2}}{\mathrm{49}.\mathrm{54}}\:? \\ $$$$\left(\mathrm{3}\right)\:{Given}\:{a}\:{quadratic}\:{equation} \\ $$$${x}^{\mathrm{2}} \left(\underset{{i}\:=\:\mathrm{1}} {\overset{\mathrm{2}} {\sum}}\mathrm{2}\right)+\:{x}\left(\underset{{i}\:=\:\mathrm{1}} {\overset{\mathrm{5}} {\sum}}{i}\right)−\frac{\mathrm{2}}{\mathrm{3}}\left(\underset{{i}\:=\:\mathrm{1}} {\overset{\mathrm{3}} {\sum}}{i}\right)\:=\:\mathrm{0} \\ $$$${has}\:{the}\:{roots}\:{are}\:{x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}} \:{with}\: \\ $$$${x}_{\mathrm{1}} \:<\:{x}_{\mathrm{2}} .\:{Find}\:{the}\:{value}\:{of}\:{x}_{\mathrm{1}} +\mathrm{8}{x}_{\mathrm{2}} . \\ $$

Question Number 108967    Answers: 3   Comments: 0

b^★ o^★ b^★ h^∼ a^∼ n^∼ s^∼ 1+(4/(11))+(9/(121))+((16)/(1331))+((25)/(14641))+...

$$\:\:\overset{\bigstar} {{b}}\overset{\bigstar} {{o}}\overset{\bigstar} {{b}}\overset{\sim} {{h}}\overset{\sim} {{a}}\overset{\sim} {{n}}\overset{\sim} {{s}} \\ $$$$\mathrm{1}+\frac{\mathrm{4}}{\mathrm{11}}+\frac{\mathrm{9}}{\mathrm{121}}+\frac{\mathrm{16}}{\mathrm{1331}}+\frac{\mathrm{25}}{\mathrm{14641}}+... \\ $$

Question Number 108961    Answers: 3   Comments: 2

Solve ((∣x−2∣+1)/(∣x−2∣−1))<3

$$\mathrm{Solve}\:\frac{\mid{x}−\mathrm{2}\mid+\mathrm{1}}{\mid{x}−\mathrm{2}\mid−\mathrm{1}}<\mathrm{3} \\ $$

Question Number 108956    Answers: 2   Comments: 0

b^★ o^★ b^★ h^□ a^□ n^□ s^♠ lim_(x→0) ((tan 8x−sin 4x.cos 4x)/(x.sin 4x.tan 8x)) ?

$$\:\:\:\:\:\:\:\:\:\overset{\bigstar} {{b}}\overset{\bigstar} {{o}}\overset{\bigstar} {{b}}\overset{\Box} {{h}}\overset{\Box} {{a}}\overset{\Box} {{n}}\overset{\spadesuit} {{s}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{8}{x}−\mathrm{sin}\:\mathrm{4}{x}.\mathrm{cos}\:\mathrm{4}{x}}{{x}.\mathrm{sin}\:\mathrm{4}{x}.\mathrm{tan}\:\mathrm{8}{x}}\:? \\ $$

Question Number 108990    Answers: 2   Comments: 0

  Pg 1089      Pg 1090      Pg 1091      Pg 1092      Pg 1093      Pg 1094      Pg 1095      Pg 1096      Pg 1097      Pg 1098   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com