Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1082

Question Number 108901    Answers: 1   Comments: 0

f(x)=x^2 (1+x)^3 Find f′′(1).

$${f}\left({x}\right)={x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} \\ $$$$\mathrm{Find}\:{f}''\left(\mathrm{1}\right).\: \\ $$

Question Number 108893    Answers: 6   Comments: 0

(1)∫ (x^4 /(1−x^2 )) dx (2)∫_(−3) ^5 (√(∣x∣^3 )) dx (3) ∫_0 ^(π^2 /4) sin (√x) dx (4) ∫_(−∞) ^∞ e^(−2x^2 −5x−3) dx (5) x^3 y′′′−2x^2 y′′−2xy′+8y=0 (6)(x^4 +y^4 )dx+2x^3 y dy = 0 (7) (2(√(xy))−y)dx−xdy = 0

$$\left(\mathrm{1}\right)\int\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\underset{−\mathrm{3}} {\overset{\mathrm{5}} {\int}}\sqrt{\mid{x}\mid^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}} {\int}}\:\mathrm{sin}\:\sqrt{{x}}\:{dx}\: \\ $$$$\left(\mathrm{4}\right)\:\underset{−\infty} {\overset{\infty} {\int}}{e}^{−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{3}} \:{dx}\: \\ $$$$\left(\mathrm{5}\right)\:{x}^{\mathrm{3}} {y}'''−\mathrm{2}{x}^{\mathrm{2}} {y}''−\mathrm{2}{xy}'+\mathrm{8}{y}=\mathrm{0} \\ $$$$\left(\mathrm{6}\right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right){dx}+\mathrm{2}{x}^{\mathrm{3}} {y}\:{dy}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{7}\right)\:\left(\mathrm{2}\sqrt{{xy}}−{y}\right){dx}−{xdy}\:=\:\mathrm{0} \\ $$

Question Number 108891    Answers: 1   Comments: 0

((bobHans)/∦) ∫ (((x^2 −2) dx)/((x^4 +5x^2 +4) arc tan (((x^2 +2)/x))))

$$\:\:\:\frac{\boldsymbol{{bob}}\mathbb{H}{ans}}{\nparallel} \\ $$$$\int\:\frac{\left({x}^{\mathrm{2}} −\mathrm{2}\right)\:{dx}}{\left({x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}\right)\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}}\right)} \\ $$

Question Number 108888    Answers: 3   Comments: 0

((⋮BeMath⋮)/△) Suppose 2x^3 +3x^2 −14x−5= (Px+Q)(x+3)(x+1)+R for all value of x. Find the value of P,Q and R

$$\:\:\:\frac{\vdots\mathcal{B}{e}\mathcal{M}{ath}\vdots}{\bigtriangleup} \\ $$$${Suppose}\:\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{5}=\:\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)+{R}\:{for}\:{all} \\ $$$${value}\:{of}\:{x}.\:{Find}\:{the}\:{value}\:{of}\:{P},{Q}\:{and}\:{R}\: \\ $$

Question Number 108899    Answers: 0   Comments: 1

Question Number 108897    Answers: 0   Comments: 1

Question Number 108871    Answers: 0   Comments: 0

Question Number 108870    Answers: 2   Comments: 1

Question Number 108868    Answers: 2   Comments: 1

Question Number 108854    Answers: 1   Comments: 0

The sixth term of an A.P. is 2, its common difference is greater than one. Find the value of the common difference so that the product of the first, fourth and fifth terms is the greatest.

$$\mathrm{The}\:\mathrm{sixth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.\:\mathrm{is}\:\mathrm{2},\:\mathrm{its} \\ $$$$\mathrm{common}\:\mathrm{difference}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\mathrm{one}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first},\:\mathrm{fourth}\:\mathrm{and}\:\mathrm{fifth}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{greatest}. \\ $$

Question Number 108864    Answers: 2   Comments: 1

Question Number 108842    Answers: 2   Comments: 3

Question Number 108841    Answers: 1   Comments: 0

Question Number 108839    Answers: 0   Comments: 1

Question Number 108838    Answers: 0   Comments: 0

Question Number 108836    Answers: 1   Comments: 0

((bemath)/(⊂cooll⊃)) find the particular solution of y′′ + 4y = sin (2x)

$$\:\:\frac{\boldsymbol{{bemath}}}{\subset{cooll}\supset} \\ $$$${find}\:{the}\:{particular}\:{solution}\: \\ $$$${of}\:{y}''\:+\:\mathrm{4}{y}\:=\:\mathrm{sin}\:\left(\mathrm{2}{x}\right) \\ $$

Question Number 108825    Answers: 2   Comments: 1

Σ_(n=1) ^(10) (i^n +i^(n+1) )= ?

$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\left({i}^{{n}} +{i}^{{n}+\mathrm{1}} \right)=\:? \\ $$

Question Number 108821    Answers: 1   Comments: 0

find ∫_0 ^∞ ((lnx)/((x^2 +1)^2 ))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 108818    Answers: 1   Comments: 0

((Bobhans)/Δ) (1)Let n be a positive integer, and let x and y be positive real number such that x^n + y^n = 1 . Prove that (Σ_(k = 1) ^n ((1+x^(2k) )/(1+x^(4k) )) )(Σ_(k = 1) ^n ((1+y^(2k) )/(1+y^(4k) )) ) < (1/((1−x)(1−y))) (2) All the letters of the word ′EAMCOT ′ are arranged in different possible ways. The number of such arrangement in which no two vowels are adjacent to each other is ___

$$\:\:\frac{\boldsymbol{\mathcal{B}}{ob}\boldsymbol{{hans}}}{\Delta} \\ $$$$\left(\mathrm{1}\right){Let}\:{n}\:{be}\:{a}\:{positive}\:{integer},\:{and}\:{let}\:{x}\:{and}\:{y}\:{be}\:{positive}\:{real}\: \\ $$$${number}\:{such}\:{that}\:{x}^{{n}} \:+\:{y}^{{n}} \:=\:\mathrm{1}\:.\:{Prove}\:{that}\: \\ $$$$\left(\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}+{x}^{\mathrm{2}{k}} }{\mathrm{1}+{x}^{\mathrm{4}{k}} }\:\right)\left(\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}+{y}^{\mathrm{2}{k}} }{\mathrm{1}+{y}^{\mathrm{4}{k}} }\:\right)\:<\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−{y}\right)} \\ $$$$\left(\mathrm{2}\right)\:{All}\:{the}\:{letters}\:{of}\:{the}\:{word}\:'{EAMCOT}\:'\:{are}\:{arranged}\:{in}\:{different}\:\: \\ $$$${possible}\:{ways}.\:{The}\:{number}\:{of}\:{such}\:{arrangement}\:{in}\:{which}\: \\ $$$${no}\:{two}\:{vowels}\:{are}\:{adjacent}\:{to}\:{each}\:{other}\:{is}\:\_\_\_ \\ $$

Question Number 108815    Answers: 0   Comments: 0

f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8)))) x>0 , a>0 , x∈R, a∈R prove:1<f(x)<2

$${f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}}}+\frac{\sqrt{{ax}}}{\:\sqrt{{ax}+\mathrm{8}}} \\ $$$${x}>\mathrm{0}\:,\:{a}>\mathrm{0}\:,\:{x}\in{R},\:{a}\in{R} \\ $$$${prove}:\mathrm{1}<{f}\left({x}\right)<\mathrm{2} \\ $$

Question Number 108813    Answers: 0   Comments: 0

lim_(x→∞) (−ln 2.1)^(2x) =? ??????

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(−\mathrm{ln}\:\mathrm{2}.\mathrm{1}\right)^{\mathrm{2x}} =? \\ $$$$?????? \\ $$

Question Number 108805    Answers: 0   Comments: 0

Let the first term and the common ratio of a geometric sequence {a_n } be 1 and r. If {a_n } satisfy ∣a_(n−1) −a_1 ∣≤∣a_n −a_1 ∣ for all n≥2, find the range of values of r.

$$\mathrm{Let}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{ratio}\:\mathrm{of}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{sequence}\:\left\{{a}_{\mathrm{n}} \right\}\:\mathrm{be}\:\mathrm{1} \\ $$$$\mathrm{and}\:{r}.\: \\ $$$$\mathrm{If}\:\left\{{a}_{\mathrm{n}} \right\}\:\mathrm{satisfy}\:\mid{a}_{\mathrm{n}−\mathrm{1}} −{a}_{\mathrm{1}} \mid\leqslant\mid{a}_{\mathrm{n}} −{a}_{\mathrm{1}} \mid\:\mathrm{for} \\ $$$$\mathrm{all}\:\mathrm{n}\geqslant\mathrm{2},\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{r}. \\ $$

Question Number 108802    Answers: 1   Comments: 0

Question Number 108790    Answers: 1   Comments: 1

The values of θ lying between 0 and (π/2) and satisfying the equation determinant (((1+sin^2 θ),( cos^2 θ),(4 sin 4θ)),(( sin^2 θ),(1+cos^2 θ),(4 sin 4θ)),(( sin^2 θ),( cos^2 θ),(1+sin^4 θ)))=0 are

$$\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\theta\:\mathrm{lying}\:\mathrm{between}\:\mathrm{0}\:\mathrm{and} \\ $$$$\frac{\pi}{\mathrm{2}}\:\mathrm{and}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\begin{vmatrix}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \theta}&{\:\:\mathrm{cos}^{\mathrm{2}} \theta}&{\mathrm{4}\:\mathrm{sin}\:\mathrm{4}\theta}\\{\:\:\:\mathrm{sin}^{\mathrm{2}} \theta}&{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \theta}&{\mathrm{4}\:\mathrm{sin}\:\mathrm{4}\theta}\\{\:\:\:\mathrm{sin}^{\mathrm{2}} \theta}&{\:\:\:\mathrm{cos}^{\mathrm{2}} \theta}&{\mathrm{1}+\mathrm{sin}^{\mathrm{4}} \theta}\end{vmatrix}=\mathrm{0}\:\:\mathrm{are} \\ $$

Question Number 108789    Answers: 1   Comments: 0

Question Number 108787    Answers: 1   Comments: 0

  Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084      Pg 1085      Pg 1086   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com