Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1082

Question Number 103984    Answers: 0   Comments: 1

tan^2 (x)+tan^2 (2x)+tan^2 (4x)=33 x=?

$$\:\:\:\:\boldsymbol{{tan}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right)+\boldsymbol{{tan}}^{\mathrm{2}} \left(\mathrm{2}\boldsymbol{{x}}\right)+\boldsymbol{{tan}}^{\mathrm{2}} \left(\mathrm{4}\boldsymbol{{x}}\right)=\mathrm{33} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}=? \\ $$

Question Number 103979    Answers: 0   Comments: 1

show right and left sid limitation of lim_(x→0) ((ln(b−x))/(ax))

$$\:\:{show}\:{right}\:{and}\:{left}\:{sid}\:\:\:\:{limitation}\:\:\:\: \\ $$$${of}\:\:\:{li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{{ln}\left({b}−{x}\right)}{{ax}} \\ $$$$ \\ $$

Question Number 103974    Answers: 2   Comments: 0

calculate ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)(x^2 +3)^2 ))

$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Question Number 103969    Answers: 1   Comments: 0

how do you solve (D^3 +12D^2 +36D)y=0 by constant coefficients

$${how}\:{do}\:{you}\:{solve}\:\left({D}^{\mathrm{3}} +\mathrm{12}{D}^{\mathrm{2}} +\mathrm{36}{D}\right){y}=\mathrm{0} \\ $$$${by}\:{constant}\:{coefficients} \\ $$

Question Number 103961    Answers: 3   Comments: 0

what is 2^(log2x) =3^(log3x)

$${what}\:{is}\: \\ $$$$\mathrm{2}^{{log}\mathrm{2}{x}} =\mathrm{3}^{{log}\mathrm{3}{x}} \\ $$

Question Number 103958    Answers: 1   Comments: 0

what is integrating factor of (xy^2 −y) dx − x dy = 0

$${what}\:{is}\:{integrating}\:{factor} \\ $$$${of}\:\left({xy}^{\mathrm{2}} −{y}\right)\:{dx}\:−\:{x}\:{dy}\:=\:\mathrm{0} \\ $$

Question Number 103945    Answers: 2   Comments: 0

a cube ABCD.EFGH with length side 4 cm. Given point P is midpoint EF. find the distance of line AP to line HB.

$${a}\:{cube}\:{ABCD}.{EFGH}\:{with}\:{length}\:{side} \\ $$$$\mathrm{4}\:{cm}.\:{Given}\:{point}\:{P}\:{is}\:{midpoint}\:{EF}. \\ $$$${find}\:{the}\:{distance}\:{of}\:{line}\:{AP}\:{to}\:{line} \\ $$$${HB}.\: \\ $$

Question Number 103931    Answers: 2   Comments: 0

(y^2 +2) dx = (xy+2y+y^3 ) dy

$$\left({y}^{\mathrm{2}} +\mathrm{2}\right)\:{dx}\:=\:\left({xy}+\mathrm{2}{y}+{y}^{\mathrm{3}} \right)\:{dy} \\ $$

Question Number 103928    Answers: 1   Comments: 0

Question Number 103921    Answers: 1   Comments: 0

Prove that ∀ x ∈ R^ , ∣ cos x ∣ ≤ 1 − sin^2 x

$$\mathrm{Prove}\:\mathrm{that}\:\forall\:{x}\:\in\:\bar {\mathbb{R}}\:,\:\mid\:\mathrm{cos}\:{x}\:\mid\:\leqslant\:\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$

Question Number 103914    Answers: 2   Comments: 2

(2+(√3))^x^2 + (2−(√3))^x^2 = 4

$$\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}^{\mathrm{2}} } \:+\:\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{{x}^{\mathrm{2}} } \:=\:\mathrm{4}\: \\ $$

Question Number 103908    Answers: 2   Comments: 2

Find the least positive integer n for which there exists a set { s_1 ,s_2 ,s_3 ,...,s_n } consisting of n distinct positive integers such that (1−(1/s_1 ))(1−(1/s_2 ))(1−(1/s_3 ))...(1−(1/s_n )) = ((51)/(2010)) .

$${Find}\:{the}\:{least}\:{positive}\:{integer}\:{n}\:{for} \\ $$$${which}\:{there}\:{exists}\:{a}\:{set}\:\left\{\:{s}_{\mathrm{1}} ,{s}_{\mathrm{2}} ,{s}_{\mathrm{3}} ,...,{s}_{{n}} \:\right\} \\ $$$${consisting}\:{of}\:{n}\:{distinct}\:{positive}\:{integers} \\ $$$${such}\:{that}\:\left(\mathrm{1}−\frac{\mathrm{1}}{{s}_{\mathrm{1}} }\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{s}_{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{\mathrm{1}}{{s}_{\mathrm{3}} }\right)...\left(\mathrm{1}−\frac{\mathrm{1}}{{s}_{{n}} }\right) \\ $$$$=\:\frac{\mathrm{51}}{\mathrm{2010}}\:. \\ $$

Question Number 103903    Answers: 1   Comments: 5

a 100 cm long rod should be divided into 3 parts. the length of each part in cm should be integer. in how many different ways can this be done?

$${a}\:\mathrm{100}\:{cm}\:{long}\:{rod}\:{should}\:{be}\:{divided} \\ $$$${into}\:\mathrm{3}\:{parts}.\:{the}\:{length}\:{of}\:{each}\:{part} \\ $$$${in}\:{cm}\:{should}\:{be}\:{integer}.\:{in}\:{how}\: \\ $$$${many}\:{different}\:{ways}\:{can}\:{this}\:{be} \\ $$$${done}? \\ $$

Question Number 104143    Answers: 1   Comments: 1

A Satellite orbits the esrth in a circle of rsdius 8000km. At that distance from the earth g=6.2m/s2. The velocity of the satelliege is?

$$\mathrm{A}\:\mathrm{Satellite}\:\mathrm{orbits}\:\mathrm{the}\:\mathrm{esrth}\:\mathrm{in}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{rsdius}\:\mathrm{8000km}.\:\mathrm{At}\:\mathrm{that}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{earth}\:\mathrm{g}=\mathrm{6}.\mathrm{2m}/\mathrm{s2}.\:\mathrm{The}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{satelliege}\:\mathrm{is}? \\ $$

Question Number 104176    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (((n/(n+1)))^2 −(2/(n+1))−1)

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\left(\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}}\right)^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{n}+\mathrm{1}}−\mathrm{1}\right) \\ $$

Question Number 103894    Answers: 3   Comments: 0

(d/(d((d/dx)sinx)))∙sinx=?

$$\frac{{d}}{{d}\left(\frac{{d}}{{dx}}{sinx}\right)}\centerdot{sinx}=? \\ $$

Question Number 103893    Answers: 0   Comments: 0

Question Number 103888    Answers: 2   Comments: 0

find all such numbers: if we make its last digit, say k, as its first digit, the number becomes k times large as before. (□□...□k)→(k□□...□)=k×(□□...□k)

$${find}\:{all}\:{such}\:{numbers}: \\ $$$${if}\:{we}\:{make}\:{its}\:{last}\:{digit},\:{say}\:{k},\:{as}\:{its} \\ $$$${first}\:{digit},\:{the}\:{number}\:{becomes}\:{k} \\ $$$${times}\:{large}\:{as}\:{before}. \\ $$$$\left(\Box\Box...\Box{k}\right)\rightarrow\left({k}\Box\Box...\Box\right)={k}×\left(\Box\Box...\Box{k}\right) \\ $$

Question Number 103881    Answers: 2   Comments: 0

Π_(n=1) ^∞ (((2n−1)(2n+1))/(4n^2 )) ?

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{4}{n}^{\mathrm{2}} }\:? \\ $$

Question Number 103879    Answers: 2   Comments: 2

Question Number 103874    Answers: 1   Comments: 1

Question Number 103872    Answers: 0   Comments: 3

Question Number 103871    Answers: 1   Comments: 2

∫_0 ^1 ((x^(98) −99x+98)/(logx))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{98}} −\mathrm{99}{x}+\mathrm{98}}{{logx}}{dx} \\ $$

Question Number 103870    Answers: 0   Comments: 0

De^ montrer que la fonction f(x)=x^2 ∙sin((1/x)) admet un DL d′ordre 2.

$$\mathcal{D}\acute {\mathrm{e}montrer}\:\mathrm{que}\:\mathrm{la}\:\mathrm{fonction}\: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \centerdot\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:\mathrm{admet}\:\mathrm{un}\:\mathrm{DL}\:\mathrm{d}'\mathrm{ordre}\:\mathrm{2}. \\ $$

Question Number 103869    Answers: 0   Comments: 0

by using the Frobinus method solve the deffrentional equation xy^(′′) −2pxy^′ +(p(p+1)+b^2 x^2 )y=0 and give for example for this when p=1,b=2 such that (p,b) be areal number ?

$${by}\:{using}\:{the}\:{Frobinus}\:{method}\:{solve}\:{the}\:{deffrentional}\:{equation} \\ $$$${xy}^{''} −\mathrm{2}{pxy}^{'} +\left({p}\left({p}+\mathrm{1}\right)+{b}^{\mathrm{2}} {x}^{\mathrm{2}} \right){y}=\mathrm{0} \\ $$$$ \\ $$$${and}\:{give}\:{for}\:{example}\:{for}\:{this}\:{when}\:{p}=\mathrm{1},{b}=\mathrm{2}\: \\ $$$${such}\:{that}\:\left({p},{b}\right)\:{be}\:{areal}\:{number}\:? \\ $$

Question Number 103863    Answers: 8   Comments: 0

  Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084      Pg 1085      Pg 1086   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com