Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1082

Question Number 109929    Answers: 0   Comments: 1

△((♭e)/(Math))▽ lim_(x→∞) (√(81x^2 −10x+1))−4x+3−(√(25x^2 −10x+1)) =?

$$\:\:\:\bigtriangleup\frac{\flat{e}}{\mathcal{M}{ath}}\bigtriangledown \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{81}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{1}}−\mathrm{4}{x}+\mathrm{3}−\sqrt{\mathrm{25}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{1}}\:=? \\ $$

Question Number 110181    Answers: 0   Comments: 2

Given the equation of two circles C_1 : x^2 + y^2 −6x−4y + 9 = 0 andC_2 : x^2 +y^2 −2x−6y + 9 =0 find the equation of the common tangent to both circles.

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{two}\:\mathrm{circles} \\ $$$${C}_{\mathrm{1}} :\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\mathrm{6}{x}−\mathrm{4}{y}\:+\:\mathrm{9}\:=\:\mathrm{0}\:\mathrm{and}{C}_{\mathrm{2}} \::\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{6}{y}\:+\:\mathrm{9}\:=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{both}\:\mathrm{circles}. \\ $$

Question Number 109922    Answers: 1   Comments: 0

Question Number 109923    Answers: 1   Comments: 0

find sin3 in surd form

$${find}\: \\ $$$${sin}\mathrm{3}\:\:\: \\ $$$${in}\:{surd}\:{form} \\ $$

Question Number 109914    Answers: 1   Comments: 0

Prove that tan142°30′+(√6)+(√3)−(√2) is an integer.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{tan142}°\mathrm{30}'+\sqrt{\mathrm{6}}+\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$

Question Number 109913    Answers: 1   Comments: 0

((16))^(1/(x−1)) −5 (4)^(1/(x−1)) +2=0 find x?

$$\sqrt[{{x}−\mathrm{1}}]{\mathrm{16}}−\mathrm{5}\:\:\sqrt[{{x}−\mathrm{1}}]{\mathrm{4}}+\mathrm{2}=\mathrm{0}\:{find}\:{x}? \\ $$

Question Number 109912    Answers: 2   Comments: 1

(1)∫∣((x+3)/(x+1))∣dx (2)∫x∣x−1∣dx (3)∫e^((x−1)/x) dx

$$\left(\mathrm{1}\right)\int\mid\frac{{x}+\mathrm{3}}{{x}+\mathrm{1}}\mid{dx} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\int{x}\mid{x}−\mathrm{1}\mid{dx} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\int{e}^{\frac{{x}−\mathrm{1}}{{x}}} {dx} \\ $$

Question Number 110178    Answers: 1   Comments: 0

Define the laplace transformation equation and use the transformation equation transform (dy/dx) and (d^2 y/dx^2 ) hence solve the equation : (d^2 y/dx^2 ) + 5 (dy/dx) + 4 = e^(−x) sin 2x Using the laplace transformation equations derived above.

$$\mathrm{Define}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{transformation}\:\mathrm{equation}\:\mathrm{and} \\ $$$$\mathrm{use}\:\mathrm{the}\:\mathrm{transformation}\:\mathrm{equation}\:\mathrm{transform}\:\frac{{dy}}{{dx}}\:\mathrm{and}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} } \\ $$$$\mathrm{hence}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\::\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{5}\:\frac{{dy}}{{dx}}\:+\:\mathrm{4}\:=\:{e}^{−{x}} \:\mathrm{sin}\:\mathrm{2}{x} \\ $$$$\mathrm{Using}\:\mathrm{the}\:\mathrm{laplace}\:\mathrm{transformation}\:\mathrm{equations}\:\mathrm{derived}\:\mathrm{above}. \\ $$

Question Number 109910    Answers: 0   Comments: 2

Question Number 109909    Answers: 2   Comments: 6

Question Number 109905    Answers: 1   Comments: 0

Question Number 109901    Answers: 1   Comments: 0

If first n terms of an A.P. is cn^2 , find sum of squares of its first n terms.

$${If}\:{first}\:{n}\:{terms}\:{of}\:{an}\:{A}.{P}.\:{is}\:{cn}^{\mathrm{2}} , \\ $$$${find}\:{sum}\:{of}\:{squares}\:{of}\:{its}\:{first} \\ $$$${n}\:{terms}. \\ $$

Question Number 109895    Answers: 1   Comments: 3

Question Number 109891    Answers: 1   Comments: 0

((Δbe▽)/(math)) ∫ ((arc tan x)/((1+(1/x^2 )))) dx ?

$$\:\:\frac{\Delta{be}\bigtriangledown}{{math}} \\ $$$$\int\:\frac{\mathrm{arc}\:\mathrm{tan}\:{x}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\:{dx}\:? \\ $$

Question Number 109888    Answers: 3   Comments: 0

2^(x+5) =(√8^x )

$$\mathrm{2}^{{x}+\mathrm{5}} =\sqrt{\mathrm{8}^{{x}} } \\ $$

Question Number 109884    Answers: 1   Comments: 1

Question Number 109872    Answers: 2   Comments: 1

((★be★)/(Math)) ∫ ((cos x dx)/(sin^2 x+4sin x−5)) ?

$$\:\:\frac{\bigstar{be}\bigstar}{\mathcal{M}{ath}} \\ $$$$\int\:\frac{\mathrm{cos}\:{x}\:{dx}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{4sin}\:{x}−\mathrm{5}}\:? \\ $$

Question Number 109863    Answers: 1   Comments: 0

Question Number 109861    Answers: 3   Comments: 0

((JS)/(■★★■)) lim_(x→3) ((5−2x+(√(x−2)))/(x−4+(√(x−2)))) ?

$$\:\:\frac{{JS}}{\blacksquare\bigstar\bigstar\blacksquare} \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{5}−\mathrm{2}{x}+\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{4}+\sqrt{{x}−\mathrm{2}}}\:? \\ $$

Question Number 109858    Answers: 3   Comments: 0

Find the nth term for the sequence 3. 12. 27. 48. 75...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{for}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{3}.\:\mathrm{12}.\:\mathrm{27}.\:\mathrm{48}.\:\mathrm{75}... \\ $$

Question Number 109855    Answers: 3   Comments: 0

Question Number 109854    Answers: 4   Comments: 1

((★be★)/(math)) (1)∫ ((3+2cos x)/((2+3cos x)^3 )) dx (2)((√(2+(√3))) )^y −((√(2−(√3))) )^y = 14 y=?

$$\:\frac{\bigstar{be}\bigstar}{{math}} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{3}+\mathrm{2cos}\:{x}}{\left(\mathrm{2}+\mathrm{3cos}\:{x}\right)^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{y}} −\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{y}} \:=\:\mathrm{14} \\ $$$$\:\:\:\:\:{y}=? \\ $$

Question Number 109853    Answers: 0   Comments: 2

is there any diffrence between greatest coefficient and largest coefficient?

$${is}\:{there}\:{any}\:{diffrence}\:{between}\:{greatest} \\ $$$${coefficient}\:{and}\:{largest}\:{coefficient}? \\ $$

Question Number 109849    Answers: 0   Comments: 0

Question Number 109852    Answers: 0   Comments: 1

pls is there anyone with any material that can help me for binomial expansion for negative powers

$${pls}\:{is}\:{there}\:{anyone}\:{with}\:{any}\:{material}\:{that} \\ $$$${can}\:{help}\:{me}\:{for}\:{binomial}\:{expansion}\:{for} \\ $$$${negative}\:{powers} \\ $$

Question Number 109839    Answers: 4   Comments: 1

((JS)/(≈♥≈)) (1) ∫ (((√(x+1))−(√(x−1)))/( (√(x+1))+(√(x−1)))) dx (2) ∫ ((√(tan x))/(1+(√(tan x)) )) dx

$$\:\frac{{JS}}{\approx\heartsuit\approx} \\ $$$$\left(\mathrm{1}\right)\:\int\:\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}\:}\:{dx}\: \\ $$

  Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084      Pg 1085      Pg 1086   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com