Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1082

Question Number 110736    Answers: 0   Comments: 1

given f(x)=ax^2 +bx+c and f(x) is negative on a<x<b. The value of lim_(x→a) (((x−a)^2 )/(1−cos (f(x))))

$$\mathrm{given}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}\:\mathrm{and}\:{f}\left({x}\right) \\ $$$$\mathrm{is}\:\mathrm{negative}\:\mathrm{on}\:{a}<{x}<{b}.\:\mathrm{The}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{\left({x}−{a}\right)^{\mathrm{2}} }{\mathrm{1}−\mathrm{cos}\:\left({f}\left({x}\right)\right)} \\ $$

Question Number 110729    Answers: 1   Comments: 0

How many ways can the letters in the word MATHEMATICS be rearranged such that the word formed neither starts nor ends with a vowel, and any four consecutive letters must contain at least a vowel?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{word}\:\boldsymbol{\mathrm{MATHEMATICS}} \\ $$$$\mathrm{be}\:\mathrm{rearranged}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{word} \\ $$$$\mathrm{formed}\:\mathrm{neither}\:\mathrm{starts}\:\mathrm{nor}\:\mathrm{ends}\:\mathrm{with}\:\mathrm{a}\: \\ $$$$\mathrm{vowel},\:\mathrm{and}\:\mathrm{any}\:\mathrm{four}\:\mathrm{consecutive}\: \\ $$$$\mathrm{letters}\:\mathrm{must}\:\mathrm{contain}\:\mathrm{at}\:\mathrm{least}\:\mathrm{a}\:\mathrm{vowel}? \\ $$

Question Number 110728    Answers: 1   Comments: 0

a+b=9 , ab=20 a−b=?

$${a}+{b}=\mathrm{9}\:\:,\:\:{ab}=\mathrm{20}\:\:\:\:\:{a}−{b}=? \\ $$

Question Number 110727    Answers: 1   Comments: 0

a^2 +b^2 =10 , ab=13 , a^3 +b^3 =?

$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{10}\:\:\:,\:\:{ab}=\mathrm{13}\:\:\:,\:{a}^{\mathrm{3}} +{b}^{\mathrm{3}} =? \\ $$

Question Number 110706    Answers: 0   Comments: 0

Question Number 110722    Answers: 2   Comments: 0

Question Number 110675    Answers: 2   Comments: 0

Two polynomials P and Q satisfy P(−2x+Q(x))=Q(−2x+P(x)). Given that Q(x)=x^2 −4 and P(x)=ax+b. Find 2a+b.

$$\mathrm{Two}\:\mathrm{polynomials}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}\:\mathrm{satisfy} \\ $$$$\mathrm{P}\left(−\mathrm{2x}+\mathrm{Q}\left(\mathrm{x}\right)\right)=\mathrm{Q}\left(−\mathrm{2x}+\mathrm{P}\left(\mathrm{x}\right)\right). \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{Q}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} −\mathrm{4}\:\mathrm{and} \\ $$$$\mathrm{P}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b}.\:\mathrm{Find}\:\mathrm{2a}+\mathrm{b}. \\ $$

Question Number 118674    Answers: 1   Comments: 0

Please integrate ∫_0 ^1 (1/(1+x^c ))dx where c is a constant.

$${Please}\:{integrate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{{c}} }{dx}\:{where}\:{c}\:{is}\:{a}\:{constant}. \\ $$

Question Number 110669    Answers: 2   Comments: 2

Given that f(x)=(3+2x)^3 (4−x)^4 on the interval −(3/2)<x<4. Find the (a) Maximum value of f(x) (b) The value of x that gives the maximum in (a)

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{3}+\mathrm{2x}\right)^{\mathrm{3}} \left(\mathrm{4}−\mathrm{x}\right)^{\mathrm{4}} \:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{interval}\:−\frac{\mathrm{3}}{\mathrm{2}}<\mathrm{x}<\mathrm{4}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Maximum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{that}\:\mathrm{gives}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{in}\:\left(\mathrm{a}\right) \\ $$

Question Number 110647    Answers: 1   Comments: 0

1)lim_(x→0) sin((1/x))=? 2) lim_(x→0) cos ((1/x))=?

$$\left.\:\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}sin}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=? \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}cos}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=? \\ $$$$ \\ $$

Question Number 110642    Answers: 0   Comments: 0

Question Number 110620    Answers: 1   Comments: 0

Question Number 110619    Answers: 0   Comments: 2

someone posted this problem and my solution followed solve ∫_0 ^1 ((ln(x+(√(1+x^2 ))))/(√(1+x^2 )))dx solution y=ln(x+(√(1+x^2 ))) and dy=(1/(√(1+x^2 )))dx at x=0,y=0 and at x=1,y=ln(1+(√2)) hence I=∫_0 ^(ln(1+(√2))) (y/(√(1+x^2 )))×(√(1+x^2 ))dy=∫_0 ^(ln(1+(√2))) ydy I=[(y^2 /2)]_0 ^(ln(1+(√2))) =(1/2)ln^2 (1+(√2)) ∵∫_0 ^1 ((ln(x+(√(1+x^2 ))))/(√(1+x^2 )))dx=(1/2)ln^2 (1+(√2))

$${someone}\:{posted}\:{this}\:{problem}\:{and}\:{my} \\ $$$${solution}\:{followed} \\ $$$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$$${solution} \\ $$$${y}=\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:\:\:{and}\:\:{dy}=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$$${at}\:{x}=\mathrm{0},{y}=\mathrm{0}\:\:{and}\:\:{at}\:\:{x}=\mathrm{1},{y}=\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${hence} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \frac{{y}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}×\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dy}=\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} {ydy} \\ $$$${I}=\left[\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$

Question Number 110616    Answers: 1   Comments: 0

lim_(n→∞) ((e^(1/n) +e^(2/n) +......+e^(n/n) )/n) ho is can you help me step by step

$${lim}_{{n}\rightarrow\infty} \frac{{e}^{\frac{\mathrm{1}}{{n}}} +{e}^{\frac{\mathrm{2}}{{n}}} +......+{e}^{\frac{{n}}{{n}}} }{{n}}\: \\ $$$${ho}\:{is}\:{can}\:{you}\:{help}\:{me}\:{step}\:{by}\:{step} \\ $$

Question Number 110614    Answers: 1   Comments: 0

Question Number 110608    Answers: 0   Comments: 1

(√x) +1=0 Solution (√(x )) = −1 recalled that ϱ^(iΠ) = −1 (√x) =ϱ^(iΠ) x=(ϱ^(iΠ) )^2 ⇒ x=ϱ^(2iΠ) or x= 2cosΠ+isinΠ x has no real value!

$$\sqrt{{x}}\:+\mathrm{1}=\mathrm{0} \\ $$$${Solution} \\ $$$$\sqrt{{x}\:}\:=\:−\mathrm{1} \\ $$$${recalled}\:{that}\:\varrho^{{i}\Pi} =\:−\mathrm{1} \\ $$$$\sqrt{{x}}\:=\varrho^{{i}\Pi} \\ $$$${x}=\left(\varrho^{{i}\Pi} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\varrho^{\mathrm{2}{i}\Pi} \\ $$$${or}\:{x}=\:\mathrm{2}{cos}\Pi+{isin}\Pi \\ $$$${x}\:{has}\:{no}\:{real}\:{value}! \\ $$

Question Number 110704    Answers: 3   Comments: 0

Find the minimum value of ((n^2 +1)/n)+(n/(n^2 +1)),n>0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{n}}+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}},\mathrm{n}>\mathrm{0} \\ $$

Question Number 110596    Answers: 1   Comments: 2

Three real numbers a,b,c satisfying ab+c=10,bc+a=11,ca+b=14. Find (a−b)(b−c)(c−a)(a−1)(b−1)(c−1)

$$\mathrm{Three}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{satisfying} \\ $$$$\mathrm{ab}+\mathrm{c}=\mathrm{10},\mathrm{bc}+\mathrm{a}=\mathrm{11},\mathrm{ca}+\mathrm{b}=\mathrm{14}.\:\mathrm{Find} \\ $$$$\left(\mathrm{a}−\mathrm{b}\right)\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{c}−\mathrm{a}\right)\left(\mathrm{a}−\mathrm{1}\right)\left(\mathrm{b}−\mathrm{1}\right)\left(\mathrm{c}−\mathrm{1}\right) \\ $$

Question Number 110595    Answers: 0   Comments: 5

Evaluate 5!•6!(mod 7!)

$$\mathrm{Evaluate}\:\mathrm{5}!\bullet\mathrm{6}!\left(\mathrm{mod}\:\mathrm{7}!\right) \\ $$

Question Number 110594    Answers: 1   Comments: 0

A polynomial satisfies f(x^2 −2)=f(x)f(−x). Assuming that f(x)≠0 for −2≤x≤2, what is the value of f(−2)+f(1)?

$$\mathrm{A}\:\mathrm{polynomial}\:\mathrm{satisfies} \\ $$$$\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{f}\left(\mathrm{x}\right)\mathrm{f}\left(−\mathrm{x}\right).\:\mathrm{Assuming}\:\mathrm{that} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\neq\mathrm{0}\:\mathrm{for}\:−\mathrm{2}\leqslant\mathrm{x}\leqslant\mathrm{2},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{f}\left(−\mathrm{2}\right)+\mathrm{f}\left(\mathrm{1}\right)? \\ $$

Question Number 110593    Answers: 1   Comments: 0

Find the maximum possible integer n such that (((n−1)(n^2 +n−3))/(n^2 +4)) is also an integer

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{integer}\:\mathrm{n} \\ $$$$\mathrm{such}\:\mathrm{that}\:\frac{\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{n}^{\mathrm{2}} +\mathrm{n}−\mathrm{3}\right)}{\mathrm{n}^{\mathrm{2}} +\mathrm{4}}\:\mathrm{is}\:\mathrm{also}\:\mathrm{an} \\ $$$$\mathrm{integer} \\ $$

Question Number 110592    Answers: 3   Comments: 0

How many pairs of integers x and y satisfy the equation (1/x)+(1/y)=(1/(32))

$$\mathrm{How}\:\mathrm{many}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\:\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}=\frac{\mathrm{1}}{\mathrm{32}} \\ $$

Question Number 110591    Answers: 3   Comments: 0

Find the sum of all positive two−digit integers that are divisible by each of their digits.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{positive} \\ $$$$\mathrm{two}−\mathrm{digit}\:\mathrm{integers}\:\mathrm{that}\:\mathrm{are}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{each}\:\mathrm{of}\:\mathrm{their}\:\mathrm{digits}. \\ $$

Question Number 110673    Answers: 2   Comments: 0

Let k be a real number such that the inequality (√(x−3))+(√(6−x))≥k has a solution. Find the maximum value of k.

$$ \\ $$$$\mathrm{Let}\:\mathrm{k}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{inequality}\:\sqrt{\mathrm{x}−\mathrm{3}}+\sqrt{\mathrm{6}−\mathrm{x}}\geqslant\mathrm{k}\:\mathrm{has}\:\mathrm{a} \\ $$$$\mathrm{solution}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{k}. \\ $$

Question Number 110587    Answers: 1   Comments: 0

A palindrome is a number that remains the same when its numbers are reversed. The number n and n+192 are three−digit and four−digit palindromes respectively. What is the sum of the digits of m? Can this be solved mathematically?

$$\mathrm{A}\:\mathrm{palindrome}\:\mathrm{is}\:\mathrm{a}\:\mathrm{number}\:\mathrm{that} \\ $$$$\mathrm{remains}\:\mathrm{the}\:\mathrm{same}\:\mathrm{when}\:\mathrm{its}\:\mathrm{numbers} \\ $$$$\mathrm{are}\:\mathrm{reversed}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{n}\:\mathrm{and} \\ $$$$\mathrm{n}+\mathrm{192}\:\mathrm{are}\:\mathrm{three}−\mathrm{digit}\:\mathrm{and} \\ $$$$\mathrm{four}−\mathrm{digit}\:\mathrm{palindromes}\:\mathrm{respectively}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{m}?\: \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{this}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{mathematically}? \\ $$

Question Number 110586    Answers: 1   Comments: 0

The length of the interval of solution a≤2x+5≤b is 15. What is b−a?

$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{interval}\:\mathrm{of}\:\mathrm{solution} \\ $$$$\mathrm{a}\leqslant\mathrm{2x}+\mathrm{5}\leqslant\mathrm{b}\:\mathrm{is}\:\mathrm{15}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{b}−\mathrm{a}? \\ $$

  Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084      Pg 1085      Pg 1086   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com