Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1081
Question Number 110136 Answers: 4 Comments: 0
Question Number 110132 Answers: 0 Comments: 4
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{5cos}\:^{\mathrm{2}} {x}−\mathrm{2cos}\:{x}−\mathrm{3}}{\mathrm{cos}\:{x}−\mathrm{cos}\:\mathrm{3}{x}}\:? \\ $$
Question Number 110118 Answers: 1 Comments: 4
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \Gamma\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right){dx}=\frac{\mathrm{4}}{\pi}{G} \\ $$$${where}\:{G}\left({catalan}\:{constant}\right) \\ $$
Question Number 110119 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{body}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{5kg}\:\mathrm{is}\:\mathrm{acted}\:\mathrm{on}\:\mathrm{by}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{30N} \\ $$$$\mathrm{and}\:\mathrm{40N}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{vector}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}? \\ $$
Question Number 110112 Answers: 1 Comments: 0
$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}\mathrm{sin}\left({x}^{\mathrm{3}} \right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\bullet\frac{\pi}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$
Question Number 110109 Answers: 2 Comments: 0
Question Number 110096 Answers: 0 Comments: 8
$${find}\:{the}\:{following}\:{product}\:{integral} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{1}\right)\:\:\:\:\int\left({x}\right)^{{dx}} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\:\:\:\int\left({e}^{{x}} \right)^{{dx}} \\ $$
Question Number 110095 Answers: 3 Comments: 0
$$\:\:\:\left[\frac{{be}}{{math}}\right] \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right) \\ $$
Question Number 110092 Answers: 1 Comments: 0
Question Number 110087 Answers: 0 Comments: 3
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{following}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\begin{cases}{\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{2}}\\{\mathrm{2x}+\mathrm{3y}+\mathrm{z}=\mathrm{1}}\\{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{9}}\end{cases} \\ $$
Question Number 110086 Answers: 1 Comments: 0
$$\:\:\frac{\spadesuit{JS}\spadesuit}{\bigstar\blacksquare.\bigstar} \\ $$$${If}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +\mathrm{2}\mid{ax}\mid−\mathrm{3}{a}^{\mathrm{2}} }{\:\sqrt{{x}}−\sqrt{{a}}\:}\:=\:{P}\:,\:{with}\:{a}>\mathrm{0} \\ $$$${then}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{2}{x}^{\mathrm{2}} −\mid{ax}\mid−{a}^{\mathrm{2}} }{{x}−{a}}\:{is} \\ $$$$\_\_\_ \\ $$$$\:\left({a}\right)\:\frac{\mathrm{3}{P}}{\mathrm{4}\sqrt{{a}}}\:\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{3}{P}}{\mathrm{8}\sqrt{{a}}}\:\:\:\:\:\left({c}\right)\:\frac{\mathrm{8}{P}}{\mathrm{3}\sqrt{{a}}} \\ $$$$\:\:\left({d}\right)\:\frac{\mathrm{4}{P}}{\mathrm{3}\sqrt{{a}}\:}\:\:\:\:\left({e}\right)\:\frac{\mathrm{3}{P}}{\mathrm{8}{a}} \\ $$
Question Number 110056 Answers: 2 Comments: 0
$${prove}\:{that}\: \\ $$$$\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}^{\mathrm{4}} {x}−\mathrm{6sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\pi}{{e}^{\mathrm{4}} } \\ $$
Question Number 110050 Answers: 1 Comments: 0
Question Number 110049 Answers: 4 Comments: 0
Question Number 110045 Answers: 0 Comments: 0
$$\left.{let}\:{x}\:\in\:\right]\mathrm{0},\mathrm{1}\left[\:\:\right. \\ $$$${find}\:{E}\left({x}^{{x}} \right)\:{and}\:{E}\left({x}^{{x}^{{x}} } \right) \\ $$
Question Number 110075 Answers: 2 Comments: 2
$$\:\:\bigtriangleup\frac{{be}}{{math}}\bigtriangledown \\ $$$$\:\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}.\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} .\mathrm{sin}\:{x}}\:? \\ $$$$\left(\mathrm{2}\right)\:{find}\:\frac{{dy}}{{dx}}\:{from}\:\frac{{x}+{y}}{{x}−{y}}\:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$
Question Number 110072 Answers: 2 Comments: 0
$$\:\:\:\bigtriangleup\frac{{be}}{{math}}\bigtriangledown \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{2}{x}+\mathrm{sin}\:\mathrm{6}{x}+\mathrm{sin}\:\mathrm{10}{x}−\mathrm{sin}\:\mathrm{18}{x}}{\mathrm{3sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}}=? \\ $$
Question Number 110027 Answers: 2 Comments: 0
Question Number 110018 Answers: 1 Comments: 0
$${find}\:{the}\:{domain}\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$
Question Number 110016 Answers: 3 Comments: 0
$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left({x}+\mathrm{1}\right)+\left({x}+\mathrm{4}\right)+\left({x}+\mathrm{7}\right)+...+\left({x}+\mathrm{28}\right)=\mathrm{155} \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{x}\:=\:\_\_\_\_\_. \\ $$
Question Number 110015 Answers: 2 Comments: 1
$$\mathrm{The}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{are} \\ $$$$\mathrm{grouped}\:\mathrm{as}\:\mathrm{1}^{\mathrm{3}} ,\:\left(\mathrm{2}^{\mathrm{3}} ,\:\mathrm{3}^{\mathrm{3}} \right),\:\left(\mathrm{4}^{\mathrm{3}} ,\:\mathrm{5}^{\mathrm{3}} ,\:\mathrm{6}^{\mathrm{3}} \right),\:...., \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{the}\:{n}\mathrm{th} \\ $$$$\mathrm{group}\:\mathrm{is} \\ $$
Question Number 109989 Answers: 1 Comments: 1
Question Number 109988 Answers: 0 Comments: 0
Question Number 109985 Answers: 0 Comments: 2
Question Number 109978 Answers: 1 Comments: 0
Question Number 109963 Answers: 1 Comments: 0
Pg 1076 Pg 1077 Pg 1078 Pg 1079 Pg 1080 Pg 1081 Pg 1082 Pg 1083 Pg 1084 Pg 1085
Terms of Service
Privacy Policy
Contact: info@tinkutara.com