(−1)^π =?
(−1)^((22)/7)
=(−1)^(3+(1/7))
=(−1)^3 .(−1)^(1/7)
=−(−1)^(1/7)
let (−1)^π =t
⇒−(−1)^(1/7) =t
⇒(−1)^(1/7) =−t
⇒(−1)=(−t)^7
⇒−1=−t^7
⇒1=t^7
hence t=1
∴(−1)^π =1
i request all math
professionals to
check this and if
any error then pls
comment.
((♠JS♠)/(★■.★))
If lim_(x→a) ((x^2 +2∣ax∣−3a^2 )/( (√x)−(√a) )) = P , with a>0
then the value of lim_(x→a) ((2x^2 −∣ax∣−a^2 )/(x−a)) is
___
(a) ((3P)/(4(√a))) (b) ((3P)/(8(√a))) (c) ((8P)/(3(√a)))
(d) ((4P)/(3(√a) )) (e) ((3P)/(8a))