Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1081

Question Number 109888    Answers: 3   Comments: 0

2^(x+5) =(√8^x )

$$\mathrm{2}^{{x}+\mathrm{5}} =\sqrt{\mathrm{8}^{{x}} } \\ $$

Question Number 109884    Answers: 1   Comments: 1

Question Number 109872    Answers: 2   Comments: 1

((★be★)/(Math)) ∫ ((cos x dx)/(sin^2 x+4sin x−5)) ?

$$\:\:\frac{\bigstar{be}\bigstar}{\mathcal{M}{ath}} \\ $$$$\int\:\frac{\mathrm{cos}\:{x}\:{dx}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{4sin}\:{x}−\mathrm{5}}\:? \\ $$

Question Number 109863    Answers: 1   Comments: 0

Question Number 109861    Answers: 3   Comments: 0

((JS)/(■★★■)) lim_(x→3) ((5−2x+(√(x−2)))/(x−4+(√(x−2)))) ?

$$\:\:\frac{{JS}}{\blacksquare\bigstar\bigstar\blacksquare} \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{5}−\mathrm{2}{x}+\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{4}+\sqrt{{x}−\mathrm{2}}}\:? \\ $$

Question Number 109858    Answers: 3   Comments: 0

Find the nth term for the sequence 3. 12. 27. 48. 75...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{for}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{3}.\:\mathrm{12}.\:\mathrm{27}.\:\mathrm{48}.\:\mathrm{75}... \\ $$

Question Number 109855    Answers: 3   Comments: 0

Question Number 109854    Answers: 4   Comments: 1

((★be★)/(math)) (1)∫ ((3+2cos x)/((2+3cos x)^3 )) dx (2)((√(2+(√3))) )^y −((√(2−(√3))) )^y = 14 y=?

$$\:\frac{\bigstar{be}\bigstar}{{math}} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{3}+\mathrm{2cos}\:{x}}{\left(\mathrm{2}+\mathrm{3cos}\:{x}\right)^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{y}} −\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{y}} \:=\:\mathrm{14} \\ $$$$\:\:\:\:\:{y}=? \\ $$

Question Number 109853    Answers: 0   Comments: 2

is there any diffrence between greatest coefficient and largest coefficient?

$${is}\:{there}\:{any}\:{diffrence}\:{between}\:{greatest} \\ $$$${coefficient}\:{and}\:{largest}\:{coefficient}? \\ $$

Question Number 109849    Answers: 0   Comments: 0

Question Number 109852    Answers: 0   Comments: 1

pls is there anyone with any material that can help me for binomial expansion for negative powers

$${pls}\:{is}\:{there}\:{anyone}\:{with}\:{any}\:{material}\:{that} \\ $$$${can}\:{help}\:{me}\:{for}\:{binomial}\:{expansion}\:{for} \\ $$$${negative}\:{powers} \\ $$

Question Number 109839    Answers: 4   Comments: 1

((JS)/(≈♥≈)) (1) ∫ (((√(x+1))−(√(x−1)))/( (√(x+1))+(√(x−1)))) dx (2) ∫ ((√(tan x))/(1+(√(tan x)) )) dx

$$\:\frac{{JS}}{\approx\heartsuit\approx} \\ $$$$\left(\mathrm{1}\right)\:\int\:\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}\:}\:{dx}\: \\ $$

Question Number 109838    Answers: 1   Comments: 0

please prove::: ∫_0 ^( 1) (1/( (√(1−x))))log((x/(1−x)))dx =4log(2)

$$ \\ $$$$ \\ $$$$\:\:\:\:{please}\:{prove}::: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}}{log}\left(\frac{{x}}{\mathrm{1}−{x}}\right){dx}\:=\mathrm{4}{log}\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 109834    Answers: 3   Comments: 1

Question Number 109823    Answers: 1   Comments: 1

Question Number 109820    Answers: 0   Comments: 2

tan^2 x+tan^2 2x+tan^2 4x=33 find x (show full solution please)

$${tan}^{\mathrm{2}} {x}+{tan}^{\mathrm{2}} \mathrm{2}{x}+{tan}^{\mathrm{2}} \mathrm{4}{x}=\mathrm{33} \\ $$$${find}\:{x}\:\:\:\left({show}\:{full}\:{solution}\:{please}\right) \\ $$

Question Number 109818    Answers: 1   Comments: 7

tanx+tan2x=1 find the general solution

$${tanx}+{tan}\mathrm{2}{x}=\mathrm{1} \\ $$$${find}\:{the}\:{general}\:{solution} \\ $$

Question Number 109817    Answers: 0   Comments: 1

Question Number 109806    Answers: 0   Comments: 0

a handy little formula to remember in case you forget the value of 3 :) ^(2/((((log_2 (3))/2)))) (√2^4 )=3

$$\mathrm{a}\:\mathrm{handy}\:\mathrm{little}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{remember} \\ $$$$\left.\mathrm{in}\:\mathrm{case}\:\mathrm{you}\:\mathrm{forget}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3}\::\right) \\ $$$$ \\ $$$$\:\:\:^{\frac{\mathrm{2}}{\left(\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{2}}\right)}} \sqrt{\mathrm{2}^{\mathrm{4}} }=\mathrm{3} \\ $$

Question Number 109801    Answers: 0   Comments: 2

calculste ∫_0 ^1 (√(1+x^6 ))dx

$$\mathrm{calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$

Question Number 109794    Answers: 0   Comments: 0

Question Number 109787    Answers: 0   Comments: 0

How to prove that ▽×(▽×E)= ▽▽.E−▽^2 E, where E is the eletric field?

$${How}\:{to}\:{prove}\:{that}\:\bigtriangledown×\left(\bigtriangledown×{E}\right)=\:\bigtriangledown\bigtriangledown.{E}−\bigtriangledown^{\mathrm{2}} {E},\:{where}\:{E}\:{is}\:{the}\:{eletric}\:{field}? \\ $$

Question Number 109776    Answers: 0   Comments: 0

Question Number 109775    Answers: 3   Comments: 0

log_a (3x−4a)+log_a 3x=(2/(log_2 a))+log_a (1−2a), where 0<a<(1/2), find the value of x.

$$\mathrm{log}_{{a}} \left(\mathrm{3}{x}−\mathrm{4}{a}\right)+\mathrm{log}_{{a}} \mathrm{3}{x}=\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} {a}}+\mathrm{log}_{{a}} \left(\mathrm{1}−\mathrm{2}{a}\right),\:\mathrm{where}\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}. \\ $$

Question Number 109769    Answers: 1   Comments: 0

lim_(x→Π) ((1−cos xcos 2xcos 3x)/(1−cos x))=?

$$\underset{{x}\rightarrow\Pi} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{1}−\mathrm{cos}\:{x}}=? \\ $$

Question Number 109766    Answers: 1   Comments: 0

lim_(n→∞) ((2^(n/2) +(n+1)!)/(n(3^n +n!)))=?

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{\frac{{n}}{\mathrm{2}}} +\left({n}+\mathrm{1}\right)!}{{n}\left(\mathrm{3}^{{n}} +{n}!\right)}=? \\ $$

  Pg 1076      Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084      Pg 1085   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com