Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1081

Question Number 110136    Answers: 4   Comments: 0

Question Number 110132    Answers: 0   Comments: 4

lim_(x→0) ((5cos^2 x−2cos x−3)/(cos x−cos 3x)) ?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{5cos}\:^{\mathrm{2}} {x}−\mathrm{2cos}\:{x}−\mathrm{3}}{\mathrm{cos}\:{x}−\mathrm{cos}\:\mathrm{3}{x}}\:? \\ $$

Question Number 110118    Answers: 1   Comments: 4

prove that ∫_0 ^1 Γ(1−(x/2))Γ(1+(x/2))dx=(4/π)G where G(catalan constant)

$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \Gamma\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right){dx}=\frac{\mathrm{4}}{\pi}{G} \\ $$$${where}\:{G}\left({catalan}\:{constant}\right) \\ $$

Question Number 110119    Answers: 1   Comments: 0

A body of mass 5kg is acted on by two forces 30N and 40N. Find the vector acceleration of the object?

$$\mathrm{A}\:\mathrm{body}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{5kg}\:\mathrm{is}\:\mathrm{acted}\:\mathrm{on}\:\mathrm{by}\:\mathrm{two}\:\mathrm{forces}\:\mathrm{30N} \\ $$$$\mathrm{and}\:\mathrm{40N}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{vector}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}? \\ $$

Question Number 110112    Answers: 1   Comments: 0

show that ∫_0 ^∞ xsin(x^3 )dx=(1/3)•(π/(Γ((1/3))))

$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}\mathrm{sin}\left({x}^{\mathrm{3}} \right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\bullet\frac{\pi}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$

Question Number 110109    Answers: 2   Comments: 0

Question Number 110096    Answers: 0   Comments: 8

find the following product integral (1) ∫(x)^dx (2) ∫(e^x )^dx

$${find}\:{the}\:{following}\:{product}\:{integral} \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{1}\right)\:\:\:\:\int\left({x}\right)^{{dx}} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\:\:\:\int\left({e}^{{x}} \right)^{{dx}} \\ $$

Question Number 110095    Answers: 3   Comments: 0

[((be)/(math))] lim_(x→0) x^2 cos ((1/x))

$$\:\:\:\left[\frac{{be}}{{math}}\right] \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right) \\ $$

Question Number 110092    Answers: 1   Comments: 0

Question Number 110087    Answers: 0   Comments: 3

Solve the system following of equations { ((x+y+z=2)),((2x+3y+z=1)),((x^2 +(y+2)^2 +(z−1)^2 =9)) :}

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{following}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\begin{cases}{\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{2}}\\{\mathrm{2x}+\mathrm{3y}+\mathrm{z}=\mathrm{1}}\\{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{9}}\end{cases} \\ $$

Question Number 110086    Answers: 1   Comments: 0

((♠JS♠)/(★■.★)) If lim_(x→a) ((x^2 +2∣ax∣−3a^2 )/( (√x)−(√a) )) = P , with a>0 then the value of lim_(x→a) ((2x^2 −∣ax∣−a^2 )/(x−a)) is ___ (a) ((3P)/(4(√a))) (b) ((3P)/(8(√a))) (c) ((8P)/(3(√a))) (d) ((4P)/(3(√a) )) (e) ((3P)/(8a))

$$\:\:\frac{\spadesuit{JS}\spadesuit}{\bigstar\blacksquare.\bigstar} \\ $$$${If}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +\mathrm{2}\mid{ax}\mid−\mathrm{3}{a}^{\mathrm{2}} }{\:\sqrt{{x}}−\sqrt{{a}}\:}\:=\:{P}\:,\:{with}\:{a}>\mathrm{0} \\ $$$${then}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{2}{x}^{\mathrm{2}} −\mid{ax}\mid−{a}^{\mathrm{2}} }{{x}−{a}}\:{is} \\ $$$$\_\_\_ \\ $$$$\:\left({a}\right)\:\frac{\mathrm{3}{P}}{\mathrm{4}\sqrt{{a}}}\:\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{3}{P}}{\mathrm{8}\sqrt{{a}}}\:\:\:\:\:\left({c}\right)\:\frac{\mathrm{8}{P}}{\mathrm{3}\sqrt{{a}}} \\ $$$$\:\:\left({d}\right)\:\frac{\mathrm{4}{P}}{\mathrm{3}\sqrt{{a}}\:}\:\:\:\:\left({e}\right)\:\frac{\mathrm{3}{P}}{\mathrm{8}{a}} \\ $$

Question Number 110056    Answers: 2   Comments: 0

prove that ∫_(−∞) ^(+∞) ((cos^4 x−6sin^2 xcos^2 x+sin^4 x)/(1+x^2 ))dx=(π/e^4 )

$${prove}\:{that}\: \\ $$$$\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}^{\mathrm{4}} {x}−\mathrm{6sin}^{\mathrm{2}} {x}\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{4}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\pi}{{e}^{\mathrm{4}} } \\ $$

Question Number 110050    Answers: 1   Comments: 0

Question Number 110049    Answers: 4   Comments: 0

Question Number 110045    Answers: 0   Comments: 0

let x ∈ ]0,1[ find E(x^x ) and E(x^x^x )

$$\left.{let}\:{x}\:\in\:\right]\mathrm{0},\mathrm{1}\left[\:\:\right. \\ $$$${find}\:{E}\left({x}^{{x}} \right)\:{and}\:{E}\left({x}^{{x}^{{x}} } \right) \\ $$

Question Number 110075    Answers: 2   Comments: 2

△((be)/(math))▽ (1)lim_(x→0) ((x.cos x−sin x)/(x^2 .sin x)) ? (2) find (dy/dx) from ((x+y)/(x−y)) = x^2 +y^2

$$\:\:\bigtriangleup\frac{{be}}{{math}}\bigtriangledown \\ $$$$\:\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}.\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} .\mathrm{sin}\:{x}}\:? \\ $$$$\left(\mathrm{2}\right)\:{find}\:\frac{{dy}}{{dx}}\:{from}\:\frac{{x}+{y}}{{x}−{y}}\:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$

Question Number 110072    Answers: 2   Comments: 0

△((be)/(math))▽ lim_(x→0) ((sin 2x+sin 6x+sin 10x−sin 18x)/(3sin x−sin 3x))=?

$$\:\:\:\bigtriangleup\frac{{be}}{{math}}\bigtriangledown \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{2}{x}+\mathrm{sin}\:\mathrm{6}{x}+\mathrm{sin}\:\mathrm{10}{x}−\mathrm{sin}\:\mathrm{18}{x}}{\mathrm{3sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}}=? \\ $$

Question Number 110027    Answers: 2   Comments: 0

Question Number 110018    Answers: 1   Comments: 0

find the domain f(x,y)=x^2 −y^2

$${find}\:{the}\:{domain}\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$

Question Number 110016    Answers: 3   Comments: 0

The solution of the equation (x+1)+(x+4)+(x+7)+...+(x+28)=155 is given by x = _____.

$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left({x}+\mathrm{1}\right)+\left({x}+\mathrm{4}\right)+\left({x}+\mathrm{7}\right)+...+\left({x}+\mathrm{28}\right)=\mathrm{155} \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{x}\:=\:\_\_\_\_\_. \\ $$

Question Number 110015    Answers: 2   Comments: 1

The cubes of the natural numbers are grouped as 1^3 , (2^3 , 3^3 ), (4^3 , 5^3 , 6^3 ), ...., then the sum of the numbers in the nth group is

$$\mathrm{The}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{are} \\ $$$$\mathrm{grouped}\:\mathrm{as}\:\mathrm{1}^{\mathrm{3}} ,\:\left(\mathrm{2}^{\mathrm{3}} ,\:\mathrm{3}^{\mathrm{3}} \right),\:\left(\mathrm{4}^{\mathrm{3}} ,\:\mathrm{5}^{\mathrm{3}} ,\:\mathrm{6}^{\mathrm{3}} \right),\:...., \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{the}\:{n}\mathrm{th} \\ $$$$\mathrm{group}\:\mathrm{is} \\ $$

Question Number 109989    Answers: 1   Comments: 1

Question Number 109988    Answers: 0   Comments: 0

Question Number 109985    Answers: 0   Comments: 2

Question Number 109978    Answers: 1   Comments: 0

Question Number 109963    Answers: 1   Comments: 0

  Pg 1076      Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084      Pg 1085   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com