Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1081
Question Number 109888 Answers: 3 Comments: 0
$$\mathrm{2}^{{x}+\mathrm{5}} =\sqrt{\mathrm{8}^{{x}} } \\ $$
Question Number 109884 Answers: 1 Comments: 1
Question Number 109872 Answers: 2 Comments: 1
$$\:\:\frac{\bigstar{be}\bigstar}{\mathcal{M}{ath}} \\ $$$$\int\:\frac{\mathrm{cos}\:{x}\:{dx}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{4sin}\:{x}−\mathrm{5}}\:? \\ $$
Question Number 109863 Answers: 1 Comments: 0
Question Number 109861 Answers: 3 Comments: 0
$$\:\:\frac{{JS}}{\blacksquare\bigstar\bigstar\blacksquare} \\ $$$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{5}−\mathrm{2}{x}+\sqrt{{x}−\mathrm{2}}}{{x}−\mathrm{4}+\sqrt{{x}−\mathrm{2}}}\:? \\ $$
Question Number 109858 Answers: 3 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{for}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{3}.\:\mathrm{12}.\:\mathrm{27}.\:\mathrm{48}.\:\mathrm{75}... \\ $$
Question Number 109855 Answers: 3 Comments: 0
Question Number 109854 Answers: 4 Comments: 1
$$\:\frac{\bigstar{be}\bigstar}{{math}} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{3}+\mathrm{2cos}\:{x}}{\left(\mathrm{2}+\mathrm{3cos}\:{x}\right)^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{y}} −\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{y}} \:=\:\mathrm{14} \\ $$$$\:\:\:\:\:{y}=? \\ $$
Question Number 109853 Answers: 0 Comments: 2
$${is}\:{there}\:{any}\:{diffrence}\:{between}\:{greatest} \\ $$$${coefficient}\:{and}\:{largest}\:{coefficient}? \\ $$
Question Number 109849 Answers: 0 Comments: 0
Question Number 109852 Answers: 0 Comments: 1
$${pls}\:{is}\:{there}\:{anyone}\:{with}\:{any}\:{material}\:{that} \\ $$$${can}\:{help}\:{me}\:{for}\:{binomial}\:{expansion}\:{for} \\ $$$${negative}\:{powers} \\ $$
Question Number 109839 Answers: 4 Comments: 1
$$\:\frac{{JS}}{\approx\heartsuit\approx} \\ $$$$\left(\mathrm{1}\right)\:\int\:\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}\:}\:{dx}\: \\ $$
Question Number 109838 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:{please}\:{prove}::: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}}}{log}\left(\frac{{x}}{\mathrm{1}−{x}}\right){dx}\:=\mathrm{4}{log}\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$
Question Number 109834 Answers: 3 Comments: 1
Question Number 109823 Answers: 1 Comments: 1
Question Number 109820 Answers: 0 Comments: 2
$${tan}^{\mathrm{2}} {x}+{tan}^{\mathrm{2}} \mathrm{2}{x}+{tan}^{\mathrm{2}} \mathrm{4}{x}=\mathrm{33} \\ $$$${find}\:{x}\:\:\:\left({show}\:{full}\:{solution}\:{please}\right) \\ $$
Question Number 109818 Answers: 1 Comments: 7
$${tanx}+{tan}\mathrm{2}{x}=\mathrm{1} \\ $$$${find}\:{the}\:{general}\:{solution} \\ $$
Question Number 109817 Answers: 0 Comments: 1
Question Number 109806 Answers: 0 Comments: 0
$$\mathrm{a}\:\mathrm{handy}\:\mathrm{little}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{remember} \\ $$$$\left.\mathrm{in}\:\mathrm{case}\:\mathrm{you}\:\mathrm{forget}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3}\::\right) \\ $$$$ \\ $$$$\:\:\:^{\frac{\mathrm{2}}{\left(\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{2}}\right)}} \sqrt{\mathrm{2}^{\mathrm{4}} }=\mathrm{3} \\ $$
Question Number 109801 Answers: 0 Comments: 2
$$\mathrm{calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$
Question Number 109794 Answers: 0 Comments: 0
Question Number 109787 Answers: 0 Comments: 0
$${How}\:{to}\:{prove}\:{that}\:\bigtriangledown×\left(\bigtriangledown×{E}\right)=\:\bigtriangledown\bigtriangledown.{E}−\bigtriangledown^{\mathrm{2}} {E},\:{where}\:{E}\:{is}\:{the}\:{eletric}\:{field}? \\ $$
Question Number 109776 Answers: 0 Comments: 0
Question Number 109775 Answers: 3 Comments: 0
$$\mathrm{log}_{{a}} \left(\mathrm{3}{x}−\mathrm{4}{a}\right)+\mathrm{log}_{{a}} \mathrm{3}{x}=\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} {a}}+\mathrm{log}_{{a}} \left(\mathrm{1}−\mathrm{2}{a}\right),\:\mathrm{where}\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}. \\ $$
Question Number 109769 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\Pi} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{1}−\mathrm{cos}\:{x}}=? \\ $$
Question Number 109766 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{\frac{{n}}{\mathrm{2}}} +\left({n}+\mathrm{1}\right)!}{{n}\left(\mathrm{3}^{{n}} +{n}!\right)}=? \\ $$
Pg 1076 Pg 1077 Pg 1078 Pg 1079 Pg 1080 Pg 1081 Pg 1082 Pg 1083 Pg 1084 Pg 1085
Terms of Service
Privacy Policy
Contact: info@tinkutara.com