Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1080
Question Number 109817 Answers: 0 Comments: 1
Question Number 109806 Answers: 0 Comments: 0
$$\mathrm{a}\:\mathrm{handy}\:\mathrm{little}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{remember} \\ $$$$\left.\mathrm{in}\:\mathrm{case}\:\mathrm{you}\:\mathrm{forget}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3}\::\right) \\ $$$$ \\ $$$$\:\:\:^{\frac{\mathrm{2}}{\left(\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{2}}\right)}} \sqrt{\mathrm{2}^{\mathrm{4}} }=\mathrm{3} \\ $$
Question Number 109801 Answers: 0 Comments: 2
$$\mathrm{calculste}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$
Question Number 109794 Answers: 0 Comments: 0
Question Number 109787 Answers: 0 Comments: 0
$${How}\:{to}\:{prove}\:{that}\:\bigtriangledown×\left(\bigtriangledown×{E}\right)=\:\bigtriangledown\bigtriangledown.{E}−\bigtriangledown^{\mathrm{2}} {E},\:{where}\:{E}\:{is}\:{the}\:{eletric}\:{field}? \\ $$
Question Number 109776 Answers: 0 Comments: 0
Question Number 109775 Answers: 3 Comments: 0
$$\mathrm{log}_{{a}} \left(\mathrm{3}{x}−\mathrm{4}{a}\right)+\mathrm{log}_{{a}} \mathrm{3}{x}=\frac{\mathrm{2}}{\mathrm{log}_{\mathrm{2}} {a}}+\mathrm{log}_{{a}} \left(\mathrm{1}−\mathrm{2}{a}\right),\:\mathrm{where}\:\mathrm{0}<{a}<\frac{\mathrm{1}}{\mathrm{2}}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}. \\ $$
Question Number 109769 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\Pi} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}}{\mathrm{1}−\mathrm{cos}\:{x}}=? \\ $$
Question Number 109766 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{\frac{{n}}{\mathrm{2}}} +\left({n}+\mathrm{1}\right)!}{{n}\left(\mathrm{3}^{{n}} +{n}!\right)}=? \\ $$
Question Number 109765 Answers: 1 Comments: 0
$$\left({x}_{{n}} \right)=\frac{\left(−\mathrm{1}\right)^{{n}} {n}+\mathrm{10}}{\:\sqrt{{n}^{\mathrm{2}} +\mathrm{1}}},{n}\in{N}\:\mathrm{show}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{limited}. \\ $$
Question Number 109763 Answers: 3 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{3}}{\mathrm{1}−^{{n}} \sqrt{\mathrm{8}}}−\frac{\mathrm{5}}{\mathrm{1}−^{{n}} \sqrt{\mathrm{32}}}\right)=? \\ $$
Question Number 109760 Answers: 1 Comments: 1
Question Number 109754 Answers: 1 Comments: 0
$$\mathrm{1}.{specify}\:{value}\:{absolute}\:{x}\:{if}\:? \\ $$$$ \\ $$$${b}.\mid\mathrm{2}{x}+\mathrm{3}\mid+{x}−\mathrm{3}=\mathrm{0} \\ $$$$ \\ $$
Question Number 109750 Answers: 2 Comments: 0
Question Number 109749 Answers: 1 Comments: 0
Question Number 109746 Answers: 0 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{{n}\:=\:\mathrm{0}} {\overset{\mathrm{2020}} {\sum}}\:\left[\frac{\mathrm{2}^{{n}} }{\mathrm{1}\:+\:\mathrm{3}^{\left(\mathrm{2}^{{n}} \right)} }\right] \\ $$
Question Number 109738 Answers: 4 Comments: 1
$$\frac{\frac{\mathrm{x}}{\mathrm{y}}−\frac{\mathrm{y}}{\mathrm{x}}}{\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}=? \\ $$
Question Number 109736 Answers: 1 Comments: 0
$$\:\:\:\:{please}\:{solve}\:: \\ $$$$\:\: \\ $$$${lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}\:+\sqrt{\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3}}\:+\sqrt[{\mathrm{4}}]{\mathrm{4}}\:+......\sqrt[{\mathrm{2}{n}}]{\mathrm{2}{n}}}{\mathrm{3}{n}−\mathrm{4}} \\ $$$$=??? \\ $$
Question Number 109724 Answers: 4 Comments: 0
$$\:\:{y}\:=\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}}\:\Rightarrow\:\frac{{dy}}{{dx}}\:?\: \\ $$
Question Number 109721 Answers: 1 Comments: 0
Question Number 109722 Answers: 2 Comments: 1
$$\:\:\:\:\:\multimap\frac{\flat\epsilon}{{math}}\multimap \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}\:=\:?\: \\ $$
Question Number 109715 Answers: 1 Comments: 0
$$\begin{cases}{\mathrm{sin}\:\mathrm{2}{x}+\mathrm{sin}\:\mathrm{2}{y}=\frac{\mathrm{5}}{\mathrm{4}}}\\{\mathrm{cos}\:\left({x}−{y}\right)=\mathrm{2sin}\:\left({x}+{y}\right)}\end{cases}{where}\:\mathrm{0}<{x},{y}<\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \left({x}+{y}\right)\:=\:? \\ $$$$\:\:\:\:\:\:\bigtriangleup\frac{\flat{o}\flat}{{hans}}\bigtriangledown \\ $$
Question Number 109734 Answers: 1 Comments: 0
$${solve}\:{the}\:{following}\:{integral} \\ $$$$\left.\mathrm{1}\right)\int_{\mathrm{3}} ^{\mathrm{7}} \mathrm{4}\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{7}−{x}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \frac{{x}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$$$\left.\mathrm{3}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left[\mathrm{ln}\left(\mathrm{1}−\mathrm{tan}{x}\right)\right]^{\mathrm{2}} {dx}=\frac{\pi}{\mathrm{2}}\mathrm{ln2}−\mathrm{2}{G} \\ $$$$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{cot}{x}\right){dx}=\frac{\pi}{\mathrm{8}}\mathrm{ln2}+{G} \\ $$$$\left.\mathrm{5}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}+\mathrm{cos}{x}\right){dx} \\ $$
Question Number 109733 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−\mathrm{tan}\:{x}}{\mathrm{sin}\:{x}−{x}}\:? \\ $$
Question Number 109709 Answers: 2 Comments: 0
$$\:\:\:\:\:\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tanx}+\mathrm{1}\right)\mathrm{dx} \\ $$
Question Number 109729 Answers: 3 Comments: 0
Pg 1075 Pg 1076 Pg 1077 Pg 1078 Pg 1079 Pg 1080 Pg 1081 Pg 1082 Pg 1083 Pg 1084
Terms of Service
Privacy Policy
Contact: info@tinkutara.com