Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1080

Question Number 109485    Answers: 1   Comments: 0

If f(x)=ax^2 +bx+c, g(x)= −ax^2 +bx+c where ac ≠ 0, then f(x)g(x)=0 has

$$\mathrm{If}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c},\:{g}\left({x}\right)=\:−{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\mathrm{where}\:{ac}\:\neq\:\mathrm{0},\:\mathrm{then}\:{f}\left({x}\right){g}\left({x}\right)=\mathrm{0}\:\mathrm{has} \\ $$

Question Number 109483    Answers: 1   Comments: 2

Question Number 109472    Answers: 4   Comments: 0

Question Number 109469    Answers: 0   Comments: 2

Question Number 109468    Answers: 0   Comments: 0

Question Number 109464    Answers: 0   Comments: 0

(√(1+(√(2+(√(3+(√(4+...))))))))

$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+...}}}} \\ $$

Question Number 109463    Answers: 0   Comments: 3

Question Number 109462    Answers: 1   Comments: 0

Question Number 109461    Answers: 1   Comments: 0

Question Number 109460    Answers: 1   Comments: 0

Question Number 109459    Answers: 0   Comments: 0

Question Number 109457    Answers: 3   Comments: 0

Question Number 109453    Answers: 1   Comments: 0

Question Number 109470    Answers: 0   Comments: 1

Question Number 109435    Answers: 1   Comments: 0

Question Number 109428    Answers: 2   Comments: 2

Question Number 109427    Answers: 1   Comments: 0

Question Number 109414    Answers: 2   Comments: 0

Question Number 109410    Answers: 3   Comments: 1

solve { ((x≡3 (mod 5))),((x≡ 1 (mod 7))),((x ≡ 6 (mod 8))) :}

$${solve}\:\begin{cases}{{x}\equiv\mathrm{3}\:\left({mod}\:\mathrm{5}\right)}\\{{x}\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{7}\right)}\\{{x}\:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{8}\right)}\end{cases} \\ $$

Question Number 109403    Answers: 2   Comments: 0

∫ (dx/( (√(x^2 +a^2 ))))=ln∣x+(√(x^2 +a^2 ))∣+C Proof?

$$\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} }}=\mathrm{ln}\mid\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} }\mid+{C}\:\:\:\:\mathrm{Proof}? \\ $$

Question Number 109401    Answers: 3   Comments: 0

((JS)/(__00_00__00)) solve the equation 4sin 3x + (1/3)cos 3x = 3

$$\:\:\:\:\:\:\:\frac{{JS}}{\_\_\mathrm{00\_00\_\_00}} \\ $$$${solve}\:{the}\:{equation}\:\mathrm{4sin}\:\mathrm{3}{x}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}\:\mathrm{3}{x}\:=\:\mathrm{3} \\ $$

Question Number 109400    Answers: 1   Comments: 4

Question Number 109396    Answers: 1   Comments: 0

If z^(1/2) =x^(1/2) +y^(1/2) Prove that (x+y−z)^2 =4xy

$$\mathrm{If}\:{z}^{\frac{\mathrm{1}}{\mathrm{2}}} ={x}^{\frac{\mathrm{1}}{\mathrm{2}}} +{y}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left({x}+{y}−{z}\right)^{\mathrm{2}} =\mathrm{4}{xy} \\ $$

Question Number 109387    Answers: 0   Comments: 1

SUCCESSFULLY How many different words can you form using these letters so that no two same letters are adjacent?

$$\boldsymbol{\mathrm{SUCCESSFULLY}} \\ $$$${How}\:{many}\:{different}\:{words}\:{can}\:{you} \\ $$$${form}\:{using}\:{these}\:{letters}\:{so}\:{that}\:{no} \\ $$$${two}\:{same}\:{letters}\:{are}\:{adjacent}? \\ $$

Question Number 109449    Answers: 0   Comments: 0

Question Number 109448    Answers: 0   Comments: 0

  Pg 1075      Pg 1076      Pg 1077      Pg 1078      Pg 1079      Pg 1080      Pg 1081      Pg 1082      Pg 1083      Pg 1084   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com