Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1080
Question Number 110075 Answers: 2 Comments: 2
$$\:\:\bigtriangleup\frac{{be}}{{math}}\bigtriangledown \\ $$$$\:\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}.\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} .\mathrm{sin}\:{x}}\:? \\ $$$$\left(\mathrm{2}\right)\:{find}\:\frac{{dy}}{{dx}}\:{from}\:\frac{{x}+{y}}{{x}−{y}}\:=\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$
Question Number 110072 Answers: 2 Comments: 0
$$\:\:\:\bigtriangleup\frac{{be}}{{math}}\bigtriangledown \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{2}{x}+\mathrm{sin}\:\mathrm{6}{x}+\mathrm{sin}\:\mathrm{10}{x}−\mathrm{sin}\:\mathrm{18}{x}}{\mathrm{3sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}}=? \\ $$
Question Number 110027 Answers: 2 Comments: 0
Question Number 110018 Answers: 1 Comments: 0
$${find}\:{the}\:{domain}\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} −{y}^{\mathrm{2}} \\ $$
Question Number 110016 Answers: 3 Comments: 0
$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left({x}+\mathrm{1}\right)+\left({x}+\mathrm{4}\right)+\left({x}+\mathrm{7}\right)+...+\left({x}+\mathrm{28}\right)=\mathrm{155} \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{x}\:=\:\_\_\_\_\_. \\ $$
Question Number 110015 Answers: 2 Comments: 1
$$\mathrm{The}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{are} \\ $$$$\mathrm{grouped}\:\mathrm{as}\:\mathrm{1}^{\mathrm{3}} ,\:\left(\mathrm{2}^{\mathrm{3}} ,\:\mathrm{3}^{\mathrm{3}} \right),\:\left(\mathrm{4}^{\mathrm{3}} ,\:\mathrm{5}^{\mathrm{3}} ,\:\mathrm{6}^{\mathrm{3}} \right),\:...., \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{the}\:{n}\mathrm{th} \\ $$$$\mathrm{group}\:\mathrm{is} \\ $$
Question Number 109989 Answers: 1 Comments: 1
Question Number 109988 Answers: 0 Comments: 0
Question Number 109985 Answers: 0 Comments: 2
Question Number 109978 Answers: 1 Comments: 0
Question Number 109963 Answers: 1 Comments: 0
Question Number 138470 Answers: 1 Comments: 0
$${Given}\:\left(\Gamma\right):\:{x}^{\mathrm{4}} −\mathrm{16}\left({y}^{\mathrm{2}} −\mathrm{2}{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${Show}\:{that}\:\left(\Gamma\right)\:{is}\:{a}\:{reunion}\:{of}\:\:{and}\: \\ $$$${Ellipsis}\:{and}\:{an}\:{hyperbole}\:{then}\:{give} \\ $$$${their}\:{equations}. \\ $$
Question Number 109955 Answers: 3 Comments: 0
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minimal}\:\mathrm{period}\:\mathrm{of}\:\mathrm{cosx}+\mathrm{cos3x} \\ $$
Question Number 109954 Answers: 1 Comments: 0
$$!\mathrm{3}=???? \\ $$
Question Number 109952 Answers: 1 Comments: 0
Question Number 109950 Answers: 2 Comments: 0
Question Number 109949 Answers: 1 Comments: 0
Question Number 109948 Answers: 1 Comments: 0
Question Number 109947 Answers: 0 Comments: 0
Question Number 109946 Answers: 0 Comments: 0
Question Number 109929 Answers: 0 Comments: 1
$$\:\:\:\bigtriangleup\frac{\flat{e}}{\mathcal{M}{ath}}\bigtriangledown \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{81}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{1}}−\mathrm{4}{x}+\mathrm{3}−\sqrt{\mathrm{25}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{1}}\:=? \\ $$
Question Number 110181 Answers: 0 Comments: 2
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{two}\:\mathrm{circles} \\ $$$${C}_{\mathrm{1}} :\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:−\mathrm{6}{x}−\mathrm{4}{y}\:+\:\mathrm{9}\:=\:\mathrm{0}\:\mathrm{and}{C}_{\mathrm{2}} \::\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{6}{y}\:+\:\mathrm{9}\:=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{both}\:\mathrm{circles}. \\ $$
Question Number 109922 Answers: 1 Comments: 0
Question Number 109923 Answers: 1 Comments: 0
$${find}\: \\ $$$${sin}\mathrm{3}\:\:\: \\ $$$${in}\:{surd}\:{form} \\ $$
Question Number 109914 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{tan142}°\mathrm{30}'+\sqrt{\mathrm{6}}+\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{integer}. \\ $$
Question Number 109913 Answers: 1 Comments: 0
$$\sqrt[{{x}−\mathrm{1}}]{\mathrm{16}}−\mathrm{5}\:\:\sqrt[{{x}−\mathrm{1}}]{\mathrm{4}}+\mathrm{2}=\mathrm{0}\:{find}\:{x}? \\ $$
Pg 1075 Pg 1076 Pg 1077 Pg 1078 Pg 1079 Pg 1080 Pg 1081 Pg 1082 Pg 1083 Pg 1084
Terms of Service
Privacy Policy
Contact: info@tinkutara.com