Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1080
Question Number 109754 Answers: 1 Comments: 0
$$\mathrm{1}.{specify}\:{value}\:{absolute}\:{x}\:{if}\:? \\ $$$$ \\ $$$${b}.\mid\mathrm{2}{x}+\mathrm{3}\mid+{x}−\mathrm{3}=\mathrm{0} \\ $$$$ \\ $$
Question Number 109750 Answers: 2 Comments: 0
Question Number 109749 Answers: 1 Comments: 0
Question Number 109746 Answers: 0 Comments: 3
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{{n}\:=\:\mathrm{0}} {\overset{\mathrm{2020}} {\sum}}\:\left[\frac{\mathrm{2}^{{n}} }{\mathrm{1}\:+\:\mathrm{3}^{\left(\mathrm{2}^{{n}} \right)} }\right] \\ $$
Question Number 109738 Answers: 4 Comments: 1
$$\frac{\frac{\mathrm{x}}{\mathrm{y}}−\frac{\mathrm{y}}{\mathrm{x}}}{\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}=? \\ $$
Question Number 109736 Answers: 1 Comments: 0
$$\:\:\:\:{please}\:{solve}\:: \\ $$$$\:\: \\ $$$${lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}\:+\sqrt{\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3}}\:+\sqrt[{\mathrm{4}}]{\mathrm{4}}\:+......\sqrt[{\mathrm{2}{n}}]{\mathrm{2}{n}}}{\mathrm{3}{n}−\mathrm{4}} \\ $$$$=??? \\ $$
Question Number 109724 Answers: 4 Comments: 0
$$\:\:{y}\:=\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}}\:\Rightarrow\:\frac{{dy}}{{dx}}\:?\: \\ $$
Question Number 109721 Answers: 1 Comments: 0
Question Number 109722 Answers: 2 Comments: 1
$$\:\:\:\:\:\multimap\frac{\flat\epsilon}{{math}}\multimap \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}\:=\:?\: \\ $$
Question Number 109715 Answers: 1 Comments: 0
$$\begin{cases}{\mathrm{sin}\:\mathrm{2}{x}+\mathrm{sin}\:\mathrm{2}{y}=\frac{\mathrm{5}}{\mathrm{4}}}\\{\mathrm{cos}\:\left({x}−{y}\right)=\mathrm{2sin}\:\left({x}+{y}\right)}\end{cases}{where}\:\mathrm{0}<{x},{y}<\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \left({x}+{y}\right)\:=\:? \\ $$$$\:\:\:\:\:\:\bigtriangleup\frac{\flat{o}\flat}{{hans}}\bigtriangledown \\ $$
Question Number 109734 Answers: 1 Comments: 0
$${solve}\:{the}\:{following}\:{integral} \\ $$$$\left.\mathrm{1}\right)\int_{\mathrm{3}} ^{\mathrm{7}} \mathrm{4}\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{7}−{x}\right)}{dx} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \frac{{x}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }{dx} \\ $$$$\left.\mathrm{3}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left[\mathrm{ln}\left(\mathrm{1}−\mathrm{tan}{x}\right)\right]^{\mathrm{2}} {dx}=\frac{\pi}{\mathrm{2}}\mathrm{ln2}−\mathrm{2}{G} \\ $$$$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{cot}{x}\right){dx}=\frac{\pi}{\mathrm{8}}\mathrm{ln2}+{G} \\ $$$$\left.\mathrm{5}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}+\mathrm{cos}{x}\right){dx} \\ $$
Question Number 109733 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}−\mathrm{tan}\:{x}}{\mathrm{sin}\:{x}−{x}}\:? \\ $$
Question Number 109709 Answers: 2 Comments: 0
$$\:\:\:\:\:\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{tanx}+\mathrm{1}\right)\mathrm{dx} \\ $$
Question Number 109729 Answers: 3 Comments: 0
Question Number 109728 Answers: 4 Comments: 1
$$\:\:\:\bigtriangleup\frac{\flat\epsilon}{{math}}\bigtriangledown \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{cos}\:\mathrm{3}{x}+\mathrm{1}} \\ $$
Question Number 109699 Answers: 1 Comments: 0
$$\:\:\:\:\:{x}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{12}\left({x}−\mathrm{1}\right) \\ $$
Question Number 109674 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region}\:\mathrm{enclose}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve}\:\:\:\mathrm{y}\:\:=\:\:\mathrm{1}\:\:−\:\:\mathrm{x}^{\mathrm{2}} \:, \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:\:\:\:\mathrm{y}\:\:=\:\:\mathrm{1}\:\:+\:\:\mathrm{3x},\:\:\:\:\mathrm{x}\:\:=\:\:\mathrm{1}. \\ $$
Question Number 109658 Answers: 1 Comments: 0
Question Number 109848 Answers: 0 Comments: 0
Question Number 109655 Answers: 0 Comments: 0
Question Number 109642 Answers: 1 Comments: 0
Question Number 109640 Answers: 0 Comments: 2
Question Number 109639 Answers: 2 Comments: 0
Question Number 109626 Answers: 1 Comments: 1
Question Number 109625 Answers: 0 Comments: 2
$$\frac{\mathrm{sin}\:\mathrm{2}\boldsymbol{\alpha}+\mathrm{2sin}\:\boldsymbol{\alpha}\centerdot\mathrm{cos}\:\mathrm{2}\boldsymbol{\alpha}}{\mathrm{1}+\mathrm{cos}\:\boldsymbol{\alpha}+\mathrm{cos2}\:\boldsymbol{\alpha}+\mathrm{cos3}\:\boldsymbol{\alpha}} \\ $$
Question Number 109619 Answers: 0 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$
Pg 1075 Pg 1076 Pg 1077 Pg 1078 Pg 1079 Pg 1080 Pg 1081 Pg 1082 Pg 1083 Pg 1084
Terms of Service
Privacy Policy
Contact: info@tinkutara.com