Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1080
Question Number 109485 Answers: 1 Comments: 0
$$\mathrm{If}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c},\:{g}\left({x}\right)=\:−{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\mathrm{where}\:{ac}\:\neq\:\mathrm{0},\:\mathrm{then}\:{f}\left({x}\right){g}\left({x}\right)=\mathrm{0}\:\mathrm{has} \\ $$
Question Number 109483 Answers: 1 Comments: 2
Question Number 109472 Answers: 4 Comments: 0
Question Number 109469 Answers: 0 Comments: 2
Question Number 109468 Answers: 0 Comments: 0
Question Number 109464 Answers: 0 Comments: 0
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+...}}}} \\ $$
Question Number 109463 Answers: 0 Comments: 3
Question Number 109462 Answers: 1 Comments: 0
Question Number 109461 Answers: 1 Comments: 0
Question Number 109460 Answers: 1 Comments: 0
Question Number 109459 Answers: 0 Comments: 0
Question Number 109457 Answers: 3 Comments: 0
Question Number 109453 Answers: 1 Comments: 0
Question Number 109470 Answers: 0 Comments: 1
Question Number 109435 Answers: 1 Comments: 0
Question Number 109428 Answers: 2 Comments: 2
Question Number 109427 Answers: 1 Comments: 0
Question Number 109414 Answers: 2 Comments: 0
Question Number 109410 Answers: 3 Comments: 1
$${solve}\:\begin{cases}{{x}\equiv\mathrm{3}\:\left({mod}\:\mathrm{5}\right)}\\{{x}\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{7}\right)}\\{{x}\:\equiv\:\mathrm{6}\:\left({mod}\:\mathrm{8}\right)}\end{cases} \\ $$
Question Number 109403 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} }}=\mathrm{ln}\mid\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} }\mid+{C}\:\:\:\:\mathrm{Proof}? \\ $$
Question Number 109401 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\frac{{JS}}{\_\_\mathrm{00\_00\_\_00}} \\ $$$${solve}\:{the}\:{equation}\:\mathrm{4sin}\:\mathrm{3}{x}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}\:\mathrm{3}{x}\:=\:\mathrm{3} \\ $$
Question Number 109400 Answers: 1 Comments: 4
Question Number 109396 Answers: 1 Comments: 0
$$\mathrm{If}\:{z}^{\frac{\mathrm{1}}{\mathrm{2}}} ={x}^{\frac{\mathrm{1}}{\mathrm{2}}} +{y}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left({x}+{y}−{z}\right)^{\mathrm{2}} =\mathrm{4}{xy} \\ $$
Question Number 109387 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{SUCCESSFULLY}} \\ $$$${How}\:{many}\:{different}\:{words}\:{can}\:{you} \\ $$$${form}\:{using}\:{these}\:{letters}\:{so}\:{that}\:{no} \\ $$$${two}\:{same}\:{letters}\:{are}\:{adjacent}? \\ $$
Question Number 109449 Answers: 0 Comments: 0
Question Number 109448 Answers: 0 Comments: 0
Pg 1075 Pg 1076 Pg 1077 Pg 1078 Pg 1079 Pg 1080 Pg 1081 Pg 1082 Pg 1083 Pg 1084
Terms of Service
Privacy Policy
Contact: info@tinkutara.com