Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1072

Question Number 108270    Answers: 0   Comments: 1

If x, y, z > −1, show that ((1 + x^2 )/(1 + y + z^2 )) + ((1 + y^2 )/(1 + z + x^2 )) + ((1 + z^2 )/(1 + x + y^2 )) ≥ 2

$$\mathrm{If}\:{x},\:{y},\:{z}\:>\:−\mathrm{1},\:\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{1}\:+\:{x}^{\mathrm{2}} }{\mathrm{1}\:+\:{y}\:+\:{z}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}\:+\:{y}^{\mathrm{2}} }{\mathrm{1}\:+\:{z}\:+\:{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}\:+\:{z}^{\mathrm{2}} }{\mathrm{1}\:+\:{x}\:+\:{y}^{\mathrm{2}} }\:\geqslant\:\mathrm{2} \\ $$

Question Number 108265    Answers: 1   Comments: 1

lim_(x→0) ((10^x −1)/x^(10) ) defin or not defin???

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{10}^{{x}} −\mathrm{1}}{{x}^{\mathrm{10}} }\:\:\:\:\:{defin}\:{or}\:{not}\:{defin}??? \\ $$

Question Number 108262    Answers: 2   Comments: 0

∫_0 ^1 (y^y )^((y^y )^((y^y )) ) dy=? please help

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{y}^{\mathrm{y}} \right)^{\left(\mathrm{y}^{\mathrm{y}} \right)^{\left(\mathrm{y}^{\mathrm{y}} \right)} } \mathrm{dy}=? \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$

Question Number 108259    Answers: 0   Comments: 0

Σ_(n=1) ^∞ ((n!)/n^n )

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$

Question Number 108353    Answers: 1   Comments: 1

((△BeMath△)/…) General solution of (d^2 y/dx^2 ) + (dy/dx)−2y = sin x

$$\:\:\:\:\:\:\frac{\bigtriangleup\mathcal{B}{e}\mathcal{M}{ath}\bigtriangleup}{\ldots} \\ $$$$\:{General}\:{solution}\:{of}\: \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\frac{{dy}}{{dx}}−\mathrm{2}{y}\:=\:\mathrm{sin}\:{x}\: \\ $$

Question Number 108240    Answers: 2   Comments: 0

Question Number 108239    Answers: 1   Comments: 0

((7/2))!=?

$$\left(\frac{\mathrm{7}}{\mathrm{2}}\right)!=? \\ $$$$ \\ $$

Question Number 108238    Answers: 4   Comments: 0

y=e^x ln(sin2x) (dy/dx)=??

$${y}={e}^{{x}} {ln}\left({sin}\mathrm{2}{x}\right)\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}=?? \\ $$

Question Number 108237    Answers: 3   Comments: 0

y=(√(x^2 +1))−ln((1/x)+(√(1+(1/x^2 )))) (dy/dx)=?

$${y}=\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{ln}\left(\frac{\mathrm{1}}{{x}}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\right) \\ $$$$\frac{{dy}}{{dx}}=? \\ $$

Question Number 108235    Answers: 1   Comments: 0

Question Number 108228    Answers: 3   Comments: 0

((⋎BeMath⋎)/⋔) lim_(n→∞) (((n+ln a)/n))^(n/b) ?

$$\:\:\frac{\curlyvee\mathcal{B}{e}\mathcal{M}{ath}\curlyvee}{\pitchfork} \\ $$$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{n}+\mathrm{ln}\:{a}}{{n}}\right)^{\frac{{n}}{{b}}} ?\: \\ $$

Question Number 108227    Answers: 2   Comments: 0

y′′+4y′+5y=xe^(−2x) sinx

$$\mathrm{y}''+\mathrm{4y}'+\mathrm{5y}=\mathrm{xe}^{−\mathrm{2x}} \mathrm{sinx} \\ $$

Question Number 108264    Answers: 2   Comments: 0

Find out x, such that: lcm(50,80,x)=2800 ∧ lcm(56,84,x)=840

$${Find}\:{out}\:{x},\:{such}\:{that}: \\ $$$$\mathrm{lcm}\left(\mathrm{50},\mathrm{80},{x}\right)=\mathrm{2800}\:\wedge\:\mathrm{lcm}\left(\mathrm{56},\mathrm{84},{x}\right)=\mathrm{840} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 108222    Answers: 1   Comments: 0

Find the value of tan6°tan42°tan66°tan78° without calculator.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{tan6}°\mathrm{tan42}°\mathrm{tan66}°\mathrm{tan78}°\:\mathrm{without} \\ $$$$\mathrm{calculator}. \\ $$

Question Number 108219    Answers: 0   Comments: 3

Question Number 108217    Answers: 4   Comments: 1

((♥JS♥)/(≤°≡°≤)) lim_(x→π/6) ((2−(√3) cos x−sin x)/((6x−π)^2 )) ?

$$\:\:\:\:\frac{\heartsuit{JS}\heartsuit}{\leqslant°\equiv°\leqslant} \\ $$$$\:\underset{{x}\rightarrow\pi/\mathrm{6}} {\mathrm{lim}}\frac{\mathrm{2}−\sqrt{\mathrm{3}}\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{\left(\mathrm{6}{x}−\pi\right)^{\mathrm{2}} }\:?\: \\ $$

Question Number 108208    Answers: 4   Comments: 0

((BeMath)/⊟) (1)∫ ((x^5 −x)/(x^8 +1)) dx (2) ∫_(1/( (√2))) ^1 ((sin^(−1) (x))/x^3 ) dx

$$\:\:\:\:\:\:\:\frac{\mathcal{B}{e}\mathcal{M}{ath}}{\boxminus} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{8}} +\mathrm{1}}\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\:\underset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)}{{x}^{\mathrm{3}} }\:{dx}\: \\ $$

Question Number 108193    Answers: 3   Comments: 1

((♥BeMath♥)/⧫) Given 2f(x)+3f((1/x))=2x+3 find f(3) ?

$$\:\:\frac{\heartsuit\mathcal{B}{e}\mathcal{M}{ath}\heartsuit}{\blacklozenge} \\ $$$$\:{Given}\:\mathrm{2}{f}\left({x}\right)+\mathrm{3}{f}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{2}{x}+\mathrm{3} \\ $$$${find}\:{f}\left(\mathrm{3}\right)\:?\: \\ $$

Question Number 108181    Answers: 0   Comments: 9

strange behavior in editor: when you have written for example ((12)/(13)) and you want to delete 13 and change to 24, it is not possible. this occurs also in other cases.

$${strange}\:{behavior}\:{in}\:{editor}: \\ $$$${when}\:{you}\:{have}\:{written}\:{for}\:{example} \\ $$$$\frac{\mathrm{12}}{\mathrm{13}}\:{and}\:{you}\:{want}\:{to}\:{delete}\:\mathrm{13}\:{and} \\ $$$${change}\:{to}\:\mathrm{24},\:{it}\:{is}\:{not}\:{possible}. \\ $$$${this}\:{occurs}\:{also}\:{in}\:{other}\:{cases}. \\ $$

Question Number 108180    Answers: 0   Comments: 0

Solve for u and v in the system of equations below { ((u′(e^(−2x) cos2x)+v′(e^(−2x) sin2x)=0)),((u′(e^(−2x) cos2x)′+v′(e^(−2x) sin2x)′=xe^(−2x) sinx)) :} where u and v are functions of x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{u}\:\mathrm{and}\:\mathrm{v}\:\mathrm{in}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{below} \\ $$$$\begin{cases}{\mathrm{u}'\left(\mathrm{e}^{−\mathrm{2x}} \mathrm{cos2x}\right)+\mathrm{v}'\left(\mathrm{e}^{−\mathrm{2x}} \mathrm{sin2x}\right)=\mathrm{0}}\\{\mathrm{u}'\left(\mathrm{e}^{−\mathrm{2x}} \mathrm{cos2x}\right)'+\mathrm{v}'\left(\mathrm{e}^{−\mathrm{2x}} \mathrm{sin2x}\right)'=\mathrm{xe}^{−\mathrm{2x}} \mathrm{sinx}}\end{cases} \\ $$$$\mathrm{where}\:\mathrm{u}\:\mathrm{and}\:\mathrm{v}\:\mathrm{are}\:\mathrm{functions}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 108175    Answers: 1   Comments: 3

Question Number 108171    Answers: 1   Comments: 0

If x,y∈R x^2 −xy+4=0 ax^2 +(b+y^2 )x+4a=0 Find the minimum of a^2 +(1/2)b^2

$$\mathrm{If}\:{x},{y}\in\mathbb{R} \\ $$$${x}^{\mathrm{2}} −{xy}+\mathrm{4}=\mathrm{0} \\ $$$${ax}^{\mathrm{2}} +\left({b}+{y}^{\mathrm{2}} \right){x}+\mathrm{4}{a}=\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:{a}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{b}^{\mathrm{2}} \\ $$

Question Number 108169    Answers: 1   Comments: 0

((✓BeMath✓)/(≻≺)) ∫ ((x^5 −x)/(x^8 −1)) dx ?

$$\:\:\:\:\:\:\frac{\checkmark\mathcal{B}{e}\mathcal{M}{ath}\checkmark}{\succ\prec} \\ $$$$\int\:\frac{{x}^{\mathrm{5}} −{x}}{{x}^{\mathrm{8}} −\mathrm{1}}\:{dx}\:? \\ $$

Question Number 108162    Answers: 1   Comments: 0

Question Number 108158    Answers: 1   Comments: 1

test for edit post. edited

$$\mathrm{test}\:\mathrm{for}\:\mathrm{edit}\:\mathrm{post}. \\ $$$${edited} \\ $$

Question Number 108145    Answers: 3   Comments: 2

((⊚BeMath⊚)/Π) (1) cos^2 ((x/4)) > ((√2)/2) + sin^2 ((x/4)) (2) ∫ (√((1+x)/(1−x))) dx (3) ∫_0 ^(π/2) ((√(tan x))/((cos x+sin x)^2 )) dx

$$\:\:\:\frac{\circledcirc\mathcal{B}{e}\mathcal{M}{ath}\circledcirc}{\Pi} \\ $$$$\:\left(\mathrm{1}\right)\:\:\:\mathrm{cos}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{4}}\right)\:>\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:+\:\mathrm{sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{4}}\right)\: \\ $$$$\:\left(\mathrm{2}\right)\:\int\:\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\:{dx} \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\sqrt{\mathrm{tan}\:{x}}}{\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$

  Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071      Pg 1072      Pg 1073      Pg 1074      Pg 1075      Pg 1076   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com