Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1072

Question Number 111008    Answers: 0   Comments: 3

((√(x+1))/(y+2)) + ((√(y+2))/(x+1)) =1 => x=?

$$\frac{\sqrt{\boldsymbol{{x}}+\mathrm{1}}}{\boldsymbol{{y}}+\mathrm{2}}\:+\:\frac{\sqrt{\boldsymbol{{y}}+\mathrm{2}}}{\boldsymbol{{x}}+\mathrm{1}}\:=\mathrm{1}\:\:\:\:\:\:=>\:\:\boldsymbol{{x}}=? \\ $$

Question Number 111006    Answers: 0   Comments: 2

The vectors p,q and r are mutially perpendicularwith ∣q∣=3 and ∣r∣=(√(5.4 )) .If X= 7p+5q+7r and Y=2p+3q−5r are perpendicular, find∣p∣.

$$\mathrm{The}\:\mathrm{vectors}\:\boldsymbol{\mathrm{p}},\boldsymbol{\mathrm{q}}\:\mathrm{and}\:\boldsymbol{\mathrm{r}}\:\mathrm{are}\:\mathrm{mutially}\:\mathrm{perpendicularwith} \\ $$$$\mid\boldsymbol{\mathrm{q}}\mid=\mathrm{3}\:\mathrm{and}\:\mid\boldsymbol{\mathrm{r}}\mid=\sqrt{\mathrm{5}.\mathrm{4}\:}\:.\mathrm{If}\:\mathrm{X}=\:\mathrm{7}\boldsymbol{\mathrm{p}}+\mathrm{5}\boldsymbol{\mathrm{q}}+\mathrm{7}\boldsymbol{\mathrm{r}}\:\mathrm{and} \\ $$$$\mathrm{Y}=\mathrm{2}\boldsymbol{\mathrm{p}}+\mathrm{3}\boldsymbol{\mathrm{q}}−\mathrm{5}\boldsymbol{\mathrm{r}}\:\mathrm{are}\:\mathrm{perpendicular},\:\mathrm{find}\mid\boldsymbol{\mathrm{p}}\mid. \\ $$

Question Number 111002    Answers: 1   Comments: 1

(√(bemath)) ⇒ sin 14°+cos 14°tan 38°−1=?

$$\sqrt{\mathrm{bemath}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{14}°+\mathrm{cos}\:\mathrm{14}°\mathrm{tan}\:\mathrm{38}°−\mathrm{1}=? \\ $$

Question Number 111001    Answers: 0   Comments: 1

Two numbers a and b are chosen at random from the set of first 30 natural numbers. The probability that a^2 −b^2 is divisible by 3 is

$$\mathrm{Two}\:\mathrm{numbers}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{at} \\ $$$$\mathrm{random}\:\mathrm{from}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{first}\:\mathrm{30}\:\mathrm{natural} \\ $$$$\mathrm{numbers}.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\mathrm{is} \\ $$

Question Number 110993    Answers: 1   Comments: 1

Question Number 111092    Answers: 2   Comments: 4

(√(bemath)) lim_(x→0) ((arctan x)/(arc sin x−x))

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{arctan}\:\mathrm{x}}{\mathrm{arc}\:\mathrm{sin}\:\mathrm{x}−\mathrm{x}} \\ $$

Question Number 110988    Answers: 3   Comments: 0

Evaluate without using L′hopital′s rule lim_(x→4) (((√x)−2)/(x−4))

$$\:\mathrm{Evaluate}\:\mathrm{without}\:\mathrm{using}\:\mathrm{L}'\mathrm{hopital}'\mathrm{s}\:\mathrm{rule} \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\sqrt{{x}}−\mathrm{2}}{{x}−\mathrm{4}} \\ $$

Question Number 110984    Answers: 1   Comments: 3

GCD of two unequal numbers can′t exceed their absolute difference. Prove.

$$\mathrm{GCD}\:{of}\:{two}\:{unequal}\:\:{numbers}\:{can}'{t}\: \\ $$$${exceed}\:{their}\:{absolute} \\ $$$${difference}.\:\:{Prove}. \\ $$

Question Number 110980    Answers: 2   Comments: 2

Question Number 110964    Answers: 1   Comments: 0

solve ∫_0 ^1 ((x^2 lnx)/((1+x^2 )^3 ))dx

$${solve}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \mathrm{ln}{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$

Question Number 111017    Answers: 2   Comments: 0

(√(bemath)) ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\int\:\frac{\mathrm{dx}}{\:\sqrt[{\mathrm{4}\:}]{\mathrm{4}−\sqrt[{\mathrm{3}\:}]{\mathrm{3}−\mathrm{2x}}}}\:? \\ $$

Question Number 110954    Answers: 1   Comments: 0

verify the formulae Σ_(n=−∞) ^(+∞) (1/((na +1)^p )) =−(π/a^n ) lim_(z→−(1/a)) (1/((p−1)!)){cotan(πz)}^((p−1)) inthis case 1) a =1 and p=2 2) a=2 and p=2 3)a=2 and p=3 4) a=3 and p=2

$$\mathrm{verify}\:\mathrm{the}\:\mathrm{formulae} \\ $$$$\sum_{\mathrm{n}=−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\left(\mathrm{na}\:+\mathrm{1}\right)^{\mathrm{p}} }\:=−\frac{\pi}{\mathrm{a}^{\mathrm{n}} }\:\mathrm{lim}_{\mathrm{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{a}}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{p}−\mathrm{1}\right)!}\left\{\mathrm{cotan}\left(\pi\mathrm{z}\right)\right\}^{\left(\mathrm{p}−\mathrm{1}\right)} \\ $$$$\left.\mathrm{inthis}\:\mathrm{case}\:\:\mathrm{1}\right)\:\:\mathrm{a}\:=\mathrm{1}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}=\mathrm{2}\:\:\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{3}\right)\mathrm{a}=\mathrm{2}\:\mathrm{and}\:\mathrm{p}=\mathrm{3} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{a}=\mathrm{3}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$

Question Number 110953    Answers: 0   Comments: 1

Question Number 110951    Answers: 2   Comments: 0

Question Number 110948    Answers: 1   Comments: 6

(√(bemath)) If each point on the line 3x+4y=2 is transformed by matrix M= (((2 0)),((0 1)) ) , the image is a line ___

$$\:\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\mathrm{If}\:\mathrm{each}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{4y}=\mathrm{2} \\ $$$$\mathrm{is}\:\mathrm{transformed}\:\mathrm{by}\:\mathrm{matrix}\:\mathrm{M}=\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{1}}\end{pmatrix}\:,\:\mathrm{the} \\ $$$$\mathrm{image}\:\mathrm{is}\:\mathrm{a}\:\mathrm{line}\:\_\_\_ \\ $$

Question Number 110944    Answers: 5   Comments: 3

■(√(bemath))★ (1)If (√a) −(√b) = 20 , a,b∈R , find maximum value of a−5b ? (2)lim_(x→4) (((√x)−(√(3(√x)−2)))/(x^2 −16)) ? (3)∫ ((tan (ln x) tan (ln ((x/2))))/x) dx (4)((((√(3x−7)))^2 −2)/(x−3)) ≤ ((3−((√x))^2 )/(x−3))

$$\:\:\:\blacksquare\sqrt{\mathrm{bemath}}\bigstar \\ $$$$\left(\mathrm{1}\right)\mathrm{If}\:\sqrt{\mathrm{a}}\:−\sqrt{\mathrm{b}}\:=\:\mathrm{20}\:,\:\mathrm{a},\mathrm{b}\in\mathbb{R}\:,\:\mathrm{find}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{a}−\mathrm{5b}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{3}\sqrt{\mathrm{x}}−\mathrm{2}}}{\mathrm{x}^{\mathrm{2}} −\mathrm{16}}\:? \\ $$$$\left(\mathrm{3}\right)\int\:\frac{\mathrm{tan}\:\left(\mathrm{ln}\:\mathrm{x}\right)\:\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{x}}\:\mathrm{dx} \\ $$$$\left(\mathrm{4}\right)\frac{\left(\sqrt{\mathrm{3x}−\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\left(\sqrt{\mathrm{x}}\right)^{\mathrm{2}} }{\mathrm{x}−\mathrm{3}} \\ $$

Question Number 110939    Answers: 2   Comments: 1

Question Number 110926    Answers: 1   Comments: 0

A 2000kg car start from rest and accelerated to a final velocity of 20m/s in 16 seconds. Assuming a constant air resistance of 500N, find (i) the average power developed by the engine of the car. (ii) the instantaneous power developed by the engine when the car reaches its final speed.

$$\mathrm{A}\:\mathrm{2000kg}\:\mathrm{car}\:\mathrm{start}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and} \\ $$$$\mathrm{accelerated}\:\mathrm{to}\:\mathrm{a}\:\mathrm{final}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{20m}/\mathrm{s}\:\mathrm{in}\:\mathrm{16}\:\mathrm{seconds}.\:\mathrm{Assuming}\:\mathrm{a} \\ $$$$\mathrm{constant}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{500N},\:\mathrm{find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{the}\:\mathrm{average}\:\mathrm{power}\:\mathrm{developed}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{engine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{the}\:\mathrm{instantaneous}\:\mathrm{power} \\ $$$$\mathrm{developed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{engine}\:\mathrm{when}\:\mathrm{the}\:\mathrm{car} \\ $$$$\mathrm{reaches}\:\mathrm{its}\:\mathrm{final}\:\mathrm{speed}. \\ $$

Question Number 110970    Answers: 2   Comments: 1

Question Number 110911    Answers: 0   Comments: 0

Four teachers A, B, C, and D each proposed two exercises, one on algebra and another on analyses, to form an exam. The students have to choose two exercises at random. 1. Calculate the probability P(a) of a student to choose two exercises on algebra. a\ P(a)=(3/(16)) , b\P(a)=(3/(14)) , c\P(a)=(1/4) , d\None 2. Calculate the probability P(b) of choosing two exercises proposed by the same teacher. a\P(b)=(1/(10)) , b\P(b)=(1/(60)) , c\P(b)=(1/7) , d\None 3. Calculate the probability P(c) of choosing two exercises proposed by teacher A. a\P(c)=(1/3) , b\P(c)=(1/4) , c\P(c)=(1/(28)) , d\None

$$\mathrm{Four}\:\mathrm{teachers}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C},\:\mathrm{and}\:\mathrm{D}\:\mathrm{each}\:\mathrm{proposed}\:\mathrm{two}\:\mathrm{exercises}, \\ $$$$\mathrm{one}\:\mathrm{on}\:\mathrm{algebra}\:\mathrm{and}\:\mathrm{another}\:\mathrm{on}\:\mathrm{analyses},\:\mathrm{to}\:\mathrm{form}\:\mathrm{an}\:\mathrm{exam}. \\ $$$$\mathrm{The}\:\mathrm{students}\:\mathrm{have}\:\mathrm{to}\:\mathrm{choose}\:\mathrm{two}\:\mathrm{exercises}\:\mathrm{at}\:\mathrm{random}. \\ $$$$\mathrm{1}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{a}\right)\:\mathrm{of}\:\mathrm{a}\:\mathrm{student}\:\mathrm{to}\:\mathrm{choose} \\ $$$$\mathrm{two}\:\mathrm{exercises}\:\mathrm{on}\:\mathrm{algebra}. \\ $$$$\mathrm{a}\backslash\:\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{3}}{\mathrm{16}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{3}}{\mathrm{14}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$$$\mathrm{2}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{b}\right)\:\mathrm{of}\:\mathrm{choosing}\:\mathrm{two}\:\mathrm{exercises} \\ $$$$\mathrm{proposed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{same}\:\mathrm{teacher}. \\ $$$$\mathrm{a}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{10}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{60}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{7}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$$$\mathrm{3}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{c}\right)\:\mathrm{of}\:\mathrm{choosing}\:\mathrm{two}\:\mathrm{exercises} \\ $$$$\mathrm{proposed}\:\mathrm{by}\:\mathrm{teacher}\:\mathrm{A}. \\ $$$$\mathrm{a}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{28}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$

Question Number 110910    Answers: 2   Comments: 0

mr M.N july 1970 the question you posted earlier here goes the solution ∫_0 ^(1/2) ((ln^2 (1−x))/x)dx

$${mr}\:{M}.{N}\:{july}\:\mathrm{1970}\:{the}\:{question}\:{you}\:{posted}\:{earlier}\:{here}\:{goes}\:{the}\:{solution} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$ \\ $$

Question Number 110897    Answers: 3   Comments: 0

(1)4x−4 ≤ ∣x^2 −3x+2 ∣ find the solution set (2) ((1+cos ((α/2))−sin ((α/2)))/(1−cos ((α/2))−sin ((α/2))))=?

$$\left(\mathrm{1}\right)\mathrm{4x}−\mathrm{4}\:\leqslant\:\mid\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{2}\:\mid\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\: \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}+\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}=? \\ $$

Question Number 110895    Answers: 3   Comments: 0

How many ways can 2018 be expressed as the sum of two squares?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{2018}\:\mathrm{be} \\ $$$$\mathrm{expressed}\:\mathrm{as}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Question Number 110879    Answers: 0   Comments: 1

Question Number 110875    Answers: 4   Comments: 0

(1)∫_e ^e^e ((ln (x).ln (ln (x)))/x) dx ? (2)lim_(x→π/4) ((cosec^2 x−2)/(cot x−1)) (3) Given { ((xy=((16y−9x)/(45)))),(((4/( (√x)))−(3/( (√y))) = 5)) :} ⇒find 9(√(xy))

$$\left(\mathrm{1}\right)\underset{\mathrm{e}} {\overset{\mathrm{e}^{\mathrm{e}} } {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{x}\right).\mathrm{ln}\:\left(\mathrm{ln}\:\left(\mathrm{x}\right)\right)}{\mathrm{x}}\:\mathrm{dx}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\:\frac{\mathrm{cosec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}}{\mathrm{cot}\:\mathrm{x}−\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Given}\:\begin{cases}{\mathrm{xy}=\frac{\mathrm{16y}−\mathrm{9x}}{\mathrm{45}}}\\{\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}}}−\frac{\mathrm{3}}{\:\sqrt{\mathrm{y}}}\:=\:\mathrm{5}}\end{cases} \\ $$$$\Rightarrow\mathrm{find}\:\mathrm{9}\sqrt{\mathrm{xy}} \\ $$

Question Number 110869    Answers: 1   Comments: 0

  Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071      Pg 1072      Pg 1073      Pg 1074      Pg 1075      Pg 1076   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com