Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1072

Question Number 111734    Answers: 1   Comments: 0

A chord which is a perpendicular bisector of radius of length 18cm in a circle, has length.

$$\mathrm{A}\:\mathrm{chord}\:\mathrm{which}\:\mathrm{is}\:\mathrm{a}\:\mathrm{perpendicular} \\ $$$$\mathrm{bisector}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{length}\:\mathrm{18cm}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{circle},\:\mathrm{has}\:\mathrm{length}. \\ $$$$ \\ $$

Question Number 111732    Answers: 1   Comments: 0

A blind man is to place 5 letters into 5 pigeon holes, how many ways can 4 of the letters be wrongly placed? (note that only one letter must be in a pigeon hole)

$$\mathrm{A}\:\mathrm{blind}\:\mathrm{man}\:\mathrm{is}\:\mathrm{to}\:\mathrm{place}\:\mathrm{5}\:\mathrm{letters}\:\mathrm{into}\:\mathrm{5} \\ $$$$\mathrm{pigeon}\:\mathrm{holes},\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{4}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{letters}\:\mathrm{be}\:\mathrm{wrongly}\:\mathrm{placed}? \\ $$$$\left(\mathrm{note}\:\mathrm{that}\:\mathrm{only}\:\mathrm{one}\:\mathrm{letter}\:\mathrm{must}\:\mathrm{be}\:\mathrm{in}\:\mathrm{a}\right. \\ $$$$\left.\mathrm{pigeon}\:\mathrm{hole}\right) \\ $$

Question Number 111730    Answers: 0   Comments: 9

How many triples of positive integers (x,y,z) satisfy 79x+80y+81z =2016

$$\mathrm{How}\:\mathrm{many}\:\mathrm{triples}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)\:\mathrm{satisfy}\: \\ $$$$\mathrm{79x}+\mathrm{80y}+\mathrm{81z}\:=\mathrm{2016} \\ $$

Question Number 112813    Answers: 0   Comments: 2

A binary operation has the property a∗(b∗c) = (a∗b)•c and that a∗a=1 for all non−zero real numbers a,b and c. (′•′ here represent multiplication). The solution of the equation 2016∗(6∗x)=100 can be written as (p/q) where p and q are relatively prime positive integers. What is q−p?

$$\mathrm{A}\:\mathrm{binary}\:\mathrm{operation}\:\mathrm{has}\:\mathrm{the}\:\mathrm{property} \\ $$$$\mathrm{a}\ast\left(\mathrm{b}\ast\mathrm{c}\right)\:=\:\left(\mathrm{a}\ast\mathrm{b}\right)\bullet\mathrm{c}\:\mathrm{and}\:\mathrm{that}\:\mathrm{a}\ast\mathrm{a}=\mathrm{1}\:\mathrm{for} \\ $$$$\mathrm{all}\:\mathrm{non}−\mathrm{zero}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}. \\ $$$$\left('\bullet'\:\mathrm{here}\:\mathrm{represent}\:\mathrm{multiplication}\right). \\ $$$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{2016}\ast\left(\mathrm{6}\ast\mathrm{x}\right)=\mathrm{100}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\frac{\mathrm{p}}{\mathrm{q}} \\ $$$$\mathrm{where}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{relatively}\:\mathrm{prime} \\ $$$$\mathrm{positive}\:\mathrm{integers}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{q}−\mathrm{p}? \\ $$

Question Number 112812    Answers: 0   Comments: 2

There are 2016 straight lines drawn on a board such that (1/2) of the lines are parallel to one another. (3/8) of them meet at a point and each of the remaining ones intersect with all other lines on the board. Determine the total number of intersections possible.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{2016}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{drawn}\:\mathrm{on} \\ $$$$\mathrm{a}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{are} \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{one}\:\mathrm{another}.\:\frac{\mathrm{3}}{\mathrm{8}}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{meet}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{and}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{remaining}\:\mathrm{ones}\:\mathrm{intersect}\:\mathrm{with}\:\mathrm{all} \\ $$$$\mathrm{other}\:\mathrm{lines}\:\mathrm{on}\:\mathrm{the}\:\mathrm{board}.\:\mathrm{Determine} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{intersections} \\ $$$$\mathrm{possible}. \\ $$

Question Number 111725    Answers: 1   Comments: 0

Find the positive integer n such that tan^(−1) ((1/3))+tan^(−1) ((1/4))+tan^(−1) ((1/5))+tan^(−1) ((1/n))=(π/4)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{5}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{n}}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 111724    Answers: 0   Comments: 6

How many real numbers x satisfy the equation 3^(2x+2) −3^(x+3) −3^x +3=0 ?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{x}\:\mathrm{satisfy}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{3}^{\mathrm{2x}+\mathrm{2}} −\mathrm{3}^{\mathrm{x}+\mathrm{3}} −\mathrm{3}^{\mathrm{x}} +\mathrm{3}=\mathrm{0}\:? \\ $$

Question Number 111719    Answers: 2   Comments: 0

....advanced mathematics.... please demonstrate that:: Φ =∫_0 ^( 1) xlog(1−x).log(1+x)= (1/4) − log(2) ... m.n.july 1970 #

$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:....{advanced}\:\:{mathematics}....\: \\ $$$$ \\ $$$${please}\:\:{demonstrate}\:{that}:: \\ $$$$\: \\ $$$$\Phi\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xlog}\left(\mathrm{1}−{x}\right).{log}\left(\mathrm{1}+{x}\right)=\:\frac{\mathrm{1}}{\mathrm{4}}\:−\:{log}\left(\mathrm{2}\right)\:\:... \\ $$$$ \\ $$$$\:\:\:\:\:\:{m}.{n}.{july}\:\mathrm{1970}\:# \\ $$$$ \\ $$

Question Number 111704    Answers: 1   Comments: 0

Assuming FLT, prove Fermat−Euler theorem: (a,n) =1,n≥2⇒a^(∅(n)) ≡1(mod n)

$$\mathrm{Assuming}\:\mathrm{FLT},\:\mathrm{prove}\:\mathrm{Fermat}−\mathrm{Euler} \\ $$$$\mathrm{theorem}:\:\left(\mathrm{a},\mathrm{n}\right)\:=\mathrm{1},\mathrm{n}\geqslant\mathrm{2}\Rightarrow\mathrm{a}^{\emptyset\left(\mathrm{n}\right)} \equiv\mathrm{1}\left(\mathrm{mod}\right. \\ $$$$\left.\mathrm{n}\right) \\ $$

Question Number 111690    Answers: 1   Comments: 0

Question Number 112534    Answers: 0   Comments: 3

What is the maximum number of points to be distributed within a 3×6 to ensure that there are no two points whose distance apart is less than (√2)?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{points}\:\mathrm{to}\:\mathrm{be}\:\mathrm{distributed}\:\mathrm{within} \\ $$$$\mathrm{a}\:\mathrm{3}×\mathrm{6}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{points}\:\mathrm{whose}\:\mathrm{distance}\:\mathrm{apart}\:\mathrm{is}\:\mathrm{less} \\ $$$$\mathrm{than}\:\sqrt{\mathrm{2}}? \\ $$

Question Number 111721    Answers: 1   Comments: 0

If b>1,x>0 and (2x)^(log_b 2) −(3x)^(log_b 3) =0, then x is

$$\mathrm{If}\:\mathrm{b}>\mathrm{1},\mathrm{x}>\mathrm{0}\:\mathrm{and}\:\left(\mathrm{2x}\right)^{\mathrm{log}_{\mathrm{b}} \mathrm{2}} −\left(\mathrm{3x}\right)^{\mathrm{log}_{\mathrm{b}} \mathrm{3}} =\mathrm{0}, \\ $$$$\mathrm{then}\:\mathrm{x}\:\mathrm{is} \\ $$

Question Number 111671    Answers: 0   Comments: 0

Question Number 111668    Answers: 0   Comments: 6

Question Number 111650    Answers: 1   Comments: 2

Question Number 111644    Answers: 3   Comments: 4

y′+y+7=0

$${y}'+{y}+\mathrm{7}=\mathrm{0} \\ $$

Question Number 111643    Answers: 1   Comments: 0

((7/3))!(with out calculator)

$$\left(\frac{\mathrm{7}}{\mathrm{3}}\right)!\left({with}\:{out}\:{calculator}\right) \\ $$

Question Number 111641    Answers: 0   Comments: 0

Question Number 111640    Answers: 0   Comments: 0

Question Number 111635    Answers: 0   Comments: 0

$$ \\ $$

Question Number 111624    Answers: 3   Comments: 0

if x is a cube root of a unity prove that (1−x)^6 =−27

$${if}\:{x}\:{is}\:{a}\:{cube}\:{root}\:{of}\:{a}\:{unity} \\ $$$${prove}\:{that}\: \\ $$$$\left(\mathrm{1}−{x}\right)^{\mathrm{6}} =−\mathrm{27} \\ $$

Question Number 111623    Answers: 1   Comments: 2

(x−2)(x+3)(x−1)^2 ≥ 0

$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{3}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$

Question Number 111622    Answers: 1   Comments: 0

show that the close form of Σ_(k=0) ^∞ (Σ_(i=0) ^∞ [(((−1)^(k+i) )/((k+1)(k+2i+2)))])=(1/8)ln2

$${show}\:{that}\:{the}\:{close}\:{form}\:{of}\: \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\left(−\mathrm{1}\right)^{{k}+{i}} }{\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}{i}+\mathrm{2}\right)}\right]\right)=\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln2} \\ $$

Question Number 111620    Answers: 1   Comments: 0

show that ∫_0 ^1 lnΓ(x)dx=ln(√(2π))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\Gamma\left({x}\right){dx}=\mathrm{ln}\sqrt{\mathrm{2}\pi} \\ $$

Question Number 111619    Answers: 1   Comments: 1

solve for x in x^2 +4x=(√(40x^2 +8x−16))

$${solve}\:{for}\:{x}\:{in}\: \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}=\sqrt{\mathrm{40}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{16}} \\ $$

Question Number 111618    Answers: 0   Comments: 0

solve the fredholm integral equation of the second kind y(x)=x+λ∫_0 ^1 (xt^2 +x^2 t)y(t)dt

$${solve}\:{the}\:{fredholm}\:{integral}\:{equation}\:{of} \\ $$$${the}\:{second}\:{kind}\: \\ $$$${y}\left({x}\right)={x}+\lambda\int_{\mathrm{0}} ^{\mathrm{1}} \left({xt}^{\mathrm{2}} +{x}^{\mathrm{2}} {t}\right){y}\left({t}\right){dt} \\ $$

  Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071      Pg 1072      Pg 1073      Pg 1074      Pg 1075      Pg 1076   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com