Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1072

Question Number 111383    Answers: 1   Comments: 0

lim_(s→∞) (√(20s^2 +2s))−(√(5s^2 +1))−(√(5s^2 −2s))

$$\:\:\underset{{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{20}{s}^{\mathrm{2}} +\mathrm{2}{s}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} +\mathrm{1}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{2}{s}} \\ $$

Question Number 111382    Answers: 2   Comments: 1

Question Number 111377    Answers: 0   Comments: 0

A baggage tractor pulling luggage carts from an airplane. The tractor has mass 6500 kg while cart A has mass 2500 kg and cart B has mass 150 kg. The driving force acting for a brief period of time accelerates the system from rest and acts for 3s. (a) If this driving force is given by F=820N. find the speed after 3s (b) Wat is the horizontal force acting on the conneting cable between the tractor and cart A at this instant

$$ \\ $$$$\mathrm{A}\:\mathrm{baggage}\:\mathrm{tractor}\:\mathrm{pulling}\:\mathrm{luggage}\:\mathrm{carts}\:\mathrm{fro}{m}\:{an} \\ $$$$\:\mathrm{airplane}.\:\mathrm{The}\:\mathrm{tractor}\:\mathrm{has}\:\mathrm{mass}\:\mathrm{6500}\:\mathrm{kg}\:\mathrm{while} \\ $$$${c}\mathrm{art}\:\mathrm{A}\:\mathrm{has}\:\mathrm{mass}\:\mathrm{2500}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{cart}\:\mathrm{B}\:\mathrm{has}\:\mathrm{mass} \\ $$$$\mathrm{150}\:\mathrm{kg}.\:\mathrm{The}\:\mathrm{driving}\:\mathrm{force}\:\mathrm{acting}\:\mathrm{for}\:\mathrm{a}\:\mathrm{brief} \\ $$$$\mathrm{perio}{d}\:\mathrm{of}\:\mathrm{time}\:\mathrm{accelerates}\:\mathrm{the}\:\mathrm{system}\:\mathrm{from}\:\mathrm{rest} \\ $$$$\mathrm{a}{n}\mathrm{d}\:\mathrm{acts}\:\mathrm{for}\:\mathrm{3}{s}.\:\left(\mathrm{a}\right)\:\mathrm{If}\:\mathrm{this}\:\mathrm{driving}\:\mathrm{force}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{b}{y}\:\mathrm{F}=\mathrm{820}{N}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{after}\:\mathrm{3}{s}\:\left({b}\right) \\ $$$$\mathrm{Wat}\:\mathrm{is}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{force}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{conneting}\:\mathrm{cable}\:\mathrm{between}\:\mathrm{the}\:\mathrm{tractor}\:\mathrm{and}\:\mathrm{cart}\:\:{A}\: \\ $$$$\mathrm{at}\:\mathrm{this}\:\mathrm{instant} \\ $$

Question Number 111374    Answers: 1   Comments: 1

Question Number 111365    Answers: 0   Comments: 0

Question Number 111471    Answers: 0   Comments: 0

using power expension, compute the follplowing limit as a function of α>0 lim_(x→0^+ ) ((x^(7/2) ln(x)−sinh(x^2 )+cosh(ln(1−(√2)x))−1)/x^α )

$${using}\:{power}\:{expension},\:{compute}\:{the}\:{follplowing} \\ $$$${limit}\:{as}\:{a}\:{function}\:{of}\:\alpha>\mathrm{0} \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{{x}^{\frac{\mathrm{7}}{\mathrm{2}}} {ln}\left({x}\right)−{sinh}\left({x}^{\mathrm{2}} \right)+{cosh}\left({ln}\left(\mathrm{1}−\sqrt{\mathrm{2}}{x}\right)\right)−\mathrm{1}}{{x}^{\alpha} } \\ $$

Question Number 111357    Answers: 0   Comments: 0

∫_0 ^1 ((tan^(−1) x)/(1+x^3 ))dx

$$\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tan}^{−\mathrm{1}} {x}}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$

Question Number 111351    Answers: 2   Comments: 0

(√(bemath)) lim_(x→−∞) ((x−(√(4x^2 +1)))/( (√(x^2 +2x+1)))) ?

$$\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{x}−\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{1}}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}}}\:? \\ $$

Question Number 111347    Answers: 0   Comments: 0

convert the plane with cartesian equation: x−3y + 2z = 7 into its vector parametric form.

$$\mathrm{convert}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{with}\:\mathrm{cartesian}\:\mathrm{equation}:\:{x}−\mathrm{3}{y}\:+\:\mathrm{2}{z}\:=\:\mathrm{7} \\ $$$$\:\mathrm{into}\:\mathrm{its}\:\mathrm{vector}\:\mathrm{parametric}\:\mathrm{form}. \\ $$$$ \\ $$

Question Number 111344    Answers: 0   Comments: 3

(√3)!=?

$$\sqrt{\mathrm{3}}!=? \\ $$

Question Number 111343    Answers: 0   Comments: 1

i!=?

$${i}!=? \\ $$

Question Number 111342    Answers: 1   Comments: 0

When the terms of a Geometric Progression(GP) with common ratio r=2 is added to the corresponding terms of an Arithmetic Provression (AP), a new sequence is formed. If the first terms of the GP and AP are the same and the first three terms of the new sequence are 3, 7 and 11 respectively, find the n^(th) term of the seauence.

$$\mathrm{When}\:\mathrm{the}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{Geometric}\:\mathrm{Progression}\left(\mathrm{GP}\right) \\ $$$$\mathrm{with}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{r}=\mathrm{2}\:\mathrm{is}\:\mathrm{added}\:\mathrm{to}\:\mathrm{the}\:\mathrm{corresponding}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{an}\:\mathrm{Arithmetic}\:\mathrm{Provression}\:\left(\mathrm{AP}\right), \\ $$$$\mathrm{a}\:\mathrm{new}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{formed}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{first}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{GP}\:\mathrm{and}\:\mathrm{AP}\:\mathrm{are}\:\mathrm{the}\:\mathrm{same}\:\mathrm{and}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{three}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{new}\:\mathrm{sequence}\:\mathrm{are} \\ $$$$\mathrm{3},\:\mathrm{7}\:\mathrm{and}\:\mathrm{11}\:\mathrm{respectively},\:\mathrm{find}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{term} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{seauence}. \\ $$

Question Number 111340    Answers: 1   Comments: 2

Question Number 111330    Answers: 0   Comments: 0

(√(bemath)) (1/x) (dy/dx) + (1/y) = (1/(y^2 ln (x)))

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{x}}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} \:\mathrm{ln}\:\left(\mathrm{x}\right)} \\ $$

Question Number 111326    Answers: 2   Comments: 0

(√(bemath)) lim_(x→0) ((1/(x sin^(−1) (x))) − (1/x^2 ) ) =?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{x}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)}\:−\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:\right)\:=? \\ $$

Question Number 111313    Answers: 4   Comments: 0

(√(bemath)) (1)lim_(n→∞) (((n+1)^5 +(n+2)^5 +(n+3)^5 +...+(2n)^5 )/n^6 )? (2) ∫ ((√(x^2 −a^2 ))/x^4 ) dx

$$\:\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\left(\mathrm{1}\right)\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{5}} +\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{5}} +\left(\mathrm{n}+\mathrm{3}\right)^{\mathrm{5}} +...+\left(\mathrm{2n}\right)^{\mathrm{5}} }{\mathrm{n}^{\mathrm{6}} }? \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}{\mathrm{x}^{\mathrm{4}} }\:\mathrm{dx}\:\: \\ $$

Question Number 111277    Answers: 1   Comments: 0

In a quadrilateral ABCD, ∠B is a right angle, diagonal AC is perpendicular to CD,BC=21cm,CD=14cm and AD=31cm. Find the area of ABCD.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{quadrilateral}\:\mathrm{ABCD},\:\angle\mathrm{B}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{right}\:\mathrm{angle},\:\mathrm{diagonal}\:\mathrm{AC}\:\mathrm{is} \\ $$$$\mathrm{perpendicular}\:\mathrm{to} \\ $$$$\mathrm{CD},\mathrm{BC}=\mathrm{21cm},\mathrm{CD}=\mathrm{14cm}\:\mathrm{and} \\ $$$$\mathrm{AD}=\mathrm{31cm}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{ABCD}. \\ $$

Question Number 111267    Answers: 1   Comments: 0

Question Number 111264    Answers: 1   Comments: 1

Question Number 111259    Answers: 1   Comments: 1

lim_(x→0^+ ) ((sin 2x)/( (√(3x)))) ?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2x}}{\:\sqrt{\mathrm{3x}}}\:? \\ $$

Question Number 111218    Answers: 1   Comments: 0

Question Number 111216    Answers: 3   Comments: 2

Question Number 111213    Answers: 2   Comments: 0

Question Number 111209    Answers: 0   Comments: 6

find the ODEs of y=Ae^x +Bxe^x +Ce^(−2x) +De^(3x)

$${find}\:{the}\:{ODEs}\:{of}\: \\ $$$${y}={Ae}^{{x}} +{Bxe}^{{x}} +{Ce}^{−\mathrm{2}{x}} +{De}^{\mathrm{3}{x}} \\ $$

Question Number 111208    Answers: 1   Comments: 3

let p a prime number s.t p≥7 and a=333......3_(p−1 times) Show that 11∣a.

$$\:\mathrm{let}\:{p}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:\mathrm{s}.\mathrm{t}\:{p}\geqslant\mathrm{7}\:\mathrm{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}=\underset{{p}−\mathrm{1}\:{times}} {\mathrm{333}......\mathrm{3}} \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:\mathrm{11}\mid{a}. \\ $$

Question Number 111235    Answers: 1   Comments: 1

  Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071      Pg 1072      Pg 1073      Pg 1074      Pg 1075      Pg 1076   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com