Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1072

Question Number 110939    Answers: 2   Comments: 1

Question Number 110926    Answers: 1   Comments: 0

A 2000kg car start from rest and accelerated to a final velocity of 20m/s in 16 seconds. Assuming a constant air resistance of 500N, find (i) the average power developed by the engine of the car. (ii) the instantaneous power developed by the engine when the car reaches its final speed.

$$\mathrm{A}\:\mathrm{2000kg}\:\mathrm{car}\:\mathrm{start}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and} \\ $$$$\mathrm{accelerated}\:\mathrm{to}\:\mathrm{a}\:\mathrm{final}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{20m}/\mathrm{s}\:\mathrm{in}\:\mathrm{16}\:\mathrm{seconds}.\:\mathrm{Assuming}\:\mathrm{a} \\ $$$$\mathrm{constant}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{500N},\:\mathrm{find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{the}\:\mathrm{average}\:\mathrm{power}\:\mathrm{developed}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{engine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{the}\:\mathrm{instantaneous}\:\mathrm{power} \\ $$$$\mathrm{developed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{engine}\:\mathrm{when}\:\mathrm{the}\:\mathrm{car} \\ $$$$\mathrm{reaches}\:\mathrm{its}\:\mathrm{final}\:\mathrm{speed}. \\ $$

Question Number 110970    Answers: 2   Comments: 1

Question Number 110911    Answers: 0   Comments: 0

Four teachers A, B, C, and D each proposed two exercises, one on algebra and another on analyses, to form an exam. The students have to choose two exercises at random. 1. Calculate the probability P(a) of a student to choose two exercises on algebra. a\ P(a)=(3/(16)) , b\P(a)=(3/(14)) , c\P(a)=(1/4) , d\None 2. Calculate the probability P(b) of choosing two exercises proposed by the same teacher. a\P(b)=(1/(10)) , b\P(b)=(1/(60)) , c\P(b)=(1/7) , d\None 3. Calculate the probability P(c) of choosing two exercises proposed by teacher A. a\P(c)=(1/3) , b\P(c)=(1/4) , c\P(c)=(1/(28)) , d\None

$$\mathrm{Four}\:\mathrm{teachers}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C},\:\mathrm{and}\:\mathrm{D}\:\mathrm{each}\:\mathrm{proposed}\:\mathrm{two}\:\mathrm{exercises}, \\ $$$$\mathrm{one}\:\mathrm{on}\:\mathrm{algebra}\:\mathrm{and}\:\mathrm{another}\:\mathrm{on}\:\mathrm{analyses},\:\mathrm{to}\:\mathrm{form}\:\mathrm{an}\:\mathrm{exam}. \\ $$$$\mathrm{The}\:\mathrm{students}\:\mathrm{have}\:\mathrm{to}\:\mathrm{choose}\:\mathrm{two}\:\mathrm{exercises}\:\mathrm{at}\:\mathrm{random}. \\ $$$$\mathrm{1}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{a}\right)\:\mathrm{of}\:\mathrm{a}\:\mathrm{student}\:\mathrm{to}\:\mathrm{choose} \\ $$$$\mathrm{two}\:\mathrm{exercises}\:\mathrm{on}\:\mathrm{algebra}. \\ $$$$\mathrm{a}\backslash\:\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{3}}{\mathrm{16}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{3}}{\mathrm{14}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$$$\mathrm{2}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{b}\right)\:\mathrm{of}\:\mathrm{choosing}\:\mathrm{two}\:\mathrm{exercises} \\ $$$$\mathrm{proposed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{same}\:\mathrm{teacher}. \\ $$$$\mathrm{a}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{10}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{60}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{7}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$$$\mathrm{3}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{c}\right)\:\mathrm{of}\:\mathrm{choosing}\:\mathrm{two}\:\mathrm{exercises} \\ $$$$\mathrm{proposed}\:\mathrm{by}\:\mathrm{teacher}\:\mathrm{A}. \\ $$$$\mathrm{a}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{28}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$

Question Number 110910    Answers: 2   Comments: 0

mr M.N july 1970 the question you posted earlier here goes the solution ∫_0 ^(1/2) ((ln^2 (1−x))/x)dx

$${mr}\:{M}.{N}\:{july}\:\mathrm{1970}\:{the}\:{question}\:{you}\:{posted}\:{earlier}\:{here}\:{goes}\:{the}\:{solution} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$ \\ $$

Question Number 110897    Answers: 3   Comments: 0

(1)4x−4 ≤ ∣x^2 −3x+2 ∣ find the solution set (2) ((1+cos ((α/2))−sin ((α/2)))/(1−cos ((α/2))−sin ((α/2))))=?

$$\left(\mathrm{1}\right)\mathrm{4x}−\mathrm{4}\:\leqslant\:\mid\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{2}\:\mid\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\: \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}+\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}=? \\ $$

Question Number 110895    Answers: 3   Comments: 0

How many ways can 2018 be expressed as the sum of two squares?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{2018}\:\mathrm{be} \\ $$$$\mathrm{expressed}\:\mathrm{as}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Question Number 110879    Answers: 0   Comments: 1

Question Number 110875    Answers: 4   Comments: 0

(1)∫_e ^e^e ((ln (x).ln (ln (x)))/x) dx ? (2)lim_(x→π/4) ((cosec^2 x−2)/(cot x−1)) (3) Given { ((xy=((16y−9x)/(45)))),(((4/( (√x)))−(3/( (√y))) = 5)) :} ⇒find 9(√(xy))

$$\left(\mathrm{1}\right)\underset{\mathrm{e}} {\overset{\mathrm{e}^{\mathrm{e}} } {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{x}\right).\mathrm{ln}\:\left(\mathrm{ln}\:\left(\mathrm{x}\right)\right)}{\mathrm{x}}\:\mathrm{dx}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\:\frac{\mathrm{cosec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}}{\mathrm{cot}\:\mathrm{x}−\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Given}\:\begin{cases}{\mathrm{xy}=\frac{\mathrm{16y}−\mathrm{9x}}{\mathrm{45}}}\\{\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}}}−\frac{\mathrm{3}}{\:\sqrt{\mathrm{y}}}\:=\:\mathrm{5}}\end{cases} \\ $$$$\Rightarrow\mathrm{find}\:\mathrm{9}\sqrt{\mathrm{xy}} \\ $$

Question Number 110869    Answers: 1   Comments: 0

Question Number 110868    Answers: 0   Comments: 0

x^2 +y^2 =z Level sets and surface plot using Geogebra

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={z} \\ $$$${Level}\:{sets}\:{and}\:{surface}\:{plot} \\ $$$${using}\:{Geogebra} \\ $$$$ \\ $$

Question Number 110865    Answers: 0   Comments: 0

Plotting of x^2

$${Plotting}\:{of} \\ $$$${x}^{\mathrm{2}} \\ $$

Question Number 110861    Answers: 2   Comments: 0

Question Number 110860    Answers: 1   Comments: 0

Question Number 110858    Answers: 0   Comments: 0

evaluate ∫_0 ^1 ((xln(1+x))/(1+x^2 ))dx ∫_0 ^1 ((ln(1+x^2 ))/(1+x))dx ∫_0 ^∞ (√(1+x^6 ))dx

$${evaluate} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \sqrt{\mathrm{1}+{x}^{\mathrm{6}} }{dx} \\ $$

Question Number 110857    Answers: 0   Comments: 0

solve ∫_0 ^∞ ((sin^3 x)/x^2 )dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{3}} {x}}{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 110856    Answers: 2   Comments: 0

find x in x^2 =5^x^2 −19

$${find}\:{x}\:{in}\: \\ $$$${x}^{\mathrm{2}} =\mathrm{5}^{{x}^{\mathrm{2}} } −\mathrm{19} \\ $$

Question Number 110843    Answers: 2   Comments: 0

(x+1)^((x+1)) =(√2) find all values of x (Please step by step)

$$\left({x}+\mathrm{1}\right)^{\left({x}+\mathrm{1}\right)} =\sqrt{\mathrm{2}}\:\:\:\:\:\:{find}\:{all}\:{values}\:{of}\:{x} \\ $$$$\left({Please}\:{step}\:{by}\:{step}\right) \\ $$

Question Number 110842    Answers: 0   Comments: 0

Question Number 110837    Answers: 0   Comments: 0

Question Number 110826    Answers: 0   Comments: 6

The probability that at least one of the events A and B occurs is 0.7 and they occur simultaneously with probability 0.2. Then P(A^− )+P(B^ ) =

$$\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{events}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{occurs}\:\mathrm{is}\:\mathrm{0}.\mathrm{7}\:\mathrm{and} \\ $$$$\mathrm{they}\:\mathrm{occur}\:\mathrm{simultaneously}\:\mathrm{with} \\ $$$$\mathrm{probability}\:\mathrm{0}.\mathrm{2}.\:\mathrm{Then}\:\mathrm{P}\left(\overset{−} {\mathrm{A}}\right)+\mathrm{P}\left(\bar {\mathrm{B}}\right)\:= \\ $$

Question Number 110848    Answers: 3   Comments: 3

Question Number 110815    Answers: 1   Comments: 0

Question Number 110810    Answers: 1   Comments: 1

m^4 +2m^3 +6m^2 +2m+5=0 find all roots of m?

$${m}^{\mathrm{4}} +\mathrm{2}{m}^{\mathrm{3}} +\mathrm{6}{m}^{\mathrm{2}} +\mathrm{2}{m}+\mathrm{5}=\mathrm{0} \\ $$$${find}\:{all}\:{roots}\:{of}\:{m}? \\ $$

Question Number 110809    Answers: 0   Comments: 3

lim_(x→∞) (√(x!))=?

$${li}\underset{{x}\rightarrow\infty} {{m}}\sqrt{{x}!}=? \\ $$

Question Number 110800    Answers: 0   Comments: 0

∫((sin(x))/(x^2 +1))dx

$$\int\frac{{sin}\left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

  Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071      Pg 1072      Pg 1073      Pg 1074      Pg 1075      Pg 1076   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com