Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1067
Question Number 110294 Answers: 1 Comments: 0
$$\mid\mathrm{2}{x}+\mathrm{1}\mid−\mid{x}−\mathrm{2}\mid\:<\:\mathrm{4}\: \\ $$$${find}\:{the}\:{solution}\:{set} \\ $$
Question Number 110293 Answers: 0 Comments: 0
$$\mathrm{Simplify}:\:\:\:\frac{\mathrm{tan}\frac{\mathrm{3}\pi}{\mathrm{7}}\:\:\:−\:\:\mathrm{4sin}\frac{\pi}{\mathrm{7}}}{\mathrm{tan}\frac{\mathrm{6}\pi}{\mathrm{7}}\:\:+\:\:\mathrm{4sin}\frac{\mathrm{2}\pi}{\mathrm{7}}} \\ $$
Question Number 110288 Answers: 1 Comments: 0
Question Number 110287 Answers: 3 Comments: 2
Question Number 110286 Answers: 1 Comments: 0
Question Number 110285 Answers: 1 Comments: 0
Question Number 110281 Answers: 1 Comments: 0
Question Number 110280 Answers: 0 Comments: 0
Question Number 110269 Answers: 1 Comments: 4
Question Number 110268 Answers: 0 Comments: 3
Question Number 110265 Answers: 0 Comments: 0
Question Number 110262 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$$$\begin{cases}{\frac{\partial\mathrm{Z}}{\partial\mathrm{y}}−\frac{\partial\mathrm{Y}}{\partial\mathrm{z}}=\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\\{\frac{\partial\mathrm{Z}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{z}}=−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\partial\mathrm{Y}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{y}}=\mathrm{z}\left(\mathrm{2x}−\mathrm{y}\right)}\end{cases}\:\mathrm{where}\:\begin{cases}{\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\end{cases} \\ $$
Question Number 110260 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\:\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right)\:? \\ $$
Question Number 110254 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{tan}\:\alpha\:\mathrm{and}\:\mathrm{tan}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{two}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{2}{x}^{\mathrm{2}} −{x}−\mathrm{2}=\mathrm{0},\:\mathrm{then} \\ $$$$\mathrm{sin}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)+\mathrm{cos}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)+\mathrm{tan}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)=? \\ $$
Question Number 110247 Answers: 1 Comments: 0
$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\:{x}} {e}^{−{t}} {dt}\: \\ $$$$\mathrm{then}\:{f}\:''\left({x}\right)\:=\:?? \\ $$
Question Number 110246 Answers: 1 Comments: 0
$${solve}\:{for}\:{z}\in\mathbb{C}:\:\left({a}+{bi}\right)^{{z}} ={b}+{ai} \\ $$
Question Number 110245 Answers: 1 Comments: 2
$${solve}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{c}−\sqrt{{b}−{ax}}}} \\ $$
Question Number 110233 Answers: 0 Comments: 0
Question Number 110227 Answers: 1 Comments: 1
Question Number 110223 Answers: 0 Comments: 4
$${let}\::{A},{B},{C},{D}\:{be}\:{anone}\:{empety}\:{set}\:{prove}\:{that}\: \\ $$$${A}×{B}={C}×{D}\leftrightarrow{A}={C}\wedge{B}={D}\:? \\ $$$${help}\:{me}\:{sir} \\ $$
Question Number 110222 Answers: 3 Comments: 0
$${find}\:{the}\:{series} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left[\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{n}−\mathrm{2}}\right] \\ $$
Question Number 110219 Answers: 0 Comments: 3
$${let}\:{A}\:{and}\:{C}\:{be}\:{two}\:{none}\:{empety}\:{set}\:{prove}\:{that} \\ $$$${A}\subseteq{B}\:\wedge\:{C}\:\subseteq{D}\:{iff}\:{A}×{C}\:\subseteq{B}×{D}? \\ $$$${help}\:{me}\:{sir} \\ $$
Question Number 110218 Answers: 1 Comments: 0
Question Number 110215 Answers: 1 Comments: 1
Question Number 110214 Answers: 1 Comments: 0
$${show}\:{that}\: \\ $$$$\int_{−\infty} ^{+\infty} \frac{\left(\mathrm{1}+\frac{{x}}{\pi}\right)\mathrm{sin}\left(\pi{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{5}}{dx}=\frac{\mathrm{1}}{{e}^{\pi} } \\ $$
Question Number 110204 Answers: 1 Comments: 4
Pg 1062 Pg 1063 Pg 1064 Pg 1065 Pg 1066 Pg 1067 Pg 1068 Pg 1069 Pg 1070 Pg 1071
Terms of Service
Privacy Policy
Contact: info@tinkutara.com