Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1067

Question Number 112408    Answers: 0   Comments: 1

Question Number 112403    Answers: 1   Comments: 1

Question Number 112393    Answers: 0   Comments: 3

gf^(−1) (x)=3x−2 fg(x)=12x−8 then g^2 (x)=?

$${gf}^{−\mathrm{1}} \left({x}\right)=\mathrm{3}{x}−\mathrm{2} \\ $$$${fg}\left({x}\right)=\mathrm{12}{x}−\mathrm{8} \\ $$$$ \\ $$$$\mathrm{then}\:{g}^{\mathrm{2}} \left({x}\right)=? \\ $$

Question Number 112381    Answers: 0   Comments: 0

∫sin(x^3 ) dx

$$\int{sin}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$

Question Number 112370    Answers: 0   Comments: 1

lim_(x→0^+ ) ((x−⌊x⌋)/x^2 ) ⌊x⌋ is floor function

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{{x}−\lfloor{x}\rfloor}{{x}^{\mathrm{2}} } \\ $$$$\lfloor{x}\rfloor\:{is}\:{floor}\:{function} \\ $$

Question Number 112369    Answers: 0   Comments: 0

prove that ∫_0 ^∞ (((tanhx)/x^3 )−((sech^2 x)/x^2 ))dx=(7/π^2 )ζ(3) where ζ(3)=apery′s constant

$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{tanh}{x}}{{x}^{\mathrm{3}} }−\frac{\mathrm{sech}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} }\right){dx}=\frac{\mathrm{7}}{\pi^{\mathrm{2}} }\zeta\left(\mathrm{3}\right) \\ $$$${where}\:\zeta\left(\mathrm{3}\right)={apery}'{s}\:{constant} \\ $$

Question Number 112366    Answers: 1   Comments: 0

Question Number 112360    Answers: 1   Comments: 1

(((x^3 +x)/3))^3 +(((x^3 +x)/3))= 3x

$$\:\:\:\left(\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{x}}{\mathrm{3}}\right)^{\mathrm{3}} +\left(\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{x}}{\mathrm{3}}\right)=\:\mathrm{3x}\: \\ $$

Question Number 112359    Answers: 0   Comments: 0

Suppose a job consists of n tasks each of which takes time t seconds. Thus if there are no failuers the sum over all computed nodes of the time taken to execute tasks at that node is nt. Sppose also that the probability of a task failing is p per job per second and when a task fails the overhead of management of the restart is such that it adds 10t seconds to the total execution time of the job. What is the total expected execution time of the job?

$$\mathrm{Suppose}\:\mathrm{a}\:\mathrm{job}\:\mathrm{consists}\:\mathrm{of}\:\boldsymbol{{n}}\:\mathrm{tasks} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{takes}\:\mathrm{time}\:\boldsymbol{{t}} \\ $$$$\mathrm{seconds}.\:\mathrm{Thus}\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no} \\ $$$$\mathrm{failuers}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{over}\:\mathrm{all}\:\mathrm{computed} \\ $$$$\mathrm{nodes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{time}\:\mathrm{taken}\:\mathrm{to}\: \\ $$$$\mathrm{execute}\:\mathrm{tasks}\:\mathrm{at}\:\mathrm{that}\:\mathrm{node}\:\mathrm{is}\:\boldsymbol{{nt}}. \\ $$$$\mathrm{Sppose}\:\mathrm{also}\:\mathrm{that}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{task}\:\mathrm{failing}\:\mathrm{is}\:\boldsymbol{{p}}\:\mathrm{per}\:\mathrm{job}\:\mathrm{per} \\ $$$$\mathrm{second}\:\mathrm{and}\:\mathrm{when}\:\mathrm{a}\:\mathrm{task}\:\mathrm{fails}\:\mathrm{the} \\ $$$$\mathrm{overhead}\:\mathrm{of}\:\mathrm{management}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{restart}\:\mathrm{is}\:\mathrm{such}\:\mathrm{that}\:\mathrm{it}\:\mathrm{adds}\:\mathrm{10}\boldsymbol{{t}}\: \\ $$$$\mathrm{seconds}\:\mathrm{to}\:\mathrm{the}\:\mathrm{total}\:\mathrm{execution}\: \\ $$$$\mathrm{time}\:\mathrm{of}\:\mathrm{the}\:\mathrm{job}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total} \\ $$$$\mathrm{expected}\:\mathrm{execution}\:\mathrm{time}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{job}? \\ $$

Question Number 112358    Answers: 2   Comments: 0

The point of the curve 3x^2 −4y^2 =72 which nearest to the line 3x+2y=1 is___ (a) (6,3) (c) (6,6) (b) (6,−3) (d) (6,5)

$${The}\:{point}\:{of}\:{the}\:{curve}\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} =\mathrm{72} \\ $$$${which}\:{nearest}\:{to}\:{the}\:{line}\:\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{1} \\ $$$${is\_\_\_} \\ $$$$\left({a}\right)\:\left(\mathrm{6},\mathrm{3}\right)\:\:\:\:\:\:\:\left({c}\right)\:\left(\mathrm{6},\mathrm{6}\right) \\ $$$$\left({b}\right)\:\left(\mathrm{6},−\mathrm{3}\right)\:\:\left({d}\right)\:\left(\mathrm{6},\mathrm{5}\right) \\ $$

Question Number 112356    Answers: 3   Comments: 1

Question Number 112338    Answers: 0   Comments: 0

Question Number 112334    Answers: 0   Comments: 0

Question Number 112331    Answers: 0   Comments: 2

Question Number 112328    Answers: 1   Comments: 0

find the all root (m^3 −6m+9)=0

$${find}\:{the}\:{all}\:{root}\:\left({m}^{\mathrm{3}} −\mathrm{6}{m}+\mathrm{9}\right)=\mathrm{0} \\ $$

Question Number 112313    Answers: 5   Comments: 2

solve ∫_0 ^1 ((lnx)/(√(1+x^2 )))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 112323    Answers: 0   Comments: 1

_≤^≥ = SOLVE the EQUATION_ ^ _( •) n−⌊(√n)⌋−⌊(n)^(1/3) ⌋+⌊(n)^(1/6) ⌋=2016

$$\:_{\leqslant} ^{\geqslant} =\:\:\mathbb{SOLVE}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathcal{EQUATION}}_{} ^{\:_{\:\:\bullet} } \\ $$$$\:\:\:\boldsymbol{\mathrm{n}}−\lfloor\sqrt{\boldsymbol{\mathrm{n}}}\rfloor−\lfloor\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{n}}}\rfloor+\lfloor\sqrt[{\mathrm{6}}]{\boldsymbol{\mathrm{n}}}\rfloor=\mathrm{2016} \\ $$$$ \\ $$

Question Number 112320    Answers: 2   Comments: 1

Question Number 112311    Answers: 1   Comments: 2

lim_(x→0) (√((3sin^2 x+cos 2x−1)/(x.tan 2x))) ?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\frac{\mathrm{3sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:\mathrm{2x}−\mathrm{1}}{\mathrm{x}.\mathrm{tan}\:\mathrm{2x}}}\:? \\ $$

Question Number 112310    Answers: 4   Comments: 0

Question Number 112308    Answers: 0   Comments: 0

Question Number 112301    Answers: 0   Comments: 1

Question Number 112280    Answers: 2   Comments: 0

If 15 ≤ ∣10−(1/3)a∣ < 20 find a ∈ R

$$\:\:\mathrm{If}\:\mathrm{15}\:\leqslant\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{a}\mid\:<\:\mathrm{20}\: \\ $$$$\mathrm{find}\:\mathrm{a}\:\in\:\mathbb{R} \\ $$

Question Number 112271    Answers: 2   Comments: 0

(√(bemath)) ∫ sin x (√(1−sin x)) dx ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\:\int\:\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$

Question Number 112266    Answers: 1   Comments: 0

Let Ω denote the circumcircle of ABC. The tangent to Ω at A meets BC at X. Let the angle bisectors of ∠AXB meet AC and AB at E and F respectively. D is the foot of the angle bisector from ∠BAC on BC. Let AD intersect EF at K and Ω again at L(other than A). Prove that AEDF is a rhombus and further prove that the circle defined by triangle KLX passes through the midpoint of line segment BC.

$$\mathrm{Let}\:\Omega\:\mathrm{denote}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{ABC}. \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\Omega\:\mathrm{at}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{BC}\:\mathrm{at}\:\mathrm{X}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{bisectors}\:\mathrm{of}\:\angle\mathrm{AXB}\:\mathrm{meet} \\ $$$$\mathrm{AC}\:\mathrm{and}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F} \\ $$$$\mathrm{respectively}.\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{bisector}\:\mathrm{from}\:\angle\mathrm{BAC}\:\mathrm{on}\:\mathrm{BC}.\:\mathrm{Let}\:\mathrm{AD} \\ $$$$\mathrm{intersect}\:\mathrm{EF}\:\mathrm{at}\:\mathrm{K}\:\mathrm{and}\:\Omega\:\mathrm{again}\:\mathrm{at} \\ $$$$\mathrm{L}\left(\mathrm{other}\:\mathrm{than}\:\mathrm{A}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{AEDF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rhombus}\:\mathrm{and}\:\mathrm{further}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{triangle}\:\mathrm{KLX}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment} \\ $$$$\mathrm{BC}. \\ $$

Question Number 112287    Answers: 3   Comments: 0

{ ((x^2 + 3xy + y^2 = −1)),((x^3 + y^3 = 7)) :}

$$\begin{cases}{{x}^{\mathrm{2}} \:+\:\mathrm{3}{xy}\:+\:{y}^{\mathrm{2}} \:=\:−\mathrm{1}}\\{{x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:=\:\mathrm{7}}\end{cases} \\ $$

  Pg 1062      Pg 1063      Pg 1064      Pg 1065      Pg 1066      Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com