Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1067

Question Number 111001    Answers: 0   Comments: 1

Two numbers a and b are chosen at random from the set of first 30 natural numbers. The probability that a^2 −b^2 is divisible by 3 is

$$\mathrm{Two}\:\mathrm{numbers}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{at} \\ $$$$\mathrm{random}\:\mathrm{from}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{first}\:\mathrm{30}\:\mathrm{natural} \\ $$$$\mathrm{numbers}.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\mathrm{is} \\ $$

Question Number 110993    Answers: 1   Comments: 1

Question Number 111092    Answers: 2   Comments: 4

(√(bemath)) lim_(x→0) ((arctan x)/(arc sin x−x))

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{arctan}\:\mathrm{x}}{\mathrm{arc}\:\mathrm{sin}\:\mathrm{x}−\mathrm{x}} \\ $$

Question Number 110988    Answers: 3   Comments: 0

Evaluate without using L′hopital′s rule lim_(x→4) (((√x)−2)/(x−4))

$$\:\mathrm{Evaluate}\:\mathrm{without}\:\mathrm{using}\:\mathrm{L}'\mathrm{hopital}'\mathrm{s}\:\mathrm{rule} \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\sqrt{{x}}−\mathrm{2}}{{x}−\mathrm{4}} \\ $$

Question Number 110984    Answers: 1   Comments: 3

GCD of two unequal numbers can′t exceed their absolute difference. Prove.

$$\mathrm{GCD}\:{of}\:{two}\:{unequal}\:\:{numbers}\:{can}'{t}\: \\ $$$${exceed}\:{their}\:{absolute} \\ $$$${difference}.\:\:{Prove}. \\ $$

Question Number 110980    Answers: 2   Comments: 2

Question Number 110964    Answers: 1   Comments: 0

solve ∫_0 ^1 ((x^2 lnx)/((1+x^2 )^3 ))dx

$${solve}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \mathrm{ln}{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$

Question Number 111017    Answers: 2   Comments: 0

(√(bemath)) ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\int\:\frac{\mathrm{dx}}{\:\sqrt[{\mathrm{4}\:}]{\mathrm{4}−\sqrt[{\mathrm{3}\:}]{\mathrm{3}−\mathrm{2x}}}}\:? \\ $$

Question Number 110954    Answers: 1   Comments: 0

verify the formulae Σ_(n=−∞) ^(+∞) (1/((na +1)^p )) =−(π/a^n ) lim_(z→−(1/a)) (1/((p−1)!)){cotan(πz)}^((p−1)) inthis case 1) a =1 and p=2 2) a=2 and p=2 3)a=2 and p=3 4) a=3 and p=2

$$\mathrm{verify}\:\mathrm{the}\:\mathrm{formulae} \\ $$$$\sum_{\mathrm{n}=−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\left(\mathrm{na}\:+\mathrm{1}\right)^{\mathrm{p}} }\:=−\frac{\pi}{\mathrm{a}^{\mathrm{n}} }\:\mathrm{lim}_{\mathrm{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{a}}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{p}−\mathrm{1}\right)!}\left\{\mathrm{cotan}\left(\pi\mathrm{z}\right)\right\}^{\left(\mathrm{p}−\mathrm{1}\right)} \\ $$$$\left.\mathrm{inthis}\:\mathrm{case}\:\:\mathrm{1}\right)\:\:\mathrm{a}\:=\mathrm{1}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}=\mathrm{2}\:\:\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{3}\right)\mathrm{a}=\mathrm{2}\:\mathrm{and}\:\mathrm{p}=\mathrm{3} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{a}=\mathrm{3}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$

Question Number 110953    Answers: 0   Comments: 1

Question Number 110951    Answers: 2   Comments: 0

Question Number 110948    Answers: 1   Comments: 6

(√(bemath)) If each point on the line 3x+4y=2 is transformed by matrix M= (((2 0)),((0 1)) ) , the image is a line ___

$$\:\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\mathrm{If}\:\mathrm{each}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{4y}=\mathrm{2} \\ $$$$\mathrm{is}\:\mathrm{transformed}\:\mathrm{by}\:\mathrm{matrix}\:\mathrm{M}=\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{1}}\end{pmatrix}\:,\:\mathrm{the} \\ $$$$\mathrm{image}\:\mathrm{is}\:\mathrm{a}\:\mathrm{line}\:\_\_\_ \\ $$

Question Number 110944    Answers: 5   Comments: 3

■(√(bemath))★ (1)If (√a) −(√b) = 20 , a,b∈R , find maximum value of a−5b ? (2)lim_(x→4) (((√x)−(√(3(√x)−2)))/(x^2 −16)) ? (3)∫ ((tan (ln x) tan (ln ((x/2))))/x) dx (4)((((√(3x−7)))^2 −2)/(x−3)) ≤ ((3−((√x))^2 )/(x−3))

$$\:\:\:\blacksquare\sqrt{\mathrm{bemath}}\bigstar \\ $$$$\left(\mathrm{1}\right)\mathrm{If}\:\sqrt{\mathrm{a}}\:−\sqrt{\mathrm{b}}\:=\:\mathrm{20}\:,\:\mathrm{a},\mathrm{b}\in\mathbb{R}\:,\:\mathrm{find}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{a}−\mathrm{5b}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{3}\sqrt{\mathrm{x}}−\mathrm{2}}}{\mathrm{x}^{\mathrm{2}} −\mathrm{16}}\:? \\ $$$$\left(\mathrm{3}\right)\int\:\frac{\mathrm{tan}\:\left(\mathrm{ln}\:\mathrm{x}\right)\:\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{x}}\:\mathrm{dx} \\ $$$$\left(\mathrm{4}\right)\frac{\left(\sqrt{\mathrm{3x}−\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\left(\sqrt{\mathrm{x}}\right)^{\mathrm{2}} }{\mathrm{x}−\mathrm{3}} \\ $$

Question Number 110939    Answers: 2   Comments: 1

Question Number 110926    Answers: 1   Comments: 0

A 2000kg car start from rest and accelerated to a final velocity of 20m/s in 16 seconds. Assuming a constant air resistance of 500N, find (i) the average power developed by the engine of the car. (ii) the instantaneous power developed by the engine when the car reaches its final speed.

$$\mathrm{A}\:\mathrm{2000kg}\:\mathrm{car}\:\mathrm{start}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and} \\ $$$$\mathrm{accelerated}\:\mathrm{to}\:\mathrm{a}\:\mathrm{final}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{20m}/\mathrm{s}\:\mathrm{in}\:\mathrm{16}\:\mathrm{seconds}.\:\mathrm{Assuming}\:\mathrm{a} \\ $$$$\mathrm{constant}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{500N},\:\mathrm{find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{the}\:\mathrm{average}\:\mathrm{power}\:\mathrm{developed}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{engine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{the}\:\mathrm{instantaneous}\:\mathrm{power} \\ $$$$\mathrm{developed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{engine}\:\mathrm{when}\:\mathrm{the}\:\mathrm{car} \\ $$$$\mathrm{reaches}\:\mathrm{its}\:\mathrm{final}\:\mathrm{speed}. \\ $$

Question Number 110970    Answers: 2   Comments: 1

Question Number 110911    Answers: 0   Comments: 0

Four teachers A, B, C, and D each proposed two exercises, one on algebra and another on analyses, to form an exam. The students have to choose two exercises at random. 1. Calculate the probability P(a) of a student to choose two exercises on algebra. a\ P(a)=(3/(16)) , b\P(a)=(3/(14)) , c\P(a)=(1/4) , d\None 2. Calculate the probability P(b) of choosing two exercises proposed by the same teacher. a\P(b)=(1/(10)) , b\P(b)=(1/(60)) , c\P(b)=(1/7) , d\None 3. Calculate the probability P(c) of choosing two exercises proposed by teacher A. a\P(c)=(1/3) , b\P(c)=(1/4) , c\P(c)=(1/(28)) , d\None

$$\mathrm{Four}\:\mathrm{teachers}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C},\:\mathrm{and}\:\mathrm{D}\:\mathrm{each}\:\mathrm{proposed}\:\mathrm{two}\:\mathrm{exercises}, \\ $$$$\mathrm{one}\:\mathrm{on}\:\mathrm{algebra}\:\mathrm{and}\:\mathrm{another}\:\mathrm{on}\:\mathrm{analyses},\:\mathrm{to}\:\mathrm{form}\:\mathrm{an}\:\mathrm{exam}. \\ $$$$\mathrm{The}\:\mathrm{students}\:\mathrm{have}\:\mathrm{to}\:\mathrm{choose}\:\mathrm{two}\:\mathrm{exercises}\:\mathrm{at}\:\mathrm{random}. \\ $$$$\mathrm{1}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{a}\right)\:\mathrm{of}\:\mathrm{a}\:\mathrm{student}\:\mathrm{to}\:\mathrm{choose} \\ $$$$\mathrm{two}\:\mathrm{exercises}\:\mathrm{on}\:\mathrm{algebra}. \\ $$$$\mathrm{a}\backslash\:\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{3}}{\mathrm{16}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{3}}{\mathrm{14}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$$$\mathrm{2}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{b}\right)\:\mathrm{of}\:\mathrm{choosing}\:\mathrm{two}\:\mathrm{exercises} \\ $$$$\mathrm{proposed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{same}\:\mathrm{teacher}. \\ $$$$\mathrm{a}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{10}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{60}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{b}\right)=\frac{\mathrm{1}}{\mathrm{7}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$$$\mathrm{3}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{P}\left(\mathrm{c}\right)\:\mathrm{of}\:\mathrm{choosing}\:\mathrm{two}\:\mathrm{exercises} \\ $$$$\mathrm{proposed}\:\mathrm{by}\:\mathrm{teacher}\:\mathrm{A}. \\ $$$$\mathrm{a}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:,\:\mathrm{b}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\mathrm{c}\backslash\mathrm{P}\left(\mathrm{c}\right)=\frac{\mathrm{1}}{\mathrm{28}}\:,\:\mathrm{d}\backslash\mathrm{None} \\ $$

Question Number 110910    Answers: 2   Comments: 0

mr M.N july 1970 the question you posted earlier here goes the solution ∫_0 ^(1/2) ((ln^2 (1−x))/x)dx

$${mr}\:{M}.{N}\:{july}\:\mathrm{1970}\:{the}\:{question}\:{you}\:{posted}\:{earlier}\:{here}\:{goes}\:{the}\:{solution} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$ \\ $$

Question Number 110897    Answers: 3   Comments: 0

(1)4x−4 ≤ ∣x^2 −3x+2 ∣ find the solution set (2) ((1+cos ((α/2))−sin ((α/2)))/(1−cos ((α/2))−sin ((α/2))))=?

$$\left(\mathrm{1}\right)\mathrm{4x}−\mathrm{4}\:\leqslant\:\mid\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{2}\:\mid\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\: \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}+\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)−\mathrm{sin}\:\left(\frac{\alpha}{\mathrm{2}}\right)}=? \\ $$

Question Number 110895    Answers: 3   Comments: 0

How many ways can 2018 be expressed as the sum of two squares?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{2018}\:\mathrm{be} \\ $$$$\mathrm{expressed}\:\mathrm{as}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{squares}? \\ $$

Question Number 110879    Answers: 0   Comments: 1

Question Number 110875    Answers: 4   Comments: 0

(1)∫_e ^e^e ((ln (x).ln (ln (x)))/x) dx ? (2)lim_(x→π/4) ((cosec^2 x−2)/(cot x−1)) (3) Given { ((xy=((16y−9x)/(45)))),(((4/( (√x)))−(3/( (√y))) = 5)) :} ⇒find 9(√(xy))

$$\left(\mathrm{1}\right)\underset{\mathrm{e}} {\overset{\mathrm{e}^{\mathrm{e}} } {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{x}\right).\mathrm{ln}\:\left(\mathrm{ln}\:\left(\mathrm{x}\right)\right)}{\mathrm{x}}\:\mathrm{dx}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\:\frac{\mathrm{cosec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{2}}{\mathrm{cot}\:\mathrm{x}−\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Given}\:\begin{cases}{\mathrm{xy}=\frac{\mathrm{16y}−\mathrm{9x}}{\mathrm{45}}}\\{\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}}}−\frac{\mathrm{3}}{\:\sqrt{\mathrm{y}}}\:=\:\mathrm{5}}\end{cases} \\ $$$$\Rightarrow\mathrm{find}\:\mathrm{9}\sqrt{\mathrm{xy}} \\ $$

Question Number 110869    Answers: 1   Comments: 0

Question Number 110868    Answers: 0   Comments: 0

x^2 +y^2 =z Level sets and surface plot using Geogebra

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={z} \\ $$$${Level}\:{sets}\:{and}\:{surface}\:{plot} \\ $$$${using}\:{Geogebra} \\ $$$$ \\ $$

Question Number 110865    Answers: 0   Comments: 0

Plotting of x^2

$${Plotting}\:{of} \\ $$$${x}^{\mathrm{2}} \\ $$

Question Number 110861    Answers: 2   Comments: 0

  Pg 1062      Pg 1063      Pg 1064      Pg 1065      Pg 1066      Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com