Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1067

Question Number 111528    Answers: 3   Comments: 0

(√(bemath)) lim_(x→π/2) (1−sin x)^(cos x) ?

$$\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\left(\mathrm{1}−\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{cos}\:\mathrm{x}} \:? \\ $$

Question Number 111520    Answers: 0   Comments: 0

find nature of Σ_(n=1) ^∞ (n^p /(n!)) (p natural )

$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{n}^{\mathrm{p}} }{\mathrm{n}!}\:\:\:\left(\mathrm{p}\:\mathrm{natural}\:\right) \\ $$

Question Number 111513    Answers: 2   Comments: 0

((cos^2 x))^(1/(3 )) + ((sin^2 x))^(1/(3 )) = (2)^(1/(3 )) find cos^2 (2x) ?

$$\:\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:^{\mathrm{2}} {x}}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{sin}\:^{\mathrm{2}} {x}}\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{2}} \\ $$$${find}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:? \\ $$

Question Number 111503    Answers: 2   Comments: 0

Find four values of n satisfying 1≤n≤2000 and 2^n =n^2 (mod 1024)

$$\mathrm{Find}\:\mathrm{four}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\:\mathrm{satisfying} \\ $$$$\mathrm{1}\leqslant\mathrm{n}\leqslant\mathrm{2000}\:\mathrm{and}\:\mathrm{2}^{\mathrm{n}} =\mathrm{n}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{1024}\right) \\ $$

Question Number 111499    Answers: 0   Comments: 0

$$ \\ $$

Question Number 111498    Answers: 8   Comments: 0

(√(bemath )) (1)lim_(x→∞) ((2x^2 −x^3 ))^(1/(3 )) + x ? (2) lim_(x→1) ((1/x))^(1/(sin πx)) ? (3) ∫_0 ^x^2 f(t) dt = x cos (πx) . Find f (4).

$$\:\:\:\:\:\:\sqrt{\mathrm{bemath}\:} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{2x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{3}} }\:+\:\mathrm{x}\:? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{sin}\:\pi\mathrm{x}}} \:? \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{x}^{\mathrm{2}} } {\int}}\:\mathrm{f}\left(\mathrm{t}\right)\:\mathrm{dt}\:=\:\mathrm{x}\:\mathrm{cos}\:\left(\pi\mathrm{x}\right)\:.\:\mathrm{Find}\:\mathrm{f}\:\left(\mathrm{4}\right). \\ $$

Question Number 111497    Answers: 0   Comments: 1

Question Number 111466    Answers: 1   Comments: 2

Σ_(n=1) ^∞ (n^n /(n!))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{n}} }{{n}!} \\ $$

Question Number 111458    Answers: 0   Comments: 6

Question Number 111450    Answers: 0   Comments: 1

Question Number 111447    Answers: 1   Comments: 1

Question Number 111442    Answers: 3   Comments: 0

lim_(x→∞) (((x+a)/(x−a)))^x ?

$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{x}+\mathrm{a}}{\mathrm{x}−\mathrm{a}}\right)^{\mathrm{x}} ? \\ $$

Question Number 111441    Answers: 1   Comments: 0

solve { ((y′′ −2y′+2y=sinht)),((y′(0)=1 , y(0)=1)) :}

$${solve} \\ $$$$ \\ $$$$\begin{cases}{{y}''\:−\mathrm{2}{y}'+\mathrm{2}{y}={sinht}}\\{{y}'\left(\mathrm{0}\right)=\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{1}}\end{cases} \\ $$

Question Number 111432    Answers: 2   Comments: 2

Question Number 111429    Answers: 1   Comments: 0

please evaluate : .... I=∫_0 ^( (π/2)) ((1/(ln(tan(x)))) + (1/(1−tan(x))))dx =??? ::: M. N.july 1970 :::

$$\:\:\:\:\:\:{please}\:\:{evaluate}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:....\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{{ln}\left({tan}\left({x}\right)\right)}\:+\:\frac{\mathrm{1}}{\mathrm{1}−{tan}\left({x}\right)}\right){dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\::::\:\:\:\:\mathscr{M}.\:\mathscr{N}.{july}\:\mathrm{1970}\:::: \\ $$$$\:\: \\ $$

Question Number 111428    Answers: 0   Comments: 1

Σ_(n=1) ^∞ (n^3 /(n!))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!} \\ $$

Question Number 111427    Answers: 0   Comments: 1

4sin^6 α + 4cos^6 α − 3cos^2 2α

$$\mathrm{4sin}\:^{\mathrm{6}} \alpha\:+\:\mathrm{4cos}\:^{\mathrm{6}} \alpha\:−\:\mathrm{3cos}\:^{\mathrm{2}} \mathrm{2}\alpha \\ $$

Question Number 111426    Answers: 2   Comments: 0

Question Number 111414    Answers: 2   Comments: 0

(1) lim_(x→0) ((sin x−ln (e^x cos x))/(x sin x)) (2) lim_(x→1) ((1−x+ln (x))/(1−(√(2x−x^2 ))))

$$\:\left(\mathrm{1}\right)\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{ln}\:\left(\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}\:\mathrm{sin}\:\mathrm{x}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{x}+\mathrm{ln}\:\left(\mathrm{x}\right)}{\mathrm{1}−\sqrt{\mathrm{2x}−\mathrm{x}^{\mathrm{2}} }} \\ $$

Question Number 111393    Answers: 0   Comments: 6

What is the sum of the coefficients in the expansion of (2015v−2015u+1)^(2015) ?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{2015v}−\mathrm{2015u}+\mathrm{1}\right)^{\mathrm{2015}} ? \\ $$

Question Number 111394    Answers: 1   Comments: 2

A teacher conducts a test for five students. He provides the marking scheme and asked them to exchange their scripts such that none of them marks his own script. How many ways can the students carry out the marking?

$$\mathrm{A}\:\mathrm{teacher}\:\mathrm{conducts}\:\mathrm{a}\:\mathrm{test}\:\mathrm{for}\:\mathrm{five} \\ $$$$\mathrm{students}.\:\mathrm{He}\:\mathrm{provides}\:\mathrm{the}\:\mathrm{marking} \\ $$$$\mathrm{scheme}\:\mathrm{and}\:\mathrm{asked}\:\mathrm{them}\:\mathrm{to}\:\mathrm{exchange} \\ $$$$\mathrm{their}\:\mathrm{scripts}\:\mathrm{such}\:\mathrm{that}\:\mathrm{none}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{marks}\:\mathrm{his}\:\mathrm{own}\:\mathrm{script}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways} \\ $$$$\mathrm{can}\:\mathrm{the}\:\mathrm{students}\:\mathrm{carry}\:\mathrm{out}\:\mathrm{the} \\ $$$$\mathrm{marking}? \\ $$

Question Number 111391    Answers: 2   Comments: 0

Compute cos(Π/(12))

$$\mathrm{Compute}\:\mathrm{cos}\frac{\Pi}{\mathrm{12}} \\ $$

Question Number 111388    Answers: 0   Comments: 0

Question Number 111397    Answers: 1   Comments: 2

lim_(x→0) ((cosx)/x)=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosx}}{\mathrm{x}}=? \\ $$

Question Number 111383    Answers: 1   Comments: 0

lim_(s→∞) (√(20s^2 +2s))−(√(5s^2 +1))−(√(5s^2 −2s))

$$\:\:\underset{{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{20}{s}^{\mathrm{2}} +\mathrm{2}{s}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} +\mathrm{1}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{2}{s}} \\ $$

Question Number 111382    Answers: 2   Comments: 1

  Pg 1062      Pg 1063      Pg 1064      Pg 1065      Pg 1066      Pg 1067      Pg 1068      Pg 1069      Pg 1070      Pg 1071   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com