Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1067
Question Number 111528 Answers: 3 Comments: 0
$$\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\left(\mathrm{1}−\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{cos}\:\mathrm{x}} \:? \\ $$
Question Number 111520 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{n}^{\mathrm{p}} }{\mathrm{n}!}\:\:\:\left(\mathrm{p}\:\mathrm{natural}\:\right) \\ $$
Question Number 111513 Answers: 2 Comments: 0
$$\:\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:^{\mathrm{2}} {x}}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{sin}\:^{\mathrm{2}} {x}}\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{2}} \\ $$$${find}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:? \\ $$
Question Number 111503 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{four}\:\mathrm{values}\:\mathrm{of}\:\mathrm{n}\:\mathrm{satisfying} \\ $$$$\mathrm{1}\leqslant\mathrm{n}\leqslant\mathrm{2000}\:\mathrm{and}\:\mathrm{2}^{\mathrm{n}} =\mathrm{n}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{1024}\right) \\ $$
Question Number 111499 Answers: 0 Comments: 0
$$ \\ $$
Question Number 111498 Answers: 8 Comments: 0
$$\:\:\:\:\:\:\sqrt{\mathrm{bemath}\:} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{2x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{3}} }\:+\:\mathrm{x}\:? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{sin}\:\pi\mathrm{x}}} \:? \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\mathrm{x}^{\mathrm{2}} } {\int}}\:\mathrm{f}\left(\mathrm{t}\right)\:\mathrm{dt}\:=\:\mathrm{x}\:\mathrm{cos}\:\left(\pi\mathrm{x}\right)\:.\:\mathrm{Find}\:\mathrm{f}\:\left(\mathrm{4}\right). \\ $$
Question Number 111497 Answers: 0 Comments: 1
Question Number 111466 Answers: 1 Comments: 2
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{n}} }{{n}!} \\ $$
Question Number 111458 Answers: 0 Comments: 6
Question Number 111450 Answers: 0 Comments: 1
Question Number 111447 Answers: 1 Comments: 1
Question Number 111442 Answers: 3 Comments: 0
$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{x}+\mathrm{a}}{\mathrm{x}−\mathrm{a}}\right)^{\mathrm{x}} ? \\ $$
Question Number 111441 Answers: 1 Comments: 0
$${solve} \\ $$$$ \\ $$$$\begin{cases}{{y}''\:−\mathrm{2}{y}'+\mathrm{2}{y}={sinht}}\\{{y}'\left(\mathrm{0}\right)=\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{1}}\end{cases} \\ $$
Question Number 111432 Answers: 2 Comments: 2
Question Number 111429 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{please}\:\:{evaluate}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:....\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}}{{ln}\left({tan}\left({x}\right)\right)}\:+\:\frac{\mathrm{1}}{\mathrm{1}−{tan}\left({x}\right)}\right){dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\::::\:\:\:\:\mathscr{M}.\:\mathscr{N}.{july}\:\mathrm{1970}\:::: \\ $$$$\:\: \\ $$
Question Number 111428 Answers: 0 Comments: 1
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!} \\ $$
Question Number 111427 Answers: 0 Comments: 1
$$\mathrm{4sin}\:^{\mathrm{6}} \alpha\:+\:\mathrm{4cos}\:^{\mathrm{6}} \alpha\:−\:\mathrm{3cos}\:^{\mathrm{2}} \mathrm{2}\alpha \\ $$
Question Number 111426 Answers: 2 Comments: 0
Question Number 111414 Answers: 2 Comments: 0
$$\:\left(\mathrm{1}\right)\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{ln}\:\left(\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}\:\mathrm{sin}\:\mathrm{x}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{x}+\mathrm{ln}\:\left(\mathrm{x}\right)}{\mathrm{1}−\sqrt{\mathrm{2x}−\mathrm{x}^{\mathrm{2}} }} \\ $$
Question Number 111393 Answers: 0 Comments: 6
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{2015v}−\mathrm{2015u}+\mathrm{1}\right)^{\mathrm{2015}} ? \\ $$
Question Number 111394 Answers: 1 Comments: 2
$$\mathrm{A}\:\mathrm{teacher}\:\mathrm{conducts}\:\mathrm{a}\:\mathrm{test}\:\mathrm{for}\:\mathrm{five} \\ $$$$\mathrm{students}.\:\mathrm{He}\:\mathrm{provides}\:\mathrm{the}\:\mathrm{marking} \\ $$$$\mathrm{scheme}\:\mathrm{and}\:\mathrm{asked}\:\mathrm{them}\:\mathrm{to}\:\mathrm{exchange} \\ $$$$\mathrm{their}\:\mathrm{scripts}\:\mathrm{such}\:\mathrm{that}\:\mathrm{none}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{marks}\:\mathrm{his}\:\mathrm{own}\:\mathrm{script}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways} \\ $$$$\mathrm{can}\:\mathrm{the}\:\mathrm{students}\:\mathrm{carry}\:\mathrm{out}\:\mathrm{the} \\ $$$$\mathrm{marking}? \\ $$
Question Number 111391 Answers: 2 Comments: 0
$$\mathrm{Compute}\:\mathrm{cos}\frac{\Pi}{\mathrm{12}} \\ $$
Question Number 111388 Answers: 0 Comments: 0
Question Number 111397 Answers: 1 Comments: 2
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosx}}{\mathrm{x}}=? \\ $$
Question Number 111383 Answers: 1 Comments: 0
$$\:\:\underset{{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{20}{s}^{\mathrm{2}} +\mathrm{2}{s}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} +\mathrm{1}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{2}{s}} \\ $$
Question Number 111382 Answers: 2 Comments: 1
Pg 1062 Pg 1063 Pg 1064 Pg 1065 Pg 1066 Pg 1067 Pg 1068 Pg 1069 Pg 1070 Pg 1071
Terms of Service
Privacy Policy
Contact: info@tinkutara.com