Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1061

Question Number 113465    Answers: 0   Comments: 7

Question Number 113464    Answers: 1   Comments: 0

(x^2 (d^2 y/dx^2 ) +x (dy/dx) + 1).y = 0

$$\:\left({x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+{x}\:\frac{{dy}}{{dx}}\:+\:\mathrm{1}\right).{y}\:=\:\mathrm{0} \\ $$

Question Number 113456    Answers: 0   Comments: 0

Question Number 113455    Answers: 1   Comments: 1

Question Number 113452    Answers: 1   Comments: 0

Question Number 113451    Answers: 3   Comments: 0

If 2x=a^n +a^(−n) and 2y=a^n −a^(−n) calculate the value of x^2 −y^(2 ) in its simplest form

$$\mathrm{If}\:\mathrm{2x}=\mathrm{a}^{\mathrm{n}} +\mathrm{a}^{−\mathrm{n}} \:\mathrm{and}\:\mathrm{2y}=\mathrm{a}^{\mathrm{n}} −\mathrm{a}^{−\mathrm{n}} \:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}\:} \:\mathrm{in}\:\mathrm{its}\:\mathrm{simplest}\:\mathrm{form} \\ $$

Question Number 113444    Answers: 1   Comments: 0

y′′−2ay′+(1+a^2 )y=te^(at) +sint

$$\mathrm{y}''−\mathrm{2ay}'+\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)\mathrm{y}=\mathrm{te}^{\mathrm{at}} +\mathrm{sint} \\ $$

Question Number 113438    Answers: 2   Comments: 0

lim_(x→∞) x(5^(1/x) −1) ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)\:? \\ $$

Question Number 113430    Answers: 0   Comments: 0

Question Number 113429    Answers: 0   Comments: 0

Question Number 113426    Answers: 1   Comments: 0

Question Number 113421    Answers: 0   Comments: 2

Question Number 113418    Answers: 3   Comments: 1

∫ ((3x−2)/( (√(x^2 +2x+26)))) dx

$$\:\int\:\frac{\mathrm{3x}−\mathrm{2}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{26}}}\:\mathrm{dx} \\ $$

Question Number 113414    Answers: 0   Comments: 0

Question Number 113407    Answers: 0   Comments: 0

Question Number 113408    Answers: 1   Comments: 1

Question Number 113393    Answers: 0   Comments: 6

loving questions of the form “if ... then find the sum/product/etc. of... so please solve these: (1) if γ and λ are the solutions of x^2 +x−12=0 then find coshλ−cotγ (2) if a+b=2 and a−b=0 then find ∫x^((a+b)/(2ab)) ln(−e^(iπa) −x)ln(e^(cos^(−1) b) −x)dx are you intelligent enough? then please please please sir or madam help me!!! I need an answer urgentliest!!!! good luck! (c) by HeR MaJε∫tY 20200913

$${loving}\:{questions}\:{of}\:{the}\:{form} \\ $$$$``{if}\:...\:{then}\:{find}\:{the}\:{sum}/{product}/{etc}.\:{of}... \\ $$$${so}\:{please}\:{solve}\:{these}: \\ $$$$\left(\mathrm{1}\right) \\ $$$${if}\:\gamma\:{and}\:\lambda\:{are}\:{the}\:{solutions}\:{of} \\ $$$${x}^{\mathrm{2}} +{x}−\mathrm{12}=\mathrm{0}\:{then}\:{find}\:{cosh}\lambda−{cot}\gamma \\ $$$$\left(\mathrm{2}\right) \\ $$$${if}\:{a}+{b}=\mathrm{2}\:{and}\:{a}−{b}=\mathrm{0}\:{then}\:{find} \\ $$$$\int{x}^{\frac{{a}+{b}}{\mathrm{2}{ab}}} {ln}\left(−{e}^{{i}\pi{a}} −{x}\right){ln}\left({e}^{{cos}^{−\mathrm{1}} {b}} −{x}\right){dx} \\ $$$${are}\:{you}\:{intelligent}\:{enough}? \\ $$$${then}\:{please}\:{please}\:{please}\:{sir}\:{or}\:{madam} \\ $$$${help}\:{me}!!!\:{I}\:{need}\:{an}\:{answer}\:\boldsymbol{\mathrm{urgentliest}}!!!! \\ $$$${good}\:{luck}! \\ $$$$\left({c}\right)\:{by}\:\mathbb{H}\mathfrak{e}\mathscr{R}\:\mathfrak{M}\boldsymbol{{a}}\mathbb{J}\epsilon\int{t}\mathscr{Y}\:\:\mathrm{20200913} \\ $$

Question Number 113357    Answers: 0   Comments: 7

lim_(x→∞) (ln(ln(lnx))))^(1/x)

$$\left.{lim}_{{x}\rightarrow\infty} \left({ln}\left({ln}\left({lnx}\right)\right)\right)\right)^{\frac{\mathrm{1}}{{x}}} \\ $$

Question Number 113355    Answers: 1   Comments: 1

A rectangular cardboard is 8cm long and 6cm wide. What is the least number of beads you can arrange on the board such that there are at least two of the beads that are less than (√(10))cm apart.

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{cardboard}\:\mathrm{is}\:\mathrm{8cm}\:\mathrm{long} \\ $$$$\mathrm{and}\:\mathrm{6cm}\:\mathrm{wide}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{least} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{beads}\:\mathrm{you}\:\mathrm{can}\:\mathrm{arrange}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{beads}\:\mathrm{that}\:\mathrm{are}\:\mathrm{less}\:\mathrm{than} \\ $$$$\sqrt{\mathrm{10}}\mathrm{cm}\:\mathrm{apart}. \\ $$

Question Number 113354    Answers: 0   Comments: 3

( ((n),(0) )/2)−( ((n),(1) )/3)+( ((n),(2) )/4)−( ((n),(3) )/5)+.....n

$$\frac{\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}}{\mathrm{2}}−\frac{\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}}{\mathrm{3}}+\frac{\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}}{\mathrm{4}}−\frac{\begin{pmatrix}{{n}}\\{\mathrm{3}}\end{pmatrix}}{\mathrm{5}}+.....{n} \\ $$

Question Number 113353    Answers: 1   Comments: 0

What is the maximum number of points to be distributed within a 3×6 to ensure that there are no two points whose distance apart is less than (√2)?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{points}\:\mathrm{to}\:\mathrm{be}\:\mathrm{distributed}\:\mathrm{within} \\ $$$$\mathrm{a}\:\mathrm{3}×\mathrm{6}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{points}\:\mathrm{whose}\:\mathrm{distance}\:\mathrm{apart}\:\mathrm{is}\:\mathrm{less} \\ $$$$\mathrm{than}\:\sqrt{\mathrm{2}}? \\ $$

Question Number 113346    Answers: 1   Comments: 0

Question Number 113343    Answers: 1   Comments: 1

find the angle between x+3(√(3y))=2,(√(3x))−5y=2 help me sir please

$${find}\:{the}\:{angle}\:{between}\:{x}+\mathrm{3}\sqrt{\mathrm{3}{y}}=\mathrm{2},\sqrt{\mathrm{3}{x}}−\mathrm{5}{y}=\mathrm{2} \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$

Question Number 113341    Answers: 3   Comments: 0

Question Number 113336    Answers: 0   Comments: 0

If 1, a^2 ,a^3 ,...,a^(n−1) are the roots nth of unity , prove that : (1+a)(1+a^2 )(1+a^3 )...(1+a^(n−1) ) = n−2⌊(n/2)⌋

$${If}\:\mathrm{1},\:{a}^{\mathrm{2}} ,{a}^{\mathrm{3}} \:,...,{a}^{{n}−\mathrm{1}} \:{are}\:{the}\:{roots}\: \\ $$$${nth}\:{of}\:{unity}\:,\: \\ $$$${prove}\:{that}\::\:\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{3}} \right)...\left(\mathrm{1}+{a}^{{n}−\mathrm{1}} \right) \\ $$$$=\:{n}−\mathrm{2}\lfloor\frac{{n}}{\mathrm{2}}\rfloor \\ $$$$ \\ $$

Question Number 113333    Answers: 2   Comments: 0

  Pg 1056      Pg 1057      Pg 1058      Pg 1059      Pg 1060      Pg 1061      Pg 1062      Pg 1063      Pg 1064      Pg 1065   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com