Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1061

Question Number 109577    Answers: 4   Comments: 1

Given x^4 +x^2 y^2 +y^4 =133 and x^2 −xy+y^2 =7 then what is the value of xy ?

$$\:\:\:\mathrm{G}{iven}\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{4}} =\mathrm{133} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{and}\:{x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} =\mathrm{7} \\ $$$$\:\:{then}\:{what}\:{is}\:{the}\:{value}\:{of}\:{xy}\:? \\ $$

Question Number 109574    Answers: 0   Comments: 6

Question Number 109569    Answers: 1   Comments: 0

Question Number 109553    Answers: 1   Comments: 2

Question Number 109546    Answers: 1   Comments: 2

If f(x) continue in [ 1,30] and ∫_6 ^(30) f(x)dx = 30, then ∫_1 ^9 f(3y+3)dy = __

$${If}\:{f}\left({x}\right)\:{continue}\:{in}\:\left[\:\mathrm{1},\mathrm{30}\right]\:{and}\: \\ $$$$\underset{\mathrm{6}} {\overset{\mathrm{30}} {\int}}{f}\left({x}\right){dx}\:=\:\mathrm{30},\:{then}\:\underset{\mathrm{1}} {\overset{\mathrm{9}} {\int}}{f}\left(\mathrm{3}{y}+\mathrm{3}\right){dy}\:=\:\_\_ \\ $$

Question Number 109544    Answers: 2   Comments: 1

Exclude m and n from the equalities: a=m+n,b^3 =m^3 +n^3 ,c^5 =m^5 +n^5

$$\mathrm{Exclude}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{from}\:\mathrm{the}\:\mathrm{equalities}: \\ $$$$\mathrm{a}=\mathrm{m}+\mathrm{n},\mathrm{b}^{\mathrm{3}} =\mathrm{m}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} ,\mathrm{c}^{\mathrm{5}} =\mathrm{m}^{\mathrm{5}} +\mathrm{n}^{\mathrm{5}} \\ $$

Question Number 109540    Answers: 1   Comments: 1

Question Number 109516    Answers: 3   Comments: 0

cos (1−i)=a+ib Find a, b.

$$\mathrm{cos}\:\left(\mathrm{1}−{i}\right)={a}+{ib} \\ $$$${Find}\:\:{a},\:{b}. \\ $$

Question Number 109506    Answers: 0   Comments: 0

Question Number 109509    Answers: 4   Comments: 0

((bemath)/(Σ_(i=cooll) ^(nice) (joss)_i )) ∫ ((x^2 dx)/( (√(x^2 +25))))

$$\:\:\frac{{bemath}}{\underset{{i}={cooll}} {\overset{{nice}} {\sum}}\left({joss}\right)_{{i}} }\: \\ $$$$ \\ $$$$\int\:\frac{{x}^{\mathrm{2}} \:{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{25}}} \\ $$

Question Number 109508    Answers: 2   Comments: 1

Question Number 109500    Answers: 3   Comments: 0

Given { ((a^2 +ab+bc+ac=a+c)),((b^2 +ab+bc+ac=b+a)),((c^2 +ab+bc+ac=c+b)) :} find the value of a+b+c

$${Given}\:\begin{cases}{{a}^{\mathrm{2}} +{ab}+{bc}+{ac}={a}+{c}}\\{{b}^{\mathrm{2}} +{ab}+{bc}+{ac}={b}+{a}}\\{{c}^{\mathrm{2}} +{ab}+{bc}+{ac}={c}+{b}}\end{cases} \\ $$$${find}\:{the}\:{value}\:{of}\:{a}+{b}+{c}\: \\ $$

Question Number 109497    Answers: 1   Comments: 0

Question Number 109495    Answers: 4   Comments: 0

1) ∫_0 ^(Π/2) sin x∙sin 2x∙sin 3x∙dx = ? 2) ∫_0 ^(1/2) arcsin x∙dx= ?

$$\left.\mathrm{1}\right)\:\:\:\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \mathrm{sin}\:{x}\centerdot\mathrm{sin}\:\mathrm{2}{x}\centerdot\mathrm{sin}\:\mathrm{3}{x}\centerdot{dx}\:=\:? \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{arcsin}\:{x}\centerdot{dx}=\:? \\ $$

Question Number 109494    Answers: 2   Comments: 0

Question Number 109493    Answers: 1   Comments: 0

Question Number 109489    Answers: 2   Comments: 0

(1) sin (2x)−cos (2x)−sin (x)+cos (x)=0 (2)lim_(x→0) ((e^x −e^(−x) )/(sin x)) (3)lim_(x→−1) ∣x+1∣ sin (x+1)

$$\left(\mathrm{1}\right)\:\mathrm{sin}\:\left(\mathrm{2}{x}\right)−\mathrm{cos}\:\left(\mathrm{2}{x}\right)−\mathrm{sin}\:\left({x}\right)+\mathrm{cos}\:\left({x}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{sin}\:{x}} \\ $$$$\left(\mathrm{3}\right)\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\mid{x}+\mathrm{1}\mid\:\mathrm{sin}\:\left({x}+\mathrm{1}\right) \\ $$$$ \\ $$

Question Number 109488    Answers: 0   Comments: 0

How many are the permutations of 1 − a little rubik′s cube with 4 squares by side 2 − a classical one with 9 squares by side

$${How}\:{many}\:{are}\:{the}\:{permutations}\:{of} \\ $$$$\mathrm{1}\:−\:{a}\:{little}\:{rubik}'{s}\:{cube}\:{with}\:\mathrm{4}\:{squares}\:{by}\:{side} \\ $$$$\mathrm{2}\:−\:{a}\:{classical}\:{one}\:{with}\:\mathrm{9}\:{squares}\:{by}\:{side} \\ $$

Question Number 109485    Answers: 1   Comments: 0

If f(x)=ax^2 +bx+c, g(x)= −ax^2 +bx+c where ac ≠ 0, then f(x)g(x)=0 has

$$\mathrm{If}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c},\:{g}\left({x}\right)=\:−{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\mathrm{where}\:{ac}\:\neq\:\mathrm{0},\:\mathrm{then}\:{f}\left({x}\right){g}\left({x}\right)=\mathrm{0}\:\mathrm{has} \\ $$

Question Number 109483    Answers: 1   Comments: 2

Question Number 109472    Answers: 4   Comments: 0

Question Number 109469    Answers: 0   Comments: 2

Question Number 109468    Answers: 0   Comments: 0

Question Number 109464    Answers: 0   Comments: 0

(√(1+(√(2+(√(3+(√(4+...))))))))

$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+...}}}} \\ $$

Question Number 109463    Answers: 0   Comments: 3

Question Number 109462    Answers: 1   Comments: 0

  Pg 1056      Pg 1057      Pg 1058      Pg 1059      Pg 1060      Pg 1061      Pg 1062      Pg 1063      Pg 1064      Pg 1065   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com