Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1061
Question Number 109577 Answers: 4 Comments: 1
$$\:\:\:\mathrm{G}{iven}\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{4}} =\mathrm{133} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{and}\:{x}^{\mathrm{2}} −{xy}+{y}^{\mathrm{2}} =\mathrm{7} \\ $$$$\:\:{then}\:{what}\:{is}\:{the}\:{value}\:{of}\:{xy}\:? \\ $$
Question Number 109574 Answers: 0 Comments: 6
Question Number 109569 Answers: 1 Comments: 0
Question Number 109553 Answers: 1 Comments: 2
Question Number 109546 Answers: 1 Comments: 2
$${If}\:{f}\left({x}\right)\:{continue}\:{in}\:\left[\:\mathrm{1},\mathrm{30}\right]\:{and}\: \\ $$$$\underset{\mathrm{6}} {\overset{\mathrm{30}} {\int}}{f}\left({x}\right){dx}\:=\:\mathrm{30},\:{then}\:\underset{\mathrm{1}} {\overset{\mathrm{9}} {\int}}{f}\left(\mathrm{3}{y}+\mathrm{3}\right){dy}\:=\:\_\_ \\ $$
Question Number 109544 Answers: 2 Comments: 1
$$\mathrm{Exclude}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{from}\:\mathrm{the}\:\mathrm{equalities}: \\ $$$$\mathrm{a}=\mathrm{m}+\mathrm{n},\mathrm{b}^{\mathrm{3}} =\mathrm{m}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} ,\mathrm{c}^{\mathrm{5}} =\mathrm{m}^{\mathrm{5}} +\mathrm{n}^{\mathrm{5}} \\ $$
Question Number 109540 Answers: 1 Comments: 1
Question Number 109516 Answers: 3 Comments: 0
$$\mathrm{cos}\:\left(\mathrm{1}−{i}\right)={a}+{ib} \\ $$$${Find}\:\:{a},\:{b}. \\ $$
Question Number 109506 Answers: 0 Comments: 0
Question Number 109509 Answers: 4 Comments: 0
$$\:\:\frac{{bemath}}{\underset{{i}={cooll}} {\overset{{nice}} {\sum}}\left({joss}\right)_{{i}} }\: \\ $$$$ \\ $$$$\int\:\frac{{x}^{\mathrm{2}} \:{dx}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{25}}} \\ $$
Question Number 109508 Answers: 2 Comments: 1
Question Number 109500 Answers: 3 Comments: 0
$${Given}\:\begin{cases}{{a}^{\mathrm{2}} +{ab}+{bc}+{ac}={a}+{c}}\\{{b}^{\mathrm{2}} +{ab}+{bc}+{ac}={b}+{a}}\\{{c}^{\mathrm{2}} +{ab}+{bc}+{ac}={c}+{b}}\end{cases} \\ $$$${find}\:{the}\:{value}\:{of}\:{a}+{b}+{c}\: \\ $$
Question Number 109497 Answers: 1 Comments: 0
Question Number 109495 Answers: 4 Comments: 0
$$\left.\mathrm{1}\right)\:\:\:\:\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \mathrm{sin}\:{x}\centerdot\mathrm{sin}\:\mathrm{2}{x}\centerdot\mathrm{sin}\:\mathrm{3}{x}\centerdot{dx}\:=\:? \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{arcsin}\:{x}\centerdot{dx}=\:? \\ $$
Question Number 109494 Answers: 2 Comments: 0
Question Number 109493 Answers: 1 Comments: 0
Question Number 109489 Answers: 2 Comments: 0
$$\left(\mathrm{1}\right)\:\mathrm{sin}\:\left(\mathrm{2}{x}\right)−\mathrm{cos}\:\left(\mathrm{2}{x}\right)−\mathrm{sin}\:\left({x}\right)+\mathrm{cos}\:\left({x}\right)=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{sin}\:{x}} \\ $$$$\left(\mathrm{3}\right)\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\mid{x}+\mathrm{1}\mid\:\mathrm{sin}\:\left({x}+\mathrm{1}\right) \\ $$$$ \\ $$
Question Number 109488 Answers: 0 Comments: 0
$${How}\:{many}\:{are}\:{the}\:{permutations}\:{of} \\ $$$$\mathrm{1}\:−\:{a}\:{little}\:{rubik}'{s}\:{cube}\:{with}\:\mathrm{4}\:{squares}\:{by}\:{side} \\ $$$$\mathrm{2}\:−\:{a}\:{classical}\:{one}\:{with}\:\mathrm{9}\:{squares}\:{by}\:{side} \\ $$
Question Number 109485 Answers: 1 Comments: 0
$$\mathrm{If}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c},\:{g}\left({x}\right)=\:−{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\mathrm{where}\:{ac}\:\neq\:\mathrm{0},\:\mathrm{then}\:{f}\left({x}\right){g}\left({x}\right)=\mathrm{0}\:\mathrm{has} \\ $$
Question Number 109483 Answers: 1 Comments: 2
Question Number 109472 Answers: 4 Comments: 0
Question Number 109469 Answers: 0 Comments: 2
Question Number 109468 Answers: 0 Comments: 0
Question Number 109464 Answers: 0 Comments: 0
$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+...}}}} \\ $$
Question Number 109463 Answers: 0 Comments: 3
Question Number 109462 Answers: 1 Comments: 0
Pg 1056 Pg 1057 Pg 1058 Pg 1059 Pg 1060 Pg 1061 Pg 1062 Pg 1063 Pg 1064 Pg 1065
Terms of Service
Privacy Policy
Contact: info@tinkutara.com