Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1061

Question Number 113185    Answers: 1   Comments: 0

Question Number 113160    Answers: 2   Comments: 4

Question Number 113159    Answers: 2   Comments: 0

∫_0 ^1 x^2 log(1−x)dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {log}\left(\mathrm{1}−{x}\right){dx} \\ $$

Question Number 113154    Answers: 1   Comments: 0

If ⌊x + (√5)⌋ = ⌊x⌋ + ⌊5⌋ then ⌊x⌋ − x would be greater than (a) (√5) − 2 (b) (√5) − 3 (c) (√5) (d) (√5) + 1 (e) (√5) − 1

$$\mathrm{If}\:\:\:\:\:\:\lfloor\mathrm{x}\:\:+\:\:\sqrt{\mathrm{5}}\rfloor\:\:\:=\:\:\:\lfloor\mathrm{x}\rfloor\:\:+\:\:\lfloor\mathrm{5}\rfloor \\ $$$$\mathrm{then}\:\:\:\:\:\lfloor\mathrm{x}\rfloor\:\:−\:\:\mathrm{x}\:\:\:\:\mathrm{would}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{2}\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{3}\:\:\:\:\:\:\left(\mathrm{c}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:+\:\:\mathrm{1}\:\:\:\:\:\:\:\left(\mathrm{e}\right)\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{1} \\ $$

Question Number 113151    Answers: 1   Comments: 4

Prove ((sin2A+cos2A+1)/(sin2A+cos2A−1))=((tan(A+45°))/(tanA)) Hence, prove that tan15°=2−(√3)

$$\mathrm{Prove}\:\frac{\mathrm{sin2A}+\mathrm{cos2A}+\mathrm{1}}{\mathrm{sin2A}+\mathrm{cos2A}−\mathrm{1}}=\frac{\mathrm{tan}\left(\mathrm{A}+\mathrm{45}°\right)}{\mathrm{tanA}} \\ $$$$\mathrm{Hence},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{tan15}°=\mathrm{2}−\sqrt{\mathrm{3}} \\ $$

Question Number 113368    Answers: 1   Comments: 0

There are 4 identical mathematics books, 3 identical physics books, 2 identical chemistry books. in how many ways can you compile the 9 books such that same books are not mutually adjacent.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{3}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}. \\ $$$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile} \\ $$$$\mathrm{the}\:\mathrm{9}\:\mathrm{books}\:\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{mutually}\:\mathrm{adjacent}. \\ $$

Question Number 113134    Answers: 3   Comments: 2

any one can explain me how to change decimal number to biner number. i′m forgot. example (315)_(10) = (...)_2 thank you

$$\mathrm{any}\:\mathrm{one}\:\mathrm{can}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{how}\:\mathrm{to} \\ $$$$\mathrm{change}\:\mathrm{decimal}\:\mathrm{number}\:\mathrm{to}\: \\ $$$$\mathrm{biner}\:\mathrm{number}.\:\mathrm{i}'\mathrm{m}\:\mathrm{forgot}. \\ $$$$\mathrm{example}\:\left(\mathrm{315}\right)_{\mathrm{10}} \:=\:\left(...\right)_{\mathrm{2}} \\ $$$$\mathrm{thank}\:\mathrm{you} \\ $$

Question Number 113114    Answers: 1   Comments: 1

Question Number 113113    Answers: 0   Comments: 0

suppose that the quantity demanded Q_d =13−6p+2(dp/dt)+(dp^2 /dt^2 ) and quantity supplied Q_s =−3+2p where p is the price find the equilibrium price for market clearance

$${suppose}\:{that}\:{the}\:{quantity}\:{demanded}\:{Q}_{{d}} =\mathrm{13}−\mathrm{6}{p}+\mathrm{2}\frac{{dp}}{{dt}}+\frac{{dp}^{\mathrm{2}} }{{dt}^{\mathrm{2}} }\:{and}\:{quantity}\:{supplied}\:{Q}_{{s}} =−\mathrm{3}+\mathrm{2}{p}\:{where}\:{p}\:{is}\:{the}\:{price}\:{find}\:{the}\:{equilibrium}\:{price}\:{for}\:{market}\:{clearance} \\ $$

Question Number 113111    Answers: 1   Comments: 0

find the area bounded by the curve y^2 =x^3 and the lines x=0 y=1 and y=2

$${find}\:{the}\:{area}\:{bounded}\:{by}\:{the}\:{curve}\:{y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:{and}\:{the}\:{lines}\:{x}=\mathrm{0}\:{y}=\mathrm{1}\:{and}\:{y}=\mathrm{2} \\ $$

Question Number 113110    Answers: 2   Comments: 2

∫_0 ^1 (√(x(x−1)dx))

$$\overset{\mathrm{1}} {\int}_{\mathrm{0}} \sqrt{{x}\left({x}−\mathrm{1}\right){dx}} \\ $$

Question Number 113109    Answers: 1   Comments: 2

Question Number 113107    Answers: 1   Comments: 0

Question Number 113101    Answers: 0   Comments: 2

Prove that GCD ((a,b),b)=(a,b)

$${Prove}\:{that}\:{GCD}\:\left(\left({a},{b}\right),{b}\right)=\left({a},{b}\right) \\ $$

Question Number 113097    Answers: 1   Comments: 0

If 4 women earn as much as 9 boys; 4 men as much as 15 boys; 27 girls as much as 20 women, how many girls will earn the same amount as 24 men?

$$\mathrm{If}\:\mathrm{4}\:\mathrm{women}\:\mathrm{earn}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as}\:\mathrm{9}\:\mathrm{boys};\:\mathrm{4}\:\mathrm{men}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as} \\ $$$$\mathrm{15}\:\mathrm{boys};\:\mathrm{27}\:\mathrm{girls}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as}\:\mathrm{20}\:\mathrm{women},\:\mathrm{how}\:\mathrm{many}\:\mathrm{girls} \\ $$$$\mathrm{will}\:\mathrm{earn}\:\mathrm{the}\:\mathrm{same}\:\mathrm{amount}\:\mathrm{as}\:\mathrm{24}\:\mathrm{men}? \\ $$

Question Number 113092    Answers: 2   Comments: 0

What is the area of a tringle where the sides of triangle are 91 cm, 98 cm, and 105 cm

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tringle}\:\mathrm{where}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{91}\:\mathrm{cm},\:\mathrm{98}\:\mathrm{cm},\:\mathrm{and}\:\mathrm{105}\:\mathrm{cm} \\ $$

Question Number 113080    Answers: 1   Comments: 0

The perimeter of a triangle is 84 cm and it′s area is 336 square cm. If the length of one side of triangle is 30 cm, then what is the lengths of the remaining two sides of triangle ?

$$\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{is} \\ $$$$\mathrm{84}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{area}\:\mathrm{is}\:\mathrm{336}\:\mathrm{square}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{the}\: \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{30}\:\mathrm{cm},\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{two} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:? \\ $$

Question Number 113091    Answers: 1   Comments: 0

What is the area bounded by the curves arg(z) = (π/3) ; arg(z)= ((2π)/3) and arg(z−2−2i(√3))=π on the complex plane?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curves} \\ $$$$\mathrm{arg}\left(\mathrm{z}\right)\:=\:\frac{\pi}{\mathrm{3}}\:;\:\mathrm{arg}\left(\mathrm{z}\right)=\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:\mathrm{and}\:\mathrm{arg}\left(\mathrm{z}−\mathrm{2}−\mathrm{2i}\sqrt{\mathrm{3}}\right)=\pi \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}? \\ $$

Question Number 113073    Answers: 1   Comments: 0

Find all positive integers n for which 5^n +1 is divisible by 7

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}\:\mathrm{for}\: \\ $$$$\mathrm{which}\:\mathrm{5}^{\mathrm{n}} +\mathrm{1}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7} \\ $$

Question Number 113070    Answers: 1   Comments: 0

If n∈Z^+ , prove that (1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<2

$$\mathrm{If}\:{n}\in\mathbb{Z}^{+} ,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}+...\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\sqrt{{n}}}<\mathrm{2} \\ $$$$ \\ $$

Question Number 113063    Answers: 1   Comments: 0

Question Number 113060    Answers: 3   Comments: 0

(1) (√(dy/dx)) = ((d((√y)))/dx) (2) x^2 ≡ 73 (mod 216) (3) If 2^x_1 +2^x_2 +2^x_3 +...+2^x_n =80,000 where x_1 ,x_2 ,x_3 ,...,x_n are distinct whole number . find the value of n

$$\:\left(\mathrm{1}\right)\:\sqrt{\frac{\mathrm{dy}}{\mathrm{dx}}}\:=\:\frac{\mathrm{d}\left(\sqrt{\mathrm{y}}\right)}{\mathrm{dx}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{x}^{\mathrm{2}} \:\equiv\:\mathrm{73}\:\left(\mathrm{mod}\:\mathrm{216}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{If}\:\mathrm{2}^{\mathrm{x}_{\mathrm{1}} } +\mathrm{2}^{\mathrm{x}_{\mathrm{2}} } +\mathrm{2}^{\mathrm{x}_{\mathrm{3}} } +...+\mathrm{2}^{\mathrm{x}_{\mathrm{n}} } =\mathrm{80},\mathrm{000} \\ $$$$\:\mathrm{where}\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,\mathrm{x}_{\mathrm{3}} ,...,\mathrm{x}_{\mathrm{n}} \:\mathrm{are}\:\mathrm{distinct} \\ $$$$\mathrm{whole}\:\mathrm{number}\:.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n} \\ $$

Question Number 113059    Answers: 2   Comments: 0

Question Number 113015    Answers: 2   Comments: 0

Question Number 113006    Answers: 1   Comments: 0

a+(1/(b+(1/(c+(1/(d+...))))))=(2)^(1/3) If a,b,c,d,... are positive integers, then what is the value of ′b′?

$$\mathrm{a}+\frac{\mathrm{1}}{\mathrm{b}+\frac{\mathrm{1}}{\mathrm{c}+\frac{\mathrm{1}}{\mathrm{d}+...}}}=\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},...\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers},\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:'\mathrm{b}'? \\ $$

Question Number 113005    Answers: 1   Comments: 0

Two different two−digit natural numbers are written beside each other such that the larger number is written on the left. When the absolute difference of the two numbers is subtracted from the four−digit number so formed, the number obtained is 5481. What is the sum of the two−digit numbers?

$$\mathrm{Two}\:\mathrm{different}\:\mathrm{two}−\mathrm{digit}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:\mathrm{are}\:\mathrm{written}\:\mathrm{beside}\:\mathrm{each} \\ $$$$\mathrm{other}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{larger}\:\mathrm{number} \\ $$$$\mathrm{is}\:\mathrm{written}\:\mathrm{on}\:\mathrm{the}\:\mathrm{left}.\:\mathrm{When}\:\mathrm{the} \\ $$$$\mathrm{absolute}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{numbers}\:\mathrm{is}\:\mathrm{subtracted}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{four}−\mathrm{digit}\:\mathrm{number}\:\mathrm{so}\:\mathrm{formed},\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{obtained}\:\mathrm{is}\:\mathrm{5481}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}−\mathrm{digit}\:\mathrm{numbers}? \\ $$

  Pg 1056      Pg 1057      Pg 1058      Pg 1059      Pg 1060      Pg 1061      Pg 1062      Pg 1063      Pg 1064      Pg 1065   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com