Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1061

Question Number 113110    Answers: 2   Comments: 2

∫_0 ^1 (√(x(x−1)dx))

$$\overset{\mathrm{1}} {\int}_{\mathrm{0}} \sqrt{{x}\left({x}−\mathrm{1}\right){dx}} \\ $$

Question Number 113109    Answers: 1   Comments: 2

Question Number 113107    Answers: 1   Comments: 0

Question Number 113101    Answers: 0   Comments: 2

Prove that GCD ((a,b),b)=(a,b)

$${Prove}\:{that}\:{GCD}\:\left(\left({a},{b}\right),{b}\right)=\left({a},{b}\right) \\ $$

Question Number 113097    Answers: 1   Comments: 0

If 4 women earn as much as 9 boys; 4 men as much as 15 boys; 27 girls as much as 20 women, how many girls will earn the same amount as 24 men?

$$\mathrm{If}\:\mathrm{4}\:\mathrm{women}\:\mathrm{earn}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as}\:\mathrm{9}\:\mathrm{boys};\:\mathrm{4}\:\mathrm{men}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as} \\ $$$$\mathrm{15}\:\mathrm{boys};\:\mathrm{27}\:\mathrm{girls}\:\mathrm{as}\:\mathrm{much}\:\mathrm{as}\:\mathrm{20}\:\mathrm{women},\:\mathrm{how}\:\mathrm{many}\:\mathrm{girls} \\ $$$$\mathrm{will}\:\mathrm{earn}\:\mathrm{the}\:\mathrm{same}\:\mathrm{amount}\:\mathrm{as}\:\mathrm{24}\:\mathrm{men}? \\ $$

Question Number 113092    Answers: 2   Comments: 0

What is the area of a tringle where the sides of triangle are 91 cm, 98 cm, and 105 cm

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tringle}\:\mathrm{where}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{91}\:\mathrm{cm},\:\mathrm{98}\:\mathrm{cm},\:\mathrm{and}\:\mathrm{105}\:\mathrm{cm} \\ $$

Question Number 113080    Answers: 1   Comments: 0

The perimeter of a triangle is 84 cm and it′s area is 336 square cm. If the length of one side of triangle is 30 cm, then what is the lengths of the remaining two sides of triangle ?

$$\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{is} \\ $$$$\mathrm{84}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{area}\:\mathrm{is}\:\mathrm{336}\:\mathrm{square}\:\mathrm{cm}.\:\mathrm{If}\:\mathrm{the}\: \\ $$$$\mathrm{length}\:\mathrm{of}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{30}\:\mathrm{cm},\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{two} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:? \\ $$

Question Number 113091    Answers: 1   Comments: 0

What is the area bounded by the curves arg(z) = (π/3) ; arg(z)= ((2π)/3) and arg(z−2−2i(√3))=π on the complex plane?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curves} \\ $$$$\mathrm{arg}\left(\mathrm{z}\right)\:=\:\frac{\pi}{\mathrm{3}}\:;\:\mathrm{arg}\left(\mathrm{z}\right)=\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:\mathrm{and}\:\mathrm{arg}\left(\mathrm{z}−\mathrm{2}−\mathrm{2i}\sqrt{\mathrm{3}}\right)=\pi \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane}? \\ $$

Question Number 113073    Answers: 1   Comments: 0

Find all positive integers n for which 5^n +1 is divisible by 7

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{n}\:\mathrm{for}\: \\ $$$$\mathrm{which}\:\mathrm{5}^{\mathrm{n}} +\mathrm{1}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{7} \\ $$

Question Number 113070    Answers: 1   Comments: 0

If n∈Z^+ , prove that (1/(2(√1)))+(1/(3(√2)))+(1/(4(√3)))+...(1/((n+1)(√n)))<2

$$\mathrm{If}\:{n}\in\mathbb{Z}^{+} ,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}}}+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}+...\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\sqrt{{n}}}<\mathrm{2} \\ $$$$ \\ $$

Question Number 113063    Answers: 1   Comments: 0

Question Number 113060    Answers: 3   Comments: 0

(1) (√(dy/dx)) = ((d((√y)))/dx) (2) x^2 ≡ 73 (mod 216) (3) If 2^x_1 +2^x_2 +2^x_3 +...+2^x_n =80,000 where x_1 ,x_2 ,x_3 ,...,x_n are distinct whole number . find the value of n

$$\:\left(\mathrm{1}\right)\:\sqrt{\frac{\mathrm{dy}}{\mathrm{dx}}}\:=\:\frac{\mathrm{d}\left(\sqrt{\mathrm{y}}\right)}{\mathrm{dx}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{x}^{\mathrm{2}} \:\equiv\:\mathrm{73}\:\left(\mathrm{mod}\:\mathrm{216}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{If}\:\mathrm{2}^{\mathrm{x}_{\mathrm{1}} } +\mathrm{2}^{\mathrm{x}_{\mathrm{2}} } +\mathrm{2}^{\mathrm{x}_{\mathrm{3}} } +...+\mathrm{2}^{\mathrm{x}_{\mathrm{n}} } =\mathrm{80},\mathrm{000} \\ $$$$\:\mathrm{where}\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,\mathrm{x}_{\mathrm{3}} ,...,\mathrm{x}_{\mathrm{n}} \:\mathrm{are}\:\mathrm{distinct} \\ $$$$\mathrm{whole}\:\mathrm{number}\:.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{n} \\ $$

Question Number 113059    Answers: 2   Comments: 0

Question Number 113015    Answers: 2   Comments: 0

Question Number 113006    Answers: 1   Comments: 0

a+(1/(b+(1/(c+(1/(d+...))))))=(2)^(1/3) If a,b,c,d,... are positive integers, then what is the value of ′b′?

$$\mathrm{a}+\frac{\mathrm{1}}{\mathrm{b}+\frac{\mathrm{1}}{\mathrm{c}+\frac{\mathrm{1}}{\mathrm{d}+...}}}=\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},...\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers},\:\mathrm{then} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:'\mathrm{b}'? \\ $$

Question Number 113005    Answers: 1   Comments: 0

Two different two−digit natural numbers are written beside each other such that the larger number is written on the left. When the absolute difference of the two numbers is subtracted from the four−digit number so formed, the number obtained is 5481. What is the sum of the two−digit numbers?

$$\mathrm{Two}\:\mathrm{different}\:\mathrm{two}−\mathrm{digit}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:\mathrm{are}\:\mathrm{written}\:\mathrm{beside}\:\mathrm{each} \\ $$$$\mathrm{other}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{larger}\:\mathrm{number} \\ $$$$\mathrm{is}\:\mathrm{written}\:\mathrm{on}\:\mathrm{the}\:\mathrm{left}.\:\mathrm{When}\:\mathrm{the} \\ $$$$\mathrm{absolute}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two} \\ $$$$\mathrm{numbers}\:\mathrm{is}\:\mathrm{subtracted}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{four}−\mathrm{digit}\:\mathrm{number}\:\mathrm{so}\:\mathrm{formed},\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{obtained}\:\mathrm{is}\:\mathrm{5481}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}−\mathrm{digit}\:\mathrm{numbers}? \\ $$

Question Number 113004    Answers: 2   Comments: 0

prove that _0 ∫^( ∞) cos(x^2 )dx = _0 ∫^( ∞) sin(x^2 )dx =((√π)/(2(√2)))

$${prove}\:{that} \\ $$$$\:_{\mathrm{0}} \int^{\:\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:=\:\:_{\mathrm{0}} \int^{\:\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}\:=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$

Question Number 113003    Answers: 1   Comments: 2

The digits of a three−digit number A are written in the reverse order to form another three−digit number B. If B>A and B−A is perfectly divisible by 7. Find the range of values of A.

$$\mathrm{The}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{a}\:\mathrm{three}−\mathrm{digit}\:\mathrm{number}\:\mathrm{A} \\ $$$$\mathrm{are}\:\mathrm{written}\:\mathrm{in}\:\mathrm{the}\:\mathrm{reverse}\:\mathrm{order}\:\mathrm{to} \\ $$$$\mathrm{form}\:\mathrm{another}\:\mathrm{three}−\mathrm{digit}\:\mathrm{number}\:\mathrm{B}. \\ $$$$\mathrm{If}\:\mathrm{B}>\mathrm{A}\:\mathrm{and}\:\mathrm{B}−\mathrm{A}\:\mathrm{is}\:\mathrm{perfectly} \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{7}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of} \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{A}. \\ $$

Question Number 113002    Answers: 1   Comments: 0

After distributing sweets equally among 25 children, 8 sweets remained. Had the number of children been 28, 22 sweets would have been left after equally distributing. What was the total number of sweets?

$$\mathrm{After}\:\mathrm{distributing}\:\mathrm{sweets}\:\mathrm{equally} \\ $$$$\mathrm{among}\:\mathrm{25}\:\mathrm{children},\:\mathrm{8}\:\mathrm{sweets} \\ $$$$\mathrm{remained}.\:\mathrm{Had}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{children} \\ $$$$\mathrm{been}\:\mathrm{28},\:\mathrm{22}\:\mathrm{sweets}\:\mathrm{would}\:\mathrm{have}\:\mathrm{been} \\ $$$$\mathrm{left}\:\mathrm{after}\:\mathrm{equally}\:\mathrm{distributing}.\:\mathrm{What} \\ $$$$\mathrm{was}\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{sweets}? \\ $$

Question Number 113001    Answers: 0   Comments: 1

N! is completely divisible by 13^(52) . What is the sum of the digits of the smallest such number N?

$$\mathrm{N}!\:\mathrm{is}\:\mathrm{completely}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{13}^{\mathrm{52}} . \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{smallest}\:\mathrm{such}\:\mathrm{number}\:\mathrm{N}? \\ $$

Question Number 113000    Answers: 1   Comments: 0

The first 23 natural numbers are written in an increasing order beside each other to form a single number. What is the remainder when this number is divided by 18?

$$\mathrm{The}\:\mathrm{first}\:\mathrm{23}\:\mathrm{natural}\:\mathrm{numbers} \\ $$$$\mathrm{are}\:\mathrm{written}\:\mathrm{in}\:\mathrm{an}\:\mathrm{increasing}\:\mathrm{order} \\ $$$$\mathrm{beside}\:\mathrm{each}\:\mathrm{other}\:\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{number}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when} \\ $$$$\mathrm{this}\:\mathrm{number}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{18}? \\ $$

Question Number 112999    Answers: 1   Comments: 0

Product of divisors of 7056 ?

$$\mathrm{Product}\:\mathrm{of}\:\mathrm{divisors}\:\mathrm{of}\:\mathrm{7056}\:? \\ $$

Question Number 112998    Answers: 1   Comments: 0

If x+y+z=1 and x,y,z are positive real numbers, then the least value of ((1/x)−1)((1/y)−1)((1/z)−1) is

$$\mathrm{If}\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{1}\:\mathrm{and}\:\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{real}\:\mathrm{numbers},\:\mathrm{then}\:\mathrm{the}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{x}}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{y}}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{z}}−\mathrm{1}\right)\:\mathrm{is}\: \\ $$

Question Number 112997    Answers: 1   Comments: 3

∫(( tan x dx)/( (√(sec^3 x + 1)))) = ?

$$\int\frac{\:{tan}\:{x}\:{dx}}{\:\sqrt{{sec}^{\mathrm{3}} \:{x}\:+\:\mathrm{1}}}\:=\:? \\ $$

Question Number 112996    Answers: 1   Comments: 0

Find the last digit of the sum 19^(81) +4^(9k) , k∈N

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{19}^{\mathrm{81}} +\mathrm{4}^{\mathrm{9k}} ,\:\mathrm{k}\in\mathrm{N} \\ $$

Question Number 112992    Answers: 1   Comments: 1

  Pg 1056      Pg 1057      Pg 1058      Pg 1059      Pg 1060      Pg 1061      Pg 1062      Pg 1063      Pg 1064      Pg 1065   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com