Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1051

Question Number 111079    Answers: 1   Comments: 0

Question Number 111027    Answers: 0   Comments: 0

★((log _(JS) (farmer))/)★ (1)∫ ((tan (ln x)tan (ln ((x/2)))dx)/x) (2) sin (cos x) < cos (sin x) ; where 0≤x≤2π

$$\:\:\bigstar\frac{\mathrm{log}\:_{{JS}} \left({farmer}\right)}{}\bigstar \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{tan}\:\left(\mathrm{ln}\:{x}\right)\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{{x}}{\mathrm{2}}\right)\right){dx}}{{x}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{sin}\:\left(\mathrm{cos}\:{x}\right)\:<\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)\:;\:{where} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi \\ $$

Question Number 111025    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((x^2 ln(x))/((1+x)^4 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{4}} }\mathrm{dx} \\ $$

Question Number 111024    Answers: 1   Comments: 0

calculate ∫_0 ^∞ ((x^2 lnx)/((1+x^2 )^3 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{lnx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\mathrm{dx} \\ $$

Question Number 111023    Answers: 1   Comments: 1

∫((sin(x))/(1+x^2 ))dx

$$\int\frac{{sin}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 111011    Answers: 1   Comments: 0

solve: y^(′′) +y^′ =tanx

$${solve}:\:{y}^{''} +{y}^{'} ={tanx} \\ $$

Question Number 111010    Answers: 1   Comments: 0

∫e^x tanx dx

$$\int{e}^{{x}} \:{tanx}\:{dx} \\ $$

Question Number 111008    Answers: 0   Comments: 3

((√(x+1))/(y+2)) + ((√(y+2))/(x+1)) =1 => x=?

$$\frac{\sqrt{\boldsymbol{{x}}+\mathrm{1}}}{\boldsymbol{{y}}+\mathrm{2}}\:+\:\frac{\sqrt{\boldsymbol{{y}}+\mathrm{2}}}{\boldsymbol{{x}}+\mathrm{1}}\:=\mathrm{1}\:\:\:\:\:\:=>\:\:\boldsymbol{{x}}=? \\ $$

Question Number 111006    Answers: 0   Comments: 2

The vectors p,q and r are mutially perpendicularwith ∣q∣=3 and ∣r∣=(√(5.4 )) .If X= 7p+5q+7r and Y=2p+3q−5r are perpendicular, find∣p∣.

$$\mathrm{The}\:\mathrm{vectors}\:\boldsymbol{\mathrm{p}},\boldsymbol{\mathrm{q}}\:\mathrm{and}\:\boldsymbol{\mathrm{r}}\:\mathrm{are}\:\mathrm{mutially}\:\mathrm{perpendicularwith} \\ $$$$\mid\boldsymbol{\mathrm{q}}\mid=\mathrm{3}\:\mathrm{and}\:\mid\boldsymbol{\mathrm{r}}\mid=\sqrt{\mathrm{5}.\mathrm{4}\:}\:.\mathrm{If}\:\mathrm{X}=\:\mathrm{7}\boldsymbol{\mathrm{p}}+\mathrm{5}\boldsymbol{\mathrm{q}}+\mathrm{7}\boldsymbol{\mathrm{r}}\:\mathrm{and} \\ $$$$\mathrm{Y}=\mathrm{2}\boldsymbol{\mathrm{p}}+\mathrm{3}\boldsymbol{\mathrm{q}}−\mathrm{5}\boldsymbol{\mathrm{r}}\:\mathrm{are}\:\mathrm{perpendicular},\:\mathrm{find}\mid\boldsymbol{\mathrm{p}}\mid. \\ $$

Question Number 111002    Answers: 1   Comments: 1

(√(bemath)) ⇒ sin 14°+cos 14°tan 38°−1=?

$$\sqrt{\mathrm{bemath}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{14}°+\mathrm{cos}\:\mathrm{14}°\mathrm{tan}\:\mathrm{38}°−\mathrm{1}=? \\ $$

Question Number 111001    Answers: 0   Comments: 1

Two numbers a and b are chosen at random from the set of first 30 natural numbers. The probability that a^2 −b^2 is divisible by 3 is

$$\mathrm{Two}\:\mathrm{numbers}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{at} \\ $$$$\mathrm{random}\:\mathrm{from}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{first}\:\mathrm{30}\:\mathrm{natural} \\ $$$$\mathrm{numbers}.\:\mathrm{The}\:\mathrm{probability}\:\mathrm{that}\:{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\mathrm{is} \\ $$

Question Number 110993    Answers: 1   Comments: 1

Question Number 111092    Answers: 2   Comments: 4

(√(bemath)) lim_(x→0) ((arctan x)/(arc sin x−x))

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{arctan}\:\mathrm{x}}{\mathrm{arc}\:\mathrm{sin}\:\mathrm{x}−\mathrm{x}} \\ $$

Question Number 110988    Answers: 3   Comments: 0

Evaluate without using L′hopital′s rule lim_(x→4) (((√x)−2)/(x−4))

$$\:\mathrm{Evaluate}\:\mathrm{without}\:\mathrm{using}\:\mathrm{L}'\mathrm{hopital}'\mathrm{s}\:\mathrm{rule} \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\:\frac{\sqrt{{x}}−\mathrm{2}}{{x}−\mathrm{4}} \\ $$

Question Number 110984    Answers: 1   Comments: 3

GCD of two unequal numbers can′t exceed their absolute difference. Prove.

$$\mathrm{GCD}\:{of}\:{two}\:{unequal}\:\:{numbers}\:{can}'{t}\: \\ $$$${exceed}\:{their}\:{absolute} \\ $$$${difference}.\:\:{Prove}. \\ $$

Question Number 110980    Answers: 2   Comments: 2

Question Number 110964    Answers: 1   Comments: 0

solve ∫_0 ^1 ((x^2 lnx)/((1+x^2 )^3 ))dx

$${solve}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} \mathrm{ln}{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{dx} \\ $$

Question Number 111017    Answers: 2   Comments: 0

(√(bemath)) ∫ (dx/( ((4−((3−2x))^(1/(3 )) ))^(1/(4 )) )) ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\int\:\frac{\mathrm{dx}}{\:\sqrt[{\mathrm{4}\:}]{\mathrm{4}−\sqrt[{\mathrm{3}\:}]{\mathrm{3}−\mathrm{2x}}}}\:? \\ $$

Question Number 110954    Answers: 1   Comments: 0

verify the formulae Σ_(n=−∞) ^(+∞) (1/((na +1)^p )) =−(π/a^n ) lim_(z→−(1/a)) (1/((p−1)!)){cotan(πz)}^((p−1)) inthis case 1) a =1 and p=2 2) a=2 and p=2 3)a=2 and p=3 4) a=3 and p=2

$$\mathrm{verify}\:\mathrm{the}\:\mathrm{formulae} \\ $$$$\sum_{\mathrm{n}=−\infty} ^{+\infty} \:\frac{\mathrm{1}}{\left(\mathrm{na}\:+\mathrm{1}\right)^{\mathrm{p}} }\:=−\frac{\pi}{\mathrm{a}^{\mathrm{n}} }\:\mathrm{lim}_{\mathrm{z}\rightarrow−\frac{\mathrm{1}}{\mathrm{a}}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{p}−\mathrm{1}\right)!}\left\{\mathrm{cotan}\left(\pi\mathrm{z}\right)\right\}^{\left(\mathrm{p}−\mathrm{1}\right)} \\ $$$$\left.\mathrm{inthis}\:\mathrm{case}\:\:\mathrm{1}\right)\:\:\mathrm{a}\:=\mathrm{1}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}=\mathrm{2}\:\:\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$$$\left.\mathrm{3}\right)\mathrm{a}=\mathrm{2}\:\mathrm{and}\:\mathrm{p}=\mathrm{3} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{a}=\mathrm{3}\:\mathrm{and}\:\mathrm{p}=\mathrm{2} \\ $$

Question Number 110953    Answers: 0   Comments: 1

Question Number 110951    Answers: 2   Comments: 0

Question Number 110948    Answers: 1   Comments: 6

(√(bemath)) If each point on the line 3x+4y=2 is transformed by matrix M= (((2 0)),((0 1)) ) , the image is a line ___

$$\:\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\mathrm{If}\:\mathrm{each}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{4y}=\mathrm{2} \\ $$$$\mathrm{is}\:\mathrm{transformed}\:\mathrm{by}\:\mathrm{matrix}\:\mathrm{M}=\begin{pmatrix}{\mathrm{2}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{1}}\end{pmatrix}\:,\:\mathrm{the} \\ $$$$\mathrm{image}\:\mathrm{is}\:\mathrm{a}\:\mathrm{line}\:\_\_\_ \\ $$

Question Number 110944    Answers: 5   Comments: 3

■(√(bemath))★ (1)If (√a) −(√b) = 20 , a,b∈R , find maximum value of a−5b ? (2)lim_(x→4) (((√x)−(√(3(√x)−2)))/(x^2 −16)) ? (3)∫ ((tan (ln x) tan (ln ((x/2))))/x) dx (4)((((√(3x−7)))^2 −2)/(x−3)) ≤ ((3−((√x))^2 )/(x−3))

$$\:\:\:\blacksquare\sqrt{\mathrm{bemath}}\bigstar \\ $$$$\left(\mathrm{1}\right)\mathrm{If}\:\sqrt{\mathrm{a}}\:−\sqrt{\mathrm{b}}\:=\:\mathrm{20}\:,\:\mathrm{a},\mathrm{b}\in\mathbb{R}\:,\:\mathrm{find}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{a}−\mathrm{5b}\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{4}} {\mathrm{lim}}\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{3}\sqrt{\mathrm{x}}−\mathrm{2}}}{\mathrm{x}^{\mathrm{2}} −\mathrm{16}}\:? \\ $$$$\left(\mathrm{3}\right)\int\:\frac{\mathrm{tan}\:\left(\mathrm{ln}\:\mathrm{x}\right)\:\mathrm{tan}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{x}}\:\mathrm{dx} \\ $$$$\left(\mathrm{4}\right)\frac{\left(\sqrt{\mathrm{3x}−\mathrm{7}}\right)^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}−\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}−\left(\sqrt{\mathrm{x}}\right)^{\mathrm{2}} }{\mathrm{x}−\mathrm{3}} \\ $$

Question Number 110939    Answers: 2   Comments: 1

Question Number 110926    Answers: 1   Comments: 0

A 2000kg car start from rest and accelerated to a final velocity of 20m/s in 16 seconds. Assuming a constant air resistance of 500N, find (i) the average power developed by the engine of the car. (ii) the instantaneous power developed by the engine when the car reaches its final speed.

$$\mathrm{A}\:\mathrm{2000kg}\:\mathrm{car}\:\mathrm{start}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{and} \\ $$$$\mathrm{accelerated}\:\mathrm{to}\:\mathrm{a}\:\mathrm{final}\:\mathrm{velocity}\:\mathrm{of} \\ $$$$\mathrm{20m}/\mathrm{s}\:\mathrm{in}\:\mathrm{16}\:\mathrm{seconds}.\:\mathrm{Assuming}\:\mathrm{a} \\ $$$$\mathrm{constant}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{500N},\:\mathrm{find} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{the}\:\mathrm{average}\:\mathrm{power}\:\mathrm{developed}\:\mathrm{by} \\ $$$$\mathrm{the}\:\mathrm{engine}\:\mathrm{of}\:\mathrm{the}\:\mathrm{car}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{the}\:\mathrm{instantaneous}\:\mathrm{power} \\ $$$$\mathrm{developed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{engine}\:\mathrm{when}\:\mathrm{the}\:\mathrm{car} \\ $$$$\mathrm{reaches}\:\mathrm{its}\:\mathrm{final}\:\mathrm{speed}. \\ $$

Question Number 110970    Answers: 2   Comments: 1

  Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050      Pg 1051      Pg 1052      Pg 1053      Pg 1054      Pg 1055   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com