Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1051

Question Number 113272    Answers: 2   Comments: 0

Solve the following equations: a)(x^2 −a)^2 −6x^2 +4x+2a=0 b)x^4 −4x^3 −10x^3 +37x−14=0,if it known that the left−hand side of the equation can be decomposed into factors with integral coefficients.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equations}: \\ $$$$\left.\mathrm{a}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{a}\right)^{\mathrm{2}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{2a}=\mathrm{0} \\ $$$$\left.\mathrm{b}\right)\mathrm{x}^{\mathrm{4}} −\mathrm{4x}^{\mathrm{3}} −\mathrm{10x}^{\mathrm{3}} +\mathrm{37x}−\mathrm{14}=\mathrm{0},\mathrm{if}\:\mathrm{it} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{the}\:\mathrm{left}−\mathrm{hand}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{can}\:\mathrm{be}\:\mathrm{decomposed}\:\mathrm{into} \\ $$$$\mathrm{factors}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coefficients}. \\ $$

Question Number 113271    Answers: 0   Comments: 0

solve the initial boundary value problem of wave equation ((∂^2 u(x,t))/∂t^2 )=9((∂^2 u(x,t))/∂x^2 ),0<x<2,t>0 u(0,t)=1,u(2,t)=3,t>0 u(x,0)=2,0<x<2 (∂u/∂t)(x,0)=sin2x,0<x<2

$${solve}\:{the}\:{initial}\:{boundary}\:{value} \\ $$$${problem}\:{of}\:{wave}\:{equation} \\ $$$$\frac{\partial^{\mathrm{2}} {u}\left({x},{t}\right)}{\partial{t}^{\mathrm{2}} }=\mathrm{9}\frac{\partial^{\mathrm{2}} {u}\left({x},{t}\right)}{\partial{x}^{\mathrm{2}} },\mathrm{0}<{x}<\mathrm{2},{t}>\mathrm{0} \\ $$$${u}\left(\mathrm{0},{t}\right)=\mathrm{1},{u}\left(\mathrm{2},{t}\right)=\mathrm{3},{t}>\mathrm{0} \\ $$$${u}\left({x},\mathrm{0}\right)=\mathrm{2},\mathrm{0}<{x}<\mathrm{2} \\ $$$$\frac{\partial{u}}{\partial{t}}\left({x},\mathrm{0}\right)=\mathrm{sin2}{x},\mathrm{0}<{x}<\mathrm{2} \\ $$

Question Number 113262    Answers: 2   Comments: 0

find the complex form of equation 4x^2 −2y^2 =5

$$\mathrm{find}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{form}\:\mathrm{of}\: \\ $$$$\mathrm{equation}\:\mathrm{4x}^{\mathrm{2}} −\mathrm{2y}^{\mathrm{2}} =\mathrm{5} \\ $$

Question Number 113261    Answers: 1   Comments: 0

(((√((√5)+2))+(√((√5)−2)))/( (√((√5)+1))))−(√(3−2(√2)))

$$\frac{\sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}+\sqrt{\sqrt{\mathrm{5}}−\mathrm{2}}}{\:\sqrt{\sqrt{\mathrm{5}}+\mathrm{1}}}−\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}} \\ $$

Question Number 113246    Answers: 1   Comments: 1

Question Number 113243    Answers: 1   Comments: 3

Question Number 113241    Answers: 1   Comments: 0

Question Number 113237    Answers: 1   Comments: 0

Question Number 121155    Answers: 0   Comments: 0

Question Number 113221    Answers: 0   Comments: 3

Does anyone know a good website for nested radicals? ((7((20))^(1/3) −19))^(1/6) =((5/3))^(1/3) −((2/3))^(1/3)

$${Does}\:{anyone}\:{know}\:{a}\:{good} \\ $$$${website}\:{for}\:{nested}\:{radicals}? \\ $$$$\sqrt[{\mathrm{6}}]{\mathrm{7}\sqrt[{\mathrm{3}}]{\mathrm{20}}−\mathrm{19}}=\sqrt[{\mathrm{3}}]{\mathrm{5}/\mathrm{3}}−\sqrt[{\mathrm{3}}]{\mathrm{2}/\mathrm{3}} \\ $$

Question Number 113219    Answers: 1   Comments: 0

Question Number 113218    Answers: 1   Comments: 0

Question Number 113211    Answers: 3   Comments: 0

If α is a root of the equation 4x^2 +2x−1=0 . How do you prove the other root is 4α^3 −3α ?

$$\mathrm{If}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{4x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1}=\mathrm{0}\:.\:\mathrm{How}\:\mathrm{do}\:\mathrm{you} \\ $$$$\mathrm{prove}\:\mathrm{the}\:\mathrm{other}\:\mathrm{root}\:\mathrm{is} \\ $$$$\mathrm{4}\alpha^{\mathrm{3}} −\mathrm{3}\alpha\:?\: \\ $$

Question Number 113203    Answers: 1   Comments: 0

calculate ∫_0 ^∞ (dx/(x^4 +2x^2 +3))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}} \\ $$

Question Number 113200    Answers: 2   Comments: 0

prove that 2tan^(−1) ((1/3))+tan^(−1) ((1/7))=(π/4)

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{2tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{7}}\right)=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 113199    Answers: 1   Comments: 8

Change the following decimal number into binary number: 73.108

$${Change}\:{the}\:{following}\:{decimal} \\ $$$${number}\:{into}\:{binary}\:{number}: \\ $$$$\mathrm{73}.\mathrm{108} \\ $$

Question Number 113198    Answers: 1   Comments: 0

.... calculus.... Evaluate ::: I :=∫_0 ^( 1) (1/( (√(x(x+1)(x+2)(x+3)+1))−3x))dx=??? M.N.july 1970#

$$\:\:\:\:\:\:\:\:\:....\:{calculus}.... \\ $$$$\:\:\:\:\:\:\mathscr{E}{valuate}\:::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{I}\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)+\mathrm{1}}−\mathrm{3}{x}}{dx}=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}# \\ $$$$\:\: \\ $$

Question Number 113196    Answers: 1   Comments: 0

y = sinh^(−1) (sin x) , (dy/dx) =?

$$\:\mathrm{y}\:=\:\mathrm{sinh}\:^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{x}\right)\:,\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=? \\ $$

Question Number 113191    Answers: 1   Comments: 0

Solve 2cos^2 (x/2)+3cos(x/2)+1=0

$$\mathrm{Solve}\:\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}+\mathrm{3cos}\frac{{x}}{\mathrm{2}}+\mathrm{1}=\mathrm{0} \\ $$

Question Number 113190    Answers: 1   Comments: 3

∫_0 ^1 ((logx)/(x−1))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{logx}}{{x}−\mathrm{1}}{dx} \\ $$

Question Number 113188    Answers: 1   Comments: 0

proporsed by m.n july 1790 ∫_0 ^π ln(1−(1/2)sinx)dx

$${proporsed}\:{by}\:{m}.{n}\:{july}\:\mathrm{1790} \\ $$$$\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}{x}\right){dx} \\ $$

Question Number 113187    Answers: 1   Comments: 0

a,b,c ∈N such that ((a(√3) +b)/(b(√3)+c)) ∈ Q, show that ((a^2 +b^2 +c^2 )/(a+b+c)) ∈ Z

$$\mathrm{a},\mathrm{b},\mathrm{c}\:\in\mathbb{N}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{a}\sqrt{\mathrm{3}}\:+\mathrm{b}}{\mathrm{b}\sqrt{\mathrm{3}}+\mathrm{c}}\:\in\:\mathrm{Q},\:\mathrm{show} \\ $$$$\mathrm{that}\:\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:\in\:\mathbb{Z} \\ $$

Question Number 113185    Answers: 1   Comments: 0

Question Number 113160    Answers: 2   Comments: 4

Question Number 113159    Answers: 2   Comments: 0

∫_0 ^1 x^2 log(1−x)dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} {log}\left(\mathrm{1}−{x}\right){dx} \\ $$

Question Number 113154    Answers: 1   Comments: 0

If ⌊x + (√5)⌋ = ⌊x⌋ + ⌊5⌋ then ⌊x⌋ − x would be greater than (a) (√5) − 2 (b) (√5) − 3 (c) (√5) (d) (√5) + 1 (e) (√5) − 1

$$\mathrm{If}\:\:\:\:\:\:\lfloor\mathrm{x}\:\:+\:\:\sqrt{\mathrm{5}}\rfloor\:\:\:=\:\:\:\lfloor\mathrm{x}\rfloor\:\:+\:\:\lfloor\mathrm{5}\rfloor \\ $$$$\mathrm{then}\:\:\:\:\:\lfloor\mathrm{x}\rfloor\:\:−\:\:\mathrm{x}\:\:\:\:\mathrm{would}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\left(\mathrm{a}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{2}\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{3}\:\:\:\:\:\:\left(\mathrm{c}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\:\:\:\sqrt{\mathrm{5}}\:\:+\:\:\mathrm{1}\:\:\:\:\:\:\:\left(\mathrm{e}\right)\:\:\:\sqrt{\mathrm{5}}\:\:−\:\:\mathrm{1} \\ $$

  Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050      Pg 1051      Pg 1052      Pg 1053      Pg 1054      Pg 1055   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com