Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1051

Question Number 113865    Answers: 0   Comments: 0

Consider the series I_n =∫_1 ^e x(lnx)^n dx and I_0 =∫_1 ^e xdx Which of the following is true ? a\ 0≤I_n ≤(e^2 /(n+2)) b\1≤I_n ≤(e^2 /(n+1)) c\I_n is negative

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{series}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{x}\left(\mathrm{lnx}\right)^{\mathrm{n}} \mathrm{dx}\:\mathrm{and}\:\mathrm{I}_{\mathrm{0}} =\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{xdx} \\ $$$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:? \\ $$$$\mathrm{a}\backslash\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\frac{\mathrm{e}^{\mathrm{2}} }{\mathrm{n}+\mathrm{2}}\:\:\:\:\mathrm{b}\backslash\mathrm{1}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\frac{\mathrm{e}^{\mathrm{2}} }{\mathrm{n}+\mathrm{1}}\:\:\mathrm{c}\backslash\mathrm{I}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{negative} \\ $$

Question Number 113862    Answers: 1   Comments: 0

Question Number 113854    Answers: 1   Comments: 0

if f(x)=2x^2 −12x+10. (i) sketch the graph of y=∣f(x)∣ for −1≤x≤7. (ii) find the set of values of k for which the equation ∣f(x)∣=k has 4 distinct roots.

$${if}\:{f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{10}.\: \\ $$$$\left({i}\right)\:{sketch}\:{the}\:{graph}\:{of}\:{y}=\mid{f}\left({x}\right)\mid\:{for} \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{7}. \\ $$$$\left({ii}\right)\:{find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{k}\:{for} \\ $$$${which}\:{the}\:{equation}\:\mid{f}\left({x}\right)\mid={k}\:{has}\:\mathrm{4} \\ $$$${distinct}\:{roots}. \\ $$

Question Number 113849    Answers: 0   Comments: 0

A cricket club has 15 members, of whom only 5 can bowl. If the names of 15 members are put into a box and 11 are drawn at random, then the probability of obtaining an 11 containing at least 3 bowlers is

$$\mathrm{A}\:\mathrm{cricket}\:\mathrm{club}\:\mathrm{has}\:\mathrm{15}\:\mathrm{members},\:\mathrm{of}\:\mathrm{whom} \\ $$$$\mathrm{only}\:\mathrm{5}\:\mathrm{can}\:\mathrm{bowl}.\:\mathrm{If}\:\:\mathrm{the}\:\mathrm{names}\:\mathrm{of}\:\mathrm{15} \\ $$$$\mathrm{members}\:\mathrm{are}\:\mathrm{put}\:\mathrm{into}\:\mathrm{a}\:\mathrm{box}\:\mathrm{and}\:\mathrm{11}\:\mathrm{are} \\ $$$$\mathrm{drawn}\:\mathrm{at}\:\mathrm{random},\:\mathrm{then}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{of}\:\mathrm{obtaining}\:\mathrm{an}\:\mathrm{11}\:\mathrm{containing}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{3}\:\mathrm{bowlers}\:\mathrm{is} \\ $$

Question Number 113848    Answers: 1   Comments: 0

In a △ABC, Σ a^2 (sin^2 B −sin^2 C) =

$$\mathrm{In}\:\mathrm{a}\:\bigtriangleup{ABC},\:\Sigma\:{a}^{\mathrm{2}} \left(\mathrm{sin}^{\mathrm{2}} {B}\:−\mathrm{sin}^{\mathrm{2}} {C}\right)\:= \\ $$

Question Number 113847    Answers: 1   Comments: 0

The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60°. If the third side is 3, the remaining fourth side is

$$\mathrm{The}\:\mathrm{two}\:\mathrm{adjacent}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic} \\ $$$$\mathrm{quadrilateral}\:\mathrm{are}\:\mathrm{2}\:\mathrm{and}\:\mathrm{5}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{angle}\:\mathrm{between}\:\mathrm{them}\:\mathrm{is}\:\mathrm{60}°.\:\mathrm{If}\:\mathrm{the}\:\mathrm{third} \\ $$$$\mathrm{side}\:\mathrm{is}\:\mathrm{3},\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{fourth}\:\mathrm{side}\:\mathrm{is} \\ $$

Question Number 113846    Answers: 2   Comments: 0

Thr general solution of the equation tan 3x=tan 5x is

$$\mathrm{Thr}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{tan}\:\mathrm{3}{x}=\mathrm{tan}\:\mathrm{5}{x}\:\:\mathrm{is} \\ $$

Question Number 113842    Answers: 0   Comments: 0

If in a triangle a cos^2 ((C/2))+c cos^2 ((A/2))=((3b)/2), then the sides of the triangle are in

$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\mathrm{triangle}\: \\ $$$$\:\:\:{a}\:\mathrm{cos}^{\mathrm{2}} \left(\frac{{C}}{\mathrm{2}}\right)+{c}\:\mathrm{cos}^{\mathrm{2}} \left(\frac{{A}}{\mathrm{2}}\right)=\frac{\mathrm{3}{b}}{\mathrm{2}}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{in} \\ $$

Question Number 113841    Answers: 0   Comments: 0

In any △ABC, b^2 sin 2C+c^2 sin 2B =

$$\mathrm{In}\:\mathrm{any}\:\bigtriangleup{ABC},\:\:{b}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}{C}+{c}^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}{B}\:= \\ $$

Question Number 113829    Answers: 0   Comments: 0

what is the darcy formula for laminar flow?

$${what}\:{is}\:{the}\:{darcy}\:{formula}\:{for} \\ $$$${laminar}\:{flow}? \\ $$

Question Number 113872    Answers: 0   Comments: 0

log_(1/( (√2))) sinx >0, x∈[0,4π], then the number of values of x which are integral multiples of (π/4), is.

$$\mathrm{log}_{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} \mathrm{sinx}\:>\mathrm{0},\:\mathrm{x}\in\left[\mathrm{0},\mathrm{4}\pi\right],\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{integral}\:\mathrm{multiples}\:\mathrm{of}\:\frac{\pi}{\mathrm{4}},\:\mathrm{is}. \\ $$

Question Number 113825    Answers: 1   Comments: 0

The greatest and least values of (sin^(−1) x)^3 + (cos^(−1) x)^3 are

$$\mathrm{The}\:\mathrm{greatest}\:\mathrm{and}\:\mathrm{least}\:\mathrm{values}\:\mathrm{of} \\ $$$$\left(\mathrm{sin}^{−\mathrm{1}} {x}\right)^{\mathrm{3}} +\:\left(\mathrm{cos}^{−\mathrm{1}} {x}\right)^{\mathrm{3}} \:\:\mathrm{are} \\ $$

Question Number 113824    Answers: 1   Comments: 0

If 4 sin^(−1) x+cos^(−1) x= π, then x equals

$$\mathrm{If}\:\mathrm{4}\:\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{cos}^{−\mathrm{1}} {x}=\:\pi,\:\mathrm{then}\:{x}\:\mathrm{equals} \\ $$

Question Number 113823    Answers: 1   Comments: 0

A solution of the equation tan^(−1) (1+x)+tan^(−1) (1−x) = (π/2) is

$$\mathrm{A}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}+{x}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\:=\:\frac{\pi}{\mathrm{2}}\:\:\mathrm{is} \\ $$

Question Number 113822    Answers: 1   Comments: 0

If in a △ABC, 3a=b+c, then the value of cot (B/2) cot (B/2) is

$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{3}{a}={b}+{c},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\mathrm{cot}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cot}\:\frac{{B}}{\mathrm{2}}\:\mathrm{is} \\ $$

Question Number 113821    Answers: 3   Comments: 1

∫_0 ^(π/2) ln(2−sinx)dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}−\mathrm{sinx}\right)\mathrm{dx} \\ $$

Question Number 113816    Answers: 1   Comments: 1

0.095=h∙((h/(1+2h)))^(2/3) h=? & show the practice

$$\mathrm{0}.\mathrm{095}={h}\centerdot\left(\frac{{h}}{\mathrm{1}+\mathrm{2}{h}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \:\:\:\:\:\:\:\:\:{h}=?\:\: \\ $$$$\&\:{show}\:{the}\:{practice} \\ $$

Question Number 113812    Answers: 1   Comments: 0

lim_(x→0) xlnx=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}xlnx}=? \\ $$

Question Number 113811    Answers: 1   Comments: 0

If log_(12) 27=a, express log_6 16 in terms of a.

$$\mathrm{If}\:\mathrm{log}_{\mathrm{12}} \mathrm{27}=\mathrm{a},\:\mathrm{express}\:\mathrm{log}_{\mathrm{6}} \mathrm{16}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{a}. \\ $$

Question Number 113808    Answers: 0   Comments: 0

In a △ABC , ∠B=(π/3) and ∠C=(π/4). Let D divide BC internally in the ratio 1 : 3. Then ((sin ∠BAD)/(sin ∠CAD)) equals

$$\mathrm{In}\:\mathrm{a}\:\bigtriangleup{ABC}\:,\:\angle{B}=\frac{\pi}{\mathrm{3}}\:\mathrm{and}\:\angle{C}=\frac{\pi}{\mathrm{4}}.\:\mathrm{Let} \\ $$$${D}\:\mathrm{divide}\:{BC}\:\mathrm{internally}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\mathrm{1}\::\:\mathrm{3}.\:\mathrm{Then}\:\frac{\mathrm{sin}\:\angle{BAD}}{\mathrm{sin}\:\angle{CAD}}\:\mathrm{equals} \\ $$

Question Number 113803    Answers: 3   Comments: 0

If a=log_(24) 12, b=log_(36) 24 and c=log_(48) 36, then 1+abc is equal to (A) 2ab (B) 2ac (C) 2bc (D) 0

$$\mathrm{If}\:\mathrm{a}=\mathrm{log}_{\mathrm{24}} \mathrm{12},\:\mathrm{b}=\mathrm{log}_{\mathrm{36}} \mathrm{24}\:\mathrm{and} \\ $$$$\mathrm{c}=\mathrm{log}_{\mathrm{48}} \mathrm{36},\:\mathrm{then}\:\mathrm{1}+\mathrm{abc}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:\mathrm{2ab}\:\left(\mathrm{B}\right)\:\mathrm{2ac}\:\left(\mathrm{C}\right)\:\mathrm{2bc}\:\left(\mathrm{D}\right)\:\mathrm{0} \\ $$

Question Number 113801    Answers: 0   Comments: 3

what is the number that is evenly divisible by 3 and 6 and but not divisible by 2?

$${what}\:{is}\:{the}\:{number}\:{that}\:{is}\:{evenly}\: \\ $$$${divisible}\:{by}\:\mathrm{3}\:{and}\:\mathrm{6}\:{and}\:{but}\:{not}\:{divisible} \\ $$$${by}\:\mathrm{2}? \\ $$

Question Number 113800    Answers: 1   Comments: 0

log (ab)−log∣b∣ = A. log(a) B. log ∣a∣ C. −log(a) D. None of these.

$$\mathrm{log}\:\left(\mathrm{ab}\right)−\mathrm{log}\mid\mathrm{b}\mid\:= \\ $$$$ \\ $$$$\mathrm{A}.\:\mathrm{log}\left(\mathrm{a}\right)\:\mathrm{B}.\:\mathrm{log}\:\mid\mathrm{a}\mid\:\mathrm{C}.\:−\mathrm{log}\left(\mathrm{a}\right)\:\mathrm{D}. \\ $$$$\mathrm{None}\:\mathrm{of}\:\mathrm{these}. \\ $$

Question Number 113796    Answers: 1   Comments: 0

find the greatest coeeficient in the expansion (6−4x)^(−3)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coeeficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\: \\ $$$$\left(\mathrm{6}−\mathrm{4x}\right)^{−\mathrm{3}} \\ $$

Question Number 113794    Answers: 1   Comments: 0

find the largest coeeficient in (3x−2)^3

$$\mathrm{find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{coeeficient}\:\mathrm{in}\:\left(\mathrm{3x}−\mathrm{2}\right)^{\mathrm{3}} \\ $$

Question Number 113793    Answers: 0   Comments: 0

prove Σ_(k=1) ^∞ ((sin^2 (πk)−πk sin(kx) cos(πk))/k^2 )=(π/4)

$${prove} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}^{\mathrm{2}} \left(\pi{k}\right)−\pi{k}\:{sin}\left({kx}\right)\:{cos}\left(\pi{k}\right)}{{k}^{\mathrm{2}} }=\frac{\pi}{\mathrm{4}} \\ $$

  Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050      Pg 1051      Pg 1052      Pg 1053      Pg 1054      Pg 1055   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com