Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1048
Question Number 112710 Answers: 0 Comments: 0
$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \mathrm{ln}\left(\mathrm{1}−{x}\right)\mathrm{ln}\left(\mathrm{1}+{x}\right){dx} \\ $$
Question Number 112707 Answers: 0 Comments: 0
Question Number 112697 Answers: 3 Comments: 3
$$\:\:\:\:\:....{calculus}... \\ $$$${please}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\varphi} \right)^{\varphi} }{dx}\:=\mathrm{1} \\ $$$$\:\varphi::\:\:{golden}\:\:{ratio}\:... \\ $$
Question Number 112686 Answers: 0 Comments: 2
Question Number 112681 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\left(\mathrm{f}\left(\mathrm{3x}\right)\right)^{\mathrm{2}} \:=\:\left(\mathrm{f}\left(\mathrm{2x}\right)\right)^{\mathrm{2}} +\left(\mathrm{f}\left(\mathrm{x}\right)\right)^{\mathrm{2}} \\ $$
Question Number 112672 Answers: 2 Comments: 2
$$\:\frac{\mathrm{sin}\:\mathrm{A}−\mathrm{cos}\:\mathrm{A}+\mathrm{1}}{\mathrm{sin}\:\mathrm{A}+\mathrm{cos}\:\mathrm{A}−\mathrm{1}}\:?\: \\ $$
Question Number 112666 Answers: 2 Comments: 0
$$\int\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{\mathrm{1}−\mathrm{x}}{\mathrm{x}+\mathrm{1}}}\right)\:\mathrm{dx}\:? \\ $$
Question Number 112664 Answers: 1 Comments: 1
$$\mathrm{what}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{parabola}\: \\ $$$$\mathrm{whose}\:\mathrm{focus}\:\mathrm{F}\left(−\mathrm{3},\mathrm{4}\right)\:\mathrm{and}\:\mathrm{directrix} \\ $$$$\mathrm{is}\:\mathrm{3x}−\mathrm{4y}+\mathrm{5}=\mathrm{0}\:? \\ $$
Question Number 112655 Answers: 1 Comments: 2
$${prove}\:{that}\: \\ $$$$\infty!=\sqrt{\mathrm{2}\pi} \\ $$
Question Number 112651 Answers: 3 Comments: 0
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{a}} {\mathrm{lim}}\:\left(\mathrm{x}−\mathrm{a}\right)\:\mathrm{cosec}\:\left(\frac{\pi\mathrm{x}}{\mathrm{a}}\right)\:? \\ $$$$\left(\mathrm{2}\right)\:\int\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx}\:,\:\mathrm{by}\:\mathrm{using}\:\mathrm{Euler}'\mathrm{s} \\ $$$$\mathrm{substitution} \\ $$
Question Number 112650 Answers: 2 Comments: 0
$$\mathrm{Determine}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{and}\:\mathrm{e}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{ax}+\mathrm{bx}^{\mathrm{3}} +\mathrm{cx}^{\mathrm{2}} +\mathrm{dx}+\mathrm{e}}{\mathrm{x}^{\mathrm{4}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\::\:\mathrm{3xy}^{\mathrm{2}} \:\mathrm{y}'\:=\:\mathrm{4y}^{\mathrm{3}} −\mathrm{x}^{\mathrm{3}} \: \\ $$
Question Number 112645 Answers: 2 Comments: 0
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{7}}\right)−\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{cos}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=?\: \\ $$
Question Number 112642 Answers: 1 Comments: 0
$${question}\:{proposed}\:{by}\:{A}\mathrm{8};\mathrm{15}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{ln}\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}+{x}}{dx} \\ $$
Question Number 112637 Answers: 2 Comments: 0
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sinh}\:\mathrm{x}}{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} ? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{x}\:\mathrm{ln}\:\left(\mathrm{tan}\:\mathrm{x}\right)\:? \\ $$
Question Number 112636 Answers: 0 Comments: 5
Question Number 112626 Answers: 1 Comments: 0
Question Number 112625 Answers: 4 Comments: 1
$$\mathrm{If}\:\mathrm{a}+\mathrm{b}=\mathrm{5},\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{13},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{a}−\mathrm{b}\:\left(\mathrm{where}\:\mathrm{a}>\mathrm{b}\right)\:\mathrm{is} \\ $$
Question Number 112624 Answers: 3 Comments: 0
$$\mathrm{Minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{3}\:\mathrm{is} \\ $$
Question Number 112699 Answers: 3 Comments: 1
$$\:\left(\mathrm{1}\right)\:\int\:\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{e}^{\sqrt{\mathrm{cos}\:\mathrm{x}}} }{\:\sqrt{\mathrm{cos}\:\mathrm{x}}}\:\mathrm{dx}\: \\ $$$$\:\left(\mathrm{2}\right)\:\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2A}}}{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2A}}}??\: \\ $$$$\left(\mathrm{3}\right)\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{b}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} \right)} \\ $$
Question Number 112613 Answers: 1 Comments: 2
$$\:\:\:\:\:....{number}\:{theory}... \\ $$$$\:\:\:\:\:\:\:{Question}\::\:\:\:\:\:\:\mathrm{I}{f}\:\:\:{a}\:,\:{b}\:,\:{c}\:\:\in\:\mathbb{N}\:\:\:;\:{then}\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}!\ast{b}!\ast{c}!\mid\left({a}+{b}+{c}\right)!\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}\:.\:{july}\:\mathrm{970}# \\ $$
Question Number 112606 Answers: 1 Comments: 1
Question Number 112583 Answers: 1 Comments: 3
Question Number 112579 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:....\:{calculus}\:.... \\ $$$$\mathscr{P}{lease}\:\:\mathscr{E}{valuate}\:::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{{x}}{{sin}\left({x}\right)}\right)^{\mathrm{2}} {dx}\:=???\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathscr{M}.\mathscr{N}.{july}\:\mathrm{1970}# \\ $$$$\: \\ $$
Question Number 112576 Answers: 2 Comments: 1
Question Number 112575 Answers: 1 Comments: 0
Question Number 112572 Answers: 1 Comments: 1
Pg 1043 Pg 1044 Pg 1045 Pg 1046 Pg 1047 Pg 1048 Pg 1049 Pg 1050 Pg 1051 Pg 1052
Terms of Service
Privacy Policy
Contact: info@tinkutara.com