Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1048

Question Number 114288    Answers: 0   Comments: 1

Question Number 114304    Answers: 0   Comments: 6

calculus..... evaluate: Ω=∫_(−1) ^( 1) xln(1^x +2^x +3^x +6^x )dx =???

$$\:\:\:\:\:\:\:{calculus}..... \\ $$$$\:{evaluate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{−\mathrm{1}} ^{\:\mathrm{1}} {xln}\left(\mathrm{1}^{{x}} +\mathrm{2}^{{x}} +\mathrm{3}^{{x}} +\mathrm{6}^{{x}} \right){dx}\:=???\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 114263    Answers: 2   Comments: 0

3x^3 −3x−(1/2)=0 x_1 ,x_2 ,x_3 ?

$$\mathrm{3x}^{\mathrm{3}} −\mathrm{3x}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,\mathrm{x}_{\mathrm{3}} \:? \\ $$

Question Number 114259    Answers: 3   Comments: 0

lim_(x→0) ((x arc sin (x^2 ))/(x cos x−sin x)) ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\:\mathrm{arc}\:\mathrm{sin}\:\left({x}^{\mathrm{2}} \right)}{{x}\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}\:? \\ $$

Question Number 114239    Answers: 2   Comments: 1

lim_(x→∞) ((((cos ((4/x))))^(1/(3 )) −1)/(cos ((2/x))−cos ((4/x)))) ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:\left(\frac{\mathrm{4}}{{x}}\right)}−\mathrm{1}}{\mathrm{cos}\:\left(\frac{\mathrm{2}}{{x}}\right)−\mathrm{cos}\:\left(\frac{\mathrm{4}}{{x}}\right)}\:? \\ $$

Question Number 114272    Answers: 3   Comments: 3

find solution set of equation cos 3x = −cos x , x∈(0,3π)

$${find}\:{solution}\:{set}\:{of}\:{equation}\: \\ $$$$\mathrm{cos}\:\mathrm{3}{x}\:=\:−\mathrm{cos}\:{x}\:,\:{x}\in\left(\mathrm{0},\mathrm{3}\pi\right) \\ $$

Question Number 114236    Answers: 2   Comments: 0

70% of the employees in a multinational corporation have VCD players, 75% have microwave ovens, 80% have ACs and 85% have washing machines. At least what percentage of employees has all four gadgets?

$$\mathrm{70\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{employees}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{multinational}\:\mathrm{corporation}\:\mathrm{have}\:\mathrm{VCD} \\ $$$$\mathrm{players},\:\mathrm{75\%}\:\mathrm{have}\:\mathrm{microwave}\:\mathrm{ovens}, \\ $$$$\mathrm{80\%}\:\mathrm{have}\:\mathrm{ACs}\:\mathrm{and}\:\mathrm{85\%}\:\mathrm{have}\:\mathrm{washing} \\ $$$$\mathrm{machines}.\:\mathrm{At}\:\mathrm{least}\:\mathrm{what}\:\mathrm{percentage}\:\mathrm{of} \\ $$$$\mathrm{employees}\:\mathrm{has}\:\mathrm{all}\:\mathrm{four}\:\mathrm{gadgets}? \\ $$

Question Number 114235    Answers: 2   Comments: 0

Let A={(n,2n):n∈N} and B={(2n,3n):n∈N}. Then A∩B is equal to

$$\mathrm{Let}\:\mathrm{A}=\left\{\left(\mathrm{n},\mathrm{2n}\right):\mathrm{n}\in\mathrm{N}\right\}\:\mathrm{and} \\ $$$$\mathrm{B}=\left\{\left(\mathrm{2n},\mathrm{3n}\right):\mathrm{n}\in\mathrm{N}\right\}.\:\mathrm{Then}\:\mathrm{A}\cap\mathrm{B}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 114233    Answers: 1   Comments: 0

If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets A×B and B×A is

$$\mathrm{If}\:\mathrm{two}\:\mathrm{sets}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{having}\:\mathrm{99} \\ $$$$\mathrm{elements}\:\mathrm{in}\:\mathrm{common},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{elements}\:\mathrm{common}\:\mathrm{to}\:\mathrm{each} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{sets}\:\mathrm{A}×\mathrm{B}\:\mathrm{and}\:\mathrm{B}×\mathrm{A}\:\mathrm{is} \\ $$

Question Number 114223    Answers: 1   Comments: 0

Question Number 114219    Answers: 0   Comments: 0

Question Number 114212    Answers: 1   Comments: 0

Question Number 114208    Answers: 0   Comments: 18

find the greatest coeeficient in the expansion of (3+4x)^(−5)

$${find}\:{the}\:{greatest}\:{coeeficient}\:{in}\:{the}\:{expansion} \\ $$$${of}\:\left(\mathrm{3}+\mathrm{4}{x}\right)^{−\mathrm{5}} \\ $$

Question Number 114202    Answers: 0   Comments: 1

pls suggest to me a meaningful nickname in physics.

$${pls}\:{suggest}\:{to}\:{me}\:{a}\:{meaningful}\:{nickname}\:{in} \\ $$$${physics}. \\ $$

Question Number 114201    Answers: 1   Comments: 3

find the greatest coefficient of (3y−8x)^(−6)

$${find}\:{the}\:{greatest}\:{coefficient}\:{of}\:\left(\mathrm{3}{y}−\mathrm{8}{x}\right)^{−\mathrm{6}} \\ $$

Question Number 114225    Answers: 1   Comments: 0

y^(′′) −3y^′ +2y=xsin(x)

$${y}^{''} −\mathrm{3}{y}^{'} +\mathrm{2}{y}={xsin}\left({x}\right) \\ $$

Question Number 114196    Answers: 1   Comments: 1

solve ∫_0 ^(π/4) ln(1+sinx)dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{sin}{x}\right){dx} \\ $$

Question Number 114253    Answers: 1   Comments: 0

For a cubic function in the form: f(x) = ax^3 +bx^2 +cx+d What must be true of a, b, c, and d in order for the function to be able to be converted to the form: f(x) = a(x−h)^3 +k

$$\mathrm{For}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{function}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}: \\ $$$${f}\left({x}\right)\:=\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$$\mathrm{What}\:\mathrm{must}\:\mathrm{be}\:\mathrm{true}\:\mathrm{of}\:{a},\:{b},\:{c},\:\mathrm{and}\:{d}\:\mathrm{in} \\ $$$$\mathrm{order}\:\mathrm{for}\:\mathrm{the}\:\mathrm{function}\:\mathrm{to}\:\mathrm{be}\:\mathrm{able}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{converted}\:\mathrm{to}\:\mathrm{the}\:\mathrm{form}: \\ $$$${f}\left({x}\right)\:=\:{a}\left({x}−{h}\right)^{\mathrm{3}} +{k} \\ $$

Question Number 114189    Answers: 0   Comments: 6

Question Number 114185    Answers: 5   Comments: 0

Question Number 114181    Answers: 3   Comments: 0

Given a function f(x) = x^2 +(1/x^2 )+4x+(4/x) ; where x>0. find the minimum value of f(x)

$${Given}\:{a}\:{function}\: \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{4}{x}+\frac{\mathrm{4}}{{x}}\:;\:{where}\:{x}>\mathrm{0}. \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$

Question Number 114176    Answers: 3   Comments: 1

(1) 3x^2 ln (y) dx + (x^3 /y)dy = 0 (2) (e^(2x) +4)y ′= y (3) dz = t(t^2 +1).e^(2z) dt

$$\left(\mathrm{1}\right)\:\mathrm{3}{x}^{\mathrm{2}} \:\mathrm{ln}\:\left({y}\right)\:{dx}\:+\:\frac{{x}^{\mathrm{3}} }{{y}}{dy}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\left({e}^{\mathrm{2}{x}} +\mathrm{4}\right){y}\:'=\:{y}\: \\ $$$$\left(\mathrm{3}\right)\:{dz}\:=\:{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right).{e}^{\mathrm{2}{z}} \:{dt}\: \\ $$

Question Number 114167    Answers: 0   Comments: 2

if f(x)=x^2 ,∀x∈R then (1) the function is( one −to−one) (2) the function is not (one−to−one) chose (1) or (2)

$${if}\:{f}\left({x}\right)={x}^{\mathrm{2}} \:\:\:,\forall{x}\in{R} \\ $$$${then}\: \\ $$$$\left(\mathrm{1}\right)\:{the}\:{function}\:{is}\left(\:{one}\:−{to}−{one}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{the}\:{function}\:{is}\:{not}\:\left({one}−{to}−{one}\right) \\ $$$$ \\ $$$${chose}\:\left(\mathrm{1}\right)\:{or}\:\left(\mathrm{2}\right) \\ $$

Question Number 114161    Answers: 2   Comments: 0

∫ (dx/(x^4 −5x^2 −16))

$$\:\int\:\frac{{dx}}{{x}^{\mathrm{4}} −\mathrm{5}{x}^{\mathrm{2}} −\mathrm{16}} \\ $$

Question Number 114166    Answers: 0   Comments: 2

if u=5x^2 +1 , y=u^3 then (dy/dx)=? (1) (dy/du).(du/dx) (2)(dy/du)/(du/dx) chose (1) or (2)

$${if}\:{u}=\mathrm{5}{x}^{\mathrm{2}} +\mathrm{1}\:,\:{y}={u}^{\mathrm{3}} \:{then}\:\frac{{dy}}{{dx}}=? \\ $$$$\left(\mathrm{1}\right)\:\frac{{dy}}{{du}}.\frac{{du}}{{dx}}\:\:\:\:\:\left(\mathrm{2}\right)\frac{{dy}}{{du}}/\frac{{du}}{{dx}} \\ $$$$ \\ $$$${chose}\:\left(\mathrm{1}\right)\:{or}\:\left(\mathrm{2}\right) \\ $$

Question Number 114163    Answers: 0   Comments: 0

  Pg 1043      Pg 1044      Pg 1045      Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050      Pg 1051      Pg 1052   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com