Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1048

Question Number 111135    Answers: 2   Comments: 0

Question Number 111134    Answers: 0   Comments: 0

Question Number 111132    Answers: 1   Comments: 0

prove by mathematical induction ⇒ 7^n −(3n+4)×4^(n−1) divided by 9

$$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\Rightarrow\:\mathrm{7}^{\mathrm{n}} −\left(\mathrm{3n}+\mathrm{4}\right)×\mathrm{4}^{\mathrm{n}−\mathrm{1}} \:\mathrm{divided}\:\mathrm{by}\:\mathrm{9} \\ $$

Question Number 111125    Answers: 1   Comments: 0

Question Number 111152    Answers: 0   Comments: 0

Question Number 111282    Answers: 1   Comments: 0

A particle of mass 500g is placed on a plane inclined at an angle 30° to the horizontal. What force is (i) acting parallel to the plane (ii) acting horizontally is required to hold the particle at rest (g=10m/s^2 )

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{500g}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\: \\ $$$$\mathrm{plane}\:\mathrm{inclined}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{30}° \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{horizontal}.\:\mathrm{What}\:\mathrm{force}\:\mathrm{is} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{acting}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{acting}\:\mathrm{horizontally}\:\mathrm{is}\:\mathrm{required}\:\mathrm{to} \\ $$$$\mathrm{hold}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\mathrm{rest}\:\left(\mathrm{g}=\mathrm{10m}/\mathrm{s}^{\mathrm{2}} \right) \\ $$

Question Number 111278    Answers: 1   Comments: 0

Towns A,B,C and D are located on the vertices of a square whose area is 1000km^2 . There is a straight line highway passing through the centre of the square but not through any of the towns. Find the sum of the squares of the distances of the towns to the highway.

$$\mathrm{Towns}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{and}\:\mathrm{D}\:\mathrm{are}\:\mathrm{located}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{whose}\:\mathrm{area}\:\mathrm{is} \\ $$$$\mathrm{1000km}^{\mathrm{2}} .\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{highway}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{square}\:\mathrm{but}\:\mathrm{not}\:\mathrm{through}\:\mathrm{any}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{towns}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squares} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{distances}\:\mathrm{of}\:\mathrm{the}\:\mathrm{towns}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{highway}. \\ $$

Question Number 111114    Answers: 2   Comments: 0

4 sin 36° cos 72° sin 108° ?

$$\mathrm{4}\:\mathrm{sin}\:\mathrm{36}°\:\mathrm{cos}\:\mathrm{72}°\:\mathrm{sin}\:\mathrm{108}°\:?\: \\ $$

Question Number 111109    Answers: 0   Comments: 0

Question Number 111105    Answers: 1   Comments: 1

y′′+2y′+y=e^(−2x) +2x+3

$$\mathrm{y}''+\mathrm{2y}'+\mathrm{y}=\mathrm{e}^{−\mathrm{2x}} +\mathrm{2x}+\mathrm{3} \\ $$

Question Number 111104    Answers: 2   Comments: 2

Question Number 111103    Answers: 3   Comments: 0

(√(bemath)) lim_(x→0) ((ln (sin 3x))/(ln (sin 8x))) ? [ Without L′Hopital ]

$$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{3x}\right)}{\mathrm{ln}\:\left(\mathrm{sin}\:\mathrm{8x}\right)}\:? \\ $$$$\left[\:\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital}\:\right] \\ $$$$ \\ $$

Question Number 111100    Answers: 2   Comments: 0

lim_(x→1^+ ) ((x−1)/( (√(x^2 −1)))) ?

$$\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:? \\ $$

Question Number 111069    Answers: 0   Comments: 0

θ′′(t)+(g/l)sinθ=0

$$\theta''\left({t}\right)+\frac{{g}}{{l}}{sin}\theta=\mathrm{0} \\ $$

Question Number 111067    Answers: 0   Comments: 2

Question Number 111062    Answers: 0   Comments: 2

Question Number 111048    Answers: 0   Comments: 0

Question Number 111047    Answers: 0   Comments: 0

Question Number 111046    Answers: 0   Comments: 1

Question Number 111045    Answers: 0   Comments: 0

Question Number 111044    Answers: 1   Comments: 4

Question Number 111043    Answers: 0   Comments: 0

solve the integral ∫_0 ^∞ (dx/((√x)(1+x^2 +x^4 )^(3/4) ))dx

$${solve}\:{the}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\sqrt{{x}}\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{4}}} }{dx} \\ $$

Question Number 111039    Answers: 1   Comments: 0

solve ∫_0 ^1 (√(1+x^6 ))dx mr abbo your question

$${solve}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{6}} }{dx} \\ $$$${mr}\:\:{abbo}\:{your}\:{question}\: \\ $$

Question Number 111035    Answers: 1   Comments: 0

If b∈Z^+ ∀ both the roots of equation x^2 −bx+132=0 are integers. Find (1)the largest possible value of b (2)the smallest possible value of b.

$$\mathrm{If}\:{b}\in\mathbb{Z}^{+} \:\forall\:\mathrm{both}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$${x}^{\mathrm{2}} −{bx}+\mathrm{132}=\mathrm{0}\:\mathrm{are}\:\mathrm{integers}. \\ $$$$\mathrm{Find} \\ $$$$\left(\mathrm{1}\right)\mathrm{the}\:\mathrm{largest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{b} \\ $$$$\left(\mathrm{2}\right)\mathrm{the}\:\mathrm{smallest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{b}. \\ $$

Question Number 111029    Answers: 1   Comments: 0

Question Number 111083    Answers: 2   Comments: 0

(√(bemath)) (1)∫ (dx/(3sin x+sin^3 x)) (2) lim_(x→∞) x(5^(1/x) −1) (3) find the asymptotes (x^2 /a^2 ) − (y^2 /b^2 ) = 1

$$\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{dx}}{\mathrm{3sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{x}}} \:−\mathrm{1}\right)\: \\ $$$$\left(\mathrm{3}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{asymptotes}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:=\:\mathrm{1}\: \\ $$

  Pg 1043      Pg 1044      Pg 1045      Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050      Pg 1051      Pg 1052   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com