Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1048
Question Number 106591 Answers: 1 Comments: 7
Question Number 106588 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:@\mathrm{bemath}@ \\ $$$$\mathrm{x}\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:+\:\mathrm{3x}−\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{e}^{\mathrm{3x}} \: \\ $$
Question Number 106583 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:@\mathrm{bemath}@ \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}}{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:=? \\ $$
Question Number 106579 Answers: 1 Comments: 0
$$\mathcal{G}\mathrm{iven}\:\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:\mathrm{y}=\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{cos}\:\left(\mathrm{x}+\mathrm{y}\right) \\ $$$$\mathrm{where}\:\mathrm{x},\mathrm{y}\:\in\:\left[\mathrm{0},\mathrm{2}\pi\:\right].\:\mathrm{find}\:\mathrm{x}\:\&\:\mathrm{y}\: \\ $$
Question Number 106572 Answers: 2 Comments: 2
Question Number 106570 Answers: 3 Comments: 0
$$\left(\mathrm{1}\right)\underset{\mathrm{0}} {\overset{\mathrm{a}} {\int}}\:\frac{\sqrt{\mathrm{a}−\mathrm{x}}}{\sqrt{\mathrm{a}−\mathrm{x}}+\sqrt{\mathrm{x}}}\:\mathrm{dx}\:=? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\left(\mathrm{b}\right)\:\frac{\mathrm{a}}{\mathrm{2}}\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{a}\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{2a}\:\:\:\:\:\:\left(\mathrm{e}\right)\:\frac{\mathrm{5}}{\mathrm{2}}\mathrm{a} \\ $$$$\left(\mathrm{2}\right)\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\frac{\mathrm{1}−\mathrm{tan}\:\mathrm{x}}{\mathrm{1}+\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\left(\mathrm{c}\right)\:−\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\left(\mathrm{d}\right)\:\pi\mathrm{ln}\:\mathrm{2}\:\:\:\left(\mathrm{e}\right)\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$\left(\mathrm{3}\right)\:\left(\sqrt{\mathrm{3}}+\mathrm{2}\right)^{\mathrm{x}} \:>\:\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set} \\ $$
Question Number 107247 Answers: 1 Comments: 0
Question Number 106559 Answers: 0 Comments: 1
$${sen}\left(\mathrm{7}\right)= \\ $$
Question Number 106555 Answers: 2 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{4}} \int_{\sqrt{{y}}} ^{\mathrm{2}} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} }{dx}\:{dy} \\ $$
Question Number 106548 Answers: 3 Comments: 0
$${lim}_{{x}\rightarrow{C}} \:\frac{\mathrm{2}{x}+{c}}{{x}−{c}} \\ $$
Question Number 106552 Answers: 0 Comments: 0
Question Number 106526 Answers: 0 Comments: 2
Question Number 106515 Answers: 1 Comments: 0
$${Sum}\:{up}\:{the}\:{following}\:{to}\:{nth}\:{term}: \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{3}}+\frac{\mathrm{10}}{\mathrm{8}}+\frac{\mathrm{17}}{\mathrm{15}}+\frac{\mathrm{26}}{\mathrm{24}}+........ \\ $$
Question Number 106508 Answers: 0 Comments: 6
Question Number 106505 Answers: 2 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\mathrm{n}!}{\left(\mathrm{n}−\mathrm{x}\right)!\mathrm{n}^{\mathrm{x}} }\right]=\mathrm{1} \\ $$
Question Number 106503 Answers: 0 Comments: 11
$$\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{18}}+\frac{\mathrm{2}}{\mathrm{27}}+\frac{\mathrm{2}}{\mathrm{324}}+.... \\ $$
Question Number 106493 Answers: 1 Comments: 1
$${Solve}? \\ $$$$\left(\mathrm{1}\right){cos}\left(\mathrm{70}\right) \\ $$$$\left(\mathrm{2}\right){cos}\left(\mathrm{10}\right) \\ $$
Question Number 106488 Answers: 3 Comments: 1
Question Number 106479 Answers: 3 Comments: 0
Question Number 106469 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{cos}^{\mathrm{2}} \mathrm{x}+\mathrm{3cos}^{\mathrm{2}} \mathrm{2x}=\mathrm{cos}^{\mathrm{2}} \mathrm{3x} \\ $$
Question Number 106468 Answers: 1 Comments: 0
$$\mathrm{4cos}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{3x}\:=\:\mathrm{1} \\ $$
Question Number 106465 Answers: 1 Comments: 0
Question Number 106457 Answers: 1 Comments: 0
Question Number 106455 Answers: 0 Comments: 0
Question Number 106454 Answers: 0 Comments: 0
Question Number 106449 Answers: 3 Comments: 0
Pg 1043 Pg 1044 Pg 1045 Pg 1046 Pg 1047 Pg 1048 Pg 1049 Pg 1050 Pg 1051 Pg 1052
Terms of Service
Privacy Policy
Contact: info@tinkutara.com