Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1046
Question Number 106847 Answers: 3 Comments: 0
$${Given}\:{f}\left({x}\right)=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{{sinx}}+\frac{\mathrm{1}}{{cosx}} \\ $$$${show}\:{that}\:{f}\:'\left({x}\right)={cosx}\frac{\left({tan}^{\mathrm{3}} {x}−\mathrm{3}\sqrt{\mathrm{3}}\right)}{{sin}^{\mathrm{2}} {x}} \\ $$
Question Number 106844 Answers: 0 Comments: 2
$$\mathrm{Please}\:\mathrm{any}\:\mathrm{geometry}\:\mathrm{proof}\:\mathrm{on}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{two} \\ $$$$\mathrm{places}\:\:\:\left(\mathrm{Topic}\:\mathrm{longitude}\:\mathrm{and}\:\mathrm{latitude}\right). \\ $$
Question Number 106842 Answers: 2 Comments: 5
$$\:\:\:\:\:\circ\mathrm{bobhans}\circ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{sin}\:\mathrm{4x}}\:−\mathrm{cos}\:\mathrm{2x}}{\mathrm{x}\:\mathrm{tan}\:\mathrm{x}}\:? \\ $$
Question Number 106830 Answers: 1 Comments: 7
$$\int\frac{\:{dx}}{\sqrt{{x}^{\mathrm{3}} \:}\:\:^{\mathrm{3}} \sqrt{\mathrm{1}\:+\:^{\mathrm{4}} \sqrt{{x}^{\mathrm{3}} }}}\:=\:? \\ $$
Question Number 106828 Answers: 0 Comments: 2
$$\:\int\:\frac{\mathrm{1}}{{xdx}}\:{is}\:{that}\:{true}! \\ $$
Question Number 106825 Answers: 5 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\mathrm{5}{x}\:−\:{tan}\mathrm{5}{x}}{{x}^{\mathrm{3}} } \\ $$
Question Number 106816 Answers: 2 Comments: 1
$$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{n}^{\mathrm{2}} \:\leqslant\:\mathrm{2}^{\mathrm{n}} \:;\:\mathrm{n}\:\geqslant\:\mathrm{4} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} \:<\:\mathrm{2n}^{\mathrm{2}} \:;\:\mathrm{n}\:\geqslant\:\mathrm{3} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{2}^{\mathrm{n}} −\mathrm{3}\:\geqslant\:\mathrm{2}^{\mathrm{n}−\mathrm{2}} \:;\:\mathrm{n}\:\geqslant\:\mathrm{5} \\ $$$$\:\:\:\:\:\:@\mathrm{bemath}@ \\ $$
Question Number 106815 Answers: 1 Comments: 0
$$\:\:\:\boldsymbol{{please}}\:\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{to}}\:\boldsymbol{{show}} \\ $$$$\boldsymbol{{that}}\:\:\boldsymbol{{the}}\:\boldsymbol{{equation}}\: \\ $$$$\:\boldsymbol{{X}}^{\boldsymbol{{n}}} +\boldsymbol{{aX}}+\boldsymbol{{c}}=\mathrm{0}\:\boldsymbol{{can}}\:\boldsymbol{{not}}\:\boldsymbol{{have}} \\ $$$$\boldsymbol{{more}}\:\boldsymbol{{than}}\:\mathrm{3}\:\boldsymbol{{reals}}\:\boldsymbol{{solutions}} \\ $$$$ \\ $$
Question Number 106810 Answers: 3 Comments: 0
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{{tanx}−{sinx}}{{sinx}\left({cos}\mathrm{2}{x}−{cosx}\right)}=??? \\ $$
Question Number 106809 Answers: 2 Comments: 0
$$\int{e}^{\mathrm{2}{x}} {sine}^{{x}} {dx}=?? \\ $$
Question Number 106808 Answers: 0 Comments: 0
$$\int{tan}\left({lnx}\right){dx}=??? \\ $$
Question Number 106807 Answers: 1 Comments: 0
$$\int{sin}\left({ln}\mathrm{3}{x}\right){dx}=??? \\ $$
Question Number 106794 Answers: 3 Comments: 0
$$\mathrm{repost}\:\mathrm{old}\:\mathrm{question}\:\mathrm{unanswer} \\ $$$$\mathcal{G}\mathrm{iven}\:\rightarrow\begin{cases}{\frac{\mathrm{4x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4x}^{\mathrm{2}} }\:=\:\mathrm{y}}\\{\frac{\mathrm{4y}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4y}^{\mathrm{2}} }\:=\:\mathrm{z}}\\{\frac{\mathrm{4z}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4z}^{\mathrm{2}} }\:=\:\mathrm{x}}\end{cases} \\ $$
Question Number 106792 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\succ\mathrm{bobhans}\prec \\ $$$$\mathrm{From}\:\mathrm{a}\:\mathrm{batch}\:\mathrm{containing}\:\mathrm{6}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{4}\:\mathrm{girls} \\ $$$$\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\mathrm{4}\:\mathrm{students}\:\mathrm{is}\:\mathrm{tobe}\:\mathrm{selected}\:. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{group}\:\mathrm{formations}\:\mathrm{will}\:\mathrm{have} \\ $$$$\mathrm{exactly}\:\mathrm{2}\:\mathrm{girls}? \\ $$
Question Number 106787 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\overset{@\mathrm{bemath}@} {\:} \\ $$$$\:\:\mathrm{y}\:=\:\left(\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{sin}\:\mathrm{x}} \:,\:\mathrm{find}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:? \\ $$
Question Number 106782 Answers: 1 Comments: 0
$$\int\mathrm{2}{xdx} \\ $$
Question Number 106779 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:^{\succ\mathrm{bobhans}\prec} \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{find}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{0},\mathrm{18}\right)\:? \\ $$
Question Number 106775 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:^{@\mathrm{bemath}@} \\ $$$$\:\left(\mathrm{1}\right)\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:−\mathrm{6}\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{9y}\:=\:\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} \\ $$$$\:\:\left(\mathrm{2}\right)\:\begin{cases}{\mathrm{x}^{\mathrm{3}} +\mathrm{3y}^{\mathrm{3}} \:=\:\mathrm{11}}\\{\mathrm{x}^{\mathrm{2}} \mathrm{y}\:+\mathrm{xy}^{\mathrm{2}} \:=\:\mathrm{6}}\end{cases}\: \\ $$
Question Number 106771 Answers: 2 Comments: 1
$$\:\:\:\:\:\:\:@\mathrm{bemath}@ \\ $$$$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\left[\frac{\mathrm{4}\left(\mathrm{x}−\pi\right)\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\pi\left(\pi−\mathrm{2x}\right)\:\mathrm{cos}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)}\right]=\:? \\ $$
Question Number 106745 Answers: 2 Comments: 8
Question Number 106744 Answers: 0 Comments: 3
$$\int\:{x}^{{x}^{{x}^{{x}} } } {dx} \\ $$
Question Number 106743 Answers: 1 Comments: 0
$$\int\sqrt{{secy}}{dy} \\ $$
Question Number 106730 Answers: 1 Comments: 0
Question Number 106727 Answers: 2 Comments: 0
Question Number 106726 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{sin5}\theta=\mathrm{16sin}^{\mathrm{5}} \theta−\mathrm{20sin}^{\mathrm{3}} \theta+\mathrm{5sin}\theta \\ $$$$\mathrm{Hence},\:\mathrm{show}\:\mathrm{that}\:\mathrm{sin}\:\mathrm{6}°\:\mathrm{is}\:\mathrm{an} \\ $$$$\mathrm{irrational}\:\mathrm{number}.\: \\ $$
Question Number 106774 Answers: 4 Comments: 0
$$\:\:\:\:\overset{@\mathrm{bemath}@} {\:} \\ $$$$\:\left(\mathrm{1}\right)\:\:\:\:\mathrm{3}^{{x}} \:+\:\mathrm{3}^{\sqrt{{x}}\:} =\:\mathrm{90}.\:\mathrm{find}\:{x}\:?\: \\ $$$$\:\:\left(\mathrm{2}\right)\:\mathrm{x}\:\frac{\mathrm{dy}}{\mathrm{dx}}−\left(\mathrm{1}+\mathrm{x}\right)\mathrm{y}\:=\:\mathrm{xy}^{\mathrm{2}} \\ $$
Pg 1041 Pg 1042 Pg 1043 Pg 1044 Pg 1045 Pg 1046 Pg 1047 Pg 1048 Pg 1049 Pg 1050
Terms of Service
Privacy Policy
Contact: info@tinkutara.com