Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1046
Question Number 114107 Answers: 1 Comments: 2
$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{ln}\left(\frac{\mathrm{1}−\mathrm{sin}{x}}{\mathrm{1}+\mathrm{sin}{x}}\right)\sqrt{\mathrm{cos}{x}}}{\left(\mathrm{1}+\mathrm{sin}{x}\right)\sqrt{\mathrm{1}−\mathrm{sin}{x}}}\right]{dx}=−\mathrm{8} \\ $$
Question Number 114105 Answers: 0 Comments: 1
$$\int\:\frac{{arctan}\left({e}^{{x}} \right)}{\:\sqrt{{x}}}\:{dx} \\ $$
Question Number 114103 Answers: 0 Comments: 1
$$\int\sqrt{{ln}\left({tan}\left({x}\right)\right)}{dx} \\ $$
Question Number 114102 Answers: 2 Comments: 0
$$\int\:\frac{{dx}}{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}} \\ $$
Question Number 114101 Answers: 0 Comments: 0
$${Let}\:\:{x}\:\:{are}\:\:{positive}\:\:{even}\:\:{numbers}\:\:{more}\:\:{than}\:\:\mathrm{8}\:. \\ $$$${What}\:\:{is}\:\:{the}\:\:{remainder}\:\:{of}\:\:\:{divisibility}\:\:: \\ $$$$\left({x}\:+\:\mathrm{1}\right)^{{x}} \:−\:{x}^{{x}} \:\:{by}\:\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} \\ $$
Question Number 114100 Answers: 1 Comments: 2
$$ \\ $$$${If}\:\mathrm{cos}\:=\frac{{a}\mathrm{cos}\:\alpha−{b}}{{a}−{b}\mathrm{cos}\:\alpha},\:{prove}\:{that}, \\ $$$$\frac{\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\theta}{\:\sqrt{{a}+{b}}}=\frac{\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\alpha}{\:\sqrt{{a}+{b}}} \\ $$
Question Number 114099 Answers: 1 Comments: 0
$$\:\:\:....\:\:{mathematical}\:\:{analysis}....\:\: \\ $$$$\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\:\frac{\mathrm{3}^{{n}} −\mathrm{1}}{\mathrm{4}^{{n}} }\right)\zeta\left({n}+\mathrm{1}\right)\:=\pi\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970}# \\ $$$$ \\ $$
Question Number 114094 Answers: 3 Comments: 0
$$\int\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$
Question Number 114088 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\:\mathrm{cot}\:\left(\frac{\mathrm{2}}{{x}}\right)−\mathrm{3cot}\:\left(\frac{\mathrm{2}}{{x}}\right)}{\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}} \\ $$
Question Number 114079 Answers: 2 Comments: 0
Question Number 114077 Answers: 1 Comments: 0
Question Number 114072 Answers: 3 Comments: 0
$$\int\frac{\mathrm{1}}{\boldsymbol{\mathrm{sinx}}\:+\:\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}} \\ $$
Question Number 114071 Answers: 1 Comments: 4
$${Find}\:{the}\:{solution}\:{set}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{5}}\:\geqslant\:{x} \\ $$
Question Number 114066 Answers: 2 Comments: 1
$${Given}\:{f}\left({x}\right)=\mathrm{7}+\mathrm{cos}\:\mathrm{2}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x} \\ $$$${find}\:{f}^{\left(\mathrm{10}\right)} \left({x}\right)\:? \\ $$
Question Number 114061 Answers: 1 Comments: 0
Question Number 114075 Answers: 2 Comments: 0
Question Number 114056 Answers: 4 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\frac{\mathrm{dt}}{\left(\mathrm{2t}+\mathrm{3}\right)^{\mathrm{4}} \left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Question Number 114045 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:...\:\:{advanced}\:{calculus}... \\ $$$$ \\ $$$${i}\::\:\:{prove}\:\:{that}\::: \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}−{x}\right)\right)}{{ln}\left(\mathrm{1}−{x}\right)}\:{dx}\:\overset{?} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${ii}:\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:\overset{?} {=}\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}\:\mathrm{1970}# \\ $$$$\:\:\: \\ $$
Question Number 114044 Answers: 1 Comments: 0
$${old}\:{and}\:{unanswered}...\:{Mr}\:{Mathdave}??? \\ $$$$\int{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}+{x}\right){dx}=? \\ $$
Question Number 114043 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +\mathrm{1}} \\ $$
Question Number 114037 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{4}}} \frac{{tan}\mathrm{2}{x}}{{sin}\mathrm{2}{x}+{cos}\mathrm{2}{x}}{dx} \\ $$
Question Number 114028 Answers: 4 Comments: 1
Question Number 114023 Answers: 2 Comments: 1
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\propto} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$
Question Number 114032 Answers: 0 Comments: 0
Question Number 114020 Answers: 3 Comments: 0
$$\underset{{d}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{6}{d}}\:\mathrm{cos}\:\left(\frac{\mathrm{2}}{\:\sqrt{{d}}}\right)\:\mathrm{sin}\:\left(\frac{\mathrm{5}}{\:\sqrt{{d}}}\right)\:?\: \\ $$$$ \\ $$
Question Number 113997 Answers: 2 Comments: 0
Pg 1041 Pg 1042 Pg 1043 Pg 1044 Pg 1045 Pg 1046 Pg 1047 Pg 1048 Pg 1049 Pg 1050
Terms of Service
Privacy Policy
Contact: info@tinkutara.com