Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1046

Question Number 112992    Answers: 1   Comments: 1

Question Number 112986    Answers: 0   Comments: 0

Question Number 112974    Answers: 2   Comments: 0

solve lim_(x→∞) (((2x^3 −x^2 +2)/(2x^3 −4x^2 +1)))^x

$$\mathrm{solve}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{x}} \\ $$

Question Number 112971    Answers: 1   Comments: 1

Question Number 112962    Answers: 4   Comments: 3

Question Number 112994    Answers: 1   Comments: 0

If n is any even number, then n(n^2 +20) is always divisible by?

$$\mathrm{If}\:\mathrm{n}\:\mathrm{is}\:\mathrm{any}\:\mathrm{even}\:\mathrm{number},\:\mathrm{then} \\ $$$$\mathrm{n}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{20}\right)\:\mathrm{is}\:\mathrm{always}\:\mathrm{divisible}\:\mathrm{by}? \\ $$

Question Number 112958    Answers: 0   Comments: 3

Question Number 112934    Answers: 1   Comments: 7

There are 4 identical mathematics books, 2 identical physics books, 2 identical chemistry books and 2 identical biology books. in how many ways can you compile the 10 books such that same books are not mutually adjacent.

$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{2}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}\:\mathrm{and}\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{biology}\:\mathrm{books}.\:\mathrm{in}\:\mathrm{how}\:\mathrm{many} \\ $$$$\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile}\:\mathrm{the}\:\mathrm{10}\:\mathrm{books} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}. \\ $$

Question Number 112917    Answers: 1   Comments: 3

lim_(x→∞) [csc^2 ((2/x))−(1/4)x^2 ]

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\mathrm{csc}^{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{x}}\right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \right] \\ $$

Question Number 112908    Answers: 2   Comments: 1

if the angle between( kx+5y=1 , kx−2y=2)equal 60^° then k=? help me sir

$${if}\:{the}\:{angle}\:{between}\left(\:{kx}+\mathrm{5}{y}=\mathrm{1}\:,\:{kx}−\mathrm{2}{y}=\mathrm{2}\right){equal}\:\mathrm{60}^{°} {then}\:{k}=? \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$

Question Number 112906    Answers: 0   Comments: 4

prove that (B^(−1) )(A^(−1) )=(AB)^(−1) if A=(34,12),B=(12,−13) please sir help me

$${prove}\:{that}\:\left({B}^{−\mathrm{1}} \right)\left({A}^{−\mathrm{1}} \right)=\left({AB}\right)^{−\mathrm{1}} \:{if}\:{A}=\left(\mathrm{34},\mathrm{12}\right),{B}=\left(\mathrm{12},−\mathrm{13}\right) \\ $$$${please}\:{sir}\:{help}\:{me} \\ $$

Question Number 112904    Answers: 1   Comments: 0

solve the equation y+x=3, 2y+x=5 by ussing matrixis method help me sir please ?

$${solve}\:{the}\:{equation}\:{y}+{x}=\mathrm{3},\:\mathrm{2}{y}+{x}=\mathrm{5}\:{by}\:{ussing}\:{matrixis}\:{method} \\ $$$${help}\:{me}\:{sir}\:{please}\:? \\ $$

Question Number 112902    Answers: 3   Comments: 0

find the angle between 3y+(x/( (√3)))=1 , ((√3)/2)y−x=2 help me sir

$${find}\:{the}\:{angle}\:{between}\:\mathrm{3}{y}+\frac{{x}}{\:\sqrt{\mathrm{3}}}=\mathrm{1}\:,\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{y}−{x}=\mathrm{2} \\ $$$${help}\:{me}\:{sir} \\ $$

Question Number 112900    Answers: 1   Comments: 1

lim_(x→∞) (((x^3 −x^2 +1)/(2x^3 +x^2 −2)))^x ?

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{2}}\right)^{\mathrm{x}} ? \\ $$

Question Number 112885    Answers: 0   Comments: 9

Question Number 112882    Answers: 3   Comments: 2

Question Number 112881    Answers: 1   Comments: 0

Question Number 112874    Answers: 1   Comments: 2

y=sec{sec[tan(tan(sin 4x^2 ))]} (dy/dx) = ?

$$\mathrm{y}=\mathrm{sec}\left\{\mathrm{sec}\left[\mathrm{tan}\left(\mathrm{tan}\left(\mathrm{sin}\:\mathrm{4x}^{\mathrm{2}} \right)\right)\right]\right\} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:? \\ $$

Question Number 112867    Answers: 2   Comments: 2

solve Σ_(n=1) ^∞ (H_n /(n^2 2^n ))

$${solve} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{\mathrm{2}} \mathrm{2}^{{n}} } \\ $$

Question Number 112866    Answers: 6   Comments: 0

Question Number 112863    Answers: 4   Comments: 1

(1)lim_(x→∞) (((2x+3)/(2x−1)))^(4x+2) (2) lim_(x→∞) (((3x+1)/(3x−1)))^(4x−2)

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2x}+\mathrm{3}}{\mathrm{2x}−\mathrm{1}}\right)^{\mathrm{4x}+\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{3x}+\mathrm{1}}{\mathrm{3x}−\mathrm{1}}\right)^{\mathrm{4x}−\mathrm{2}} \\ $$

Question Number 112855    Answers: 3   Comments: 0

1. lim_(x→∞) (((√(5x+4))−(√(3x+9)))/(4x))=... 2. lim_(x→∞) (((√(5−4x+3x^2 ))−(√(4−3x+3x^2 )))/(2x))=...

$$ \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}{x}+\mathrm{4}}−\sqrt{\mathrm{3}{x}+\mathrm{9}}}{\mathrm{4}{x}}=... \\ $$$$ \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}−\mathrm{4}{x}+\mathrm{3}{x}^{\mathrm{2}} }−\sqrt{\mathrm{4}−\mathrm{3}{x}+\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}{x}}=... \\ $$$$ \\ $$

Question Number 112854    Answers: 0   Comments: 3

.... mathematical analysis.... please solve:: Ω =∫_(0 ) ^( ∞) ((x^(4/5) −x^(2/3) )/((1+x^2 )ln(x))) dx =??? ... m.n.july 1970...#

$$\:\:\:\:\:\:\:\:\:....\:{mathematical}\:\:{analysis}....\:\: \\ $$$$ \\ $$$$\:\:\:\:{please}\:\:{solve}:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}\:} ^{\:\infty} \frac{{x}^{\frac{\mathrm{4}}{\mathrm{5}}} \:−{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right){ln}\left({x}\right)}\:{dx}\:=??? \\ $$$$ \\ $$$$\:\:...\:{m}.{n}.{july}\:\mathrm{1970}...#\: \\ $$$$ \\ $$$$ \\ $$

Question Number 112851    Answers: 2   Comments: 0

Without L′Hopital lim_(x→0) ((a/x) − cot (x/a)) ?

$$\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{a}}{\mathrm{x}}\:−\:\mathrm{cot}\:\frac{\mathrm{x}}{\mathrm{a}}\right)\:? \\ $$

Question Number 112848    Answers: 0   Comments: 1

Question Number 112847    Answers: 1   Comments: 0

∫ ((x−sin x)/(1−cos x)) dx ?

$$\:\int\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$

  Pg 1041      Pg 1042      Pg 1043      Pg 1044      Pg 1045      Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com