Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1046
Question Number 115135 Answers: 1 Comments: 1
Question Number 115133 Answers: 3 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{defined} \\ $$$$\mathrm{as}\:{a}_{\mathrm{1}} =\mathrm{2},\:\mathrm{and}\:{a}_{{n}+\mathrm{1}} ={a}_{{n}} +\left(\mathrm{2}{n}−\mathrm{1}\right)\:\mathrm{for}\:\mathrm{all}\:{n}\geqslant\mathrm{1}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{of}\:{a}_{\mathrm{100}} . \\ $$
Question Number 115122 Answers: 4 Comments: 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:−\sqrt{\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:? \\ $$
Question Number 115121 Answers: 1 Comments: 2
$${solve}\:\begin{cases}{\mathrm{tan}\:{x}\:+\:\mathrm{cot}\:{x}\:=\:{p}}\\{\mathrm{sec}\:{x}\:−\:\mathrm{cos}\:{x}\:=\:{q}}\end{cases} \\ $$
Question Number 115117 Answers: 1 Comments: 0
$${What}\:{is}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\:{when}\: \\ $$$$\mathrm{3}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{3}} −{ax}^{\mathrm{2}} −{bx}−\mathrm{12}\:{is}\:{completely} \\ $$$${divisible}\:{by}\:{x}^{\mathrm{2}} −\mathrm{3}\:? \\ $$
Question Number 115112 Answers: 1 Comments: 0
$${What}\:{is}\:{minimum}\:{distance}\:{between}\: \\ $$$${xy}\:=\:\mathrm{4}\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:=\:\mathrm{4}\:?\: \\ $$$$ \\ $$
Question Number 115111 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{mathematical}\:\:{analysis}...\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({x}^{\mathrm{8}} +\mathrm{1}\right){ln}\left({x}\right)}{{x}^{\mathrm{10}} −\mathrm{1}}\:{dx}=\frac{\pi^{\mathrm{2}} \varphi^{\mathrm{2}} }{\mathrm{25}}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}\:\mathrm{1970} \\ $$$$ \\ $$
Question Number 115105 Answers: 1 Comments: 0
Question Number 115103 Answers: 3 Comments: 1
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\left({x}−{a}\right)\left({x}+\mathrm{2}\right)}\:−\sqrt{{x}\left({x}+\mathrm{1}\right)}\:=\:\mathrm{2} \\ $$$${then}\:{a}\:=\:? \\ $$
Question Number 115085 Answers: 0 Comments: 1
Question Number 115074 Answers: 0 Comments: 4
Question Number 115072 Answers: 2 Comments: 1
Question Number 115071 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}}\:{dx}\:? \\ $$
Question Number 115062 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\mathrm{2cos}\theta−\mathrm{sin}\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\left(\mathrm{0}°<\theta<\mathrm{90}°\right) \\ $$$$\mathrm{then}\:\:\mathrm{2sin}\theta+\mathrm{cos}\theta=\:¿ \\ $$
Question Number 115058 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:....\:\:{nice}\:\:{calculus}\:... \\ $$$$\:\:\:\:\:\:{a}\:,\:{b}\:,\:{c}\:,\:{d}\:\:\in\mathbb{N}\:{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{\mathrm{1}}{{d}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{find}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{max}\left({a}+{b}+{c}+{d}\right)\:=??? \\ $$$$\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$
Question Number 115056 Answers: 1 Comments: 0
Question Number 115055 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:...\:\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:\:{evaluation}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\chi=\int_{\mathrm{0}} ^{\:\mathrm{1}} {log}\left(\mathrm{1}−{x}\right).{log}\left(\mathrm{1}+{x}\right)\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{197}{o}... \\ $$$$\: \\ $$
Question Number 115051 Answers: 2 Comments: 6
$$\int{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −\mathrm{2}}{dx} \\ $$
Question Number 115035 Answers: 0 Comments: 2
$${solve}\:\mid\:\mathrm{4}−\frac{\mathrm{3}}{{x}}\:\mid\:<\:\mathrm{8} \\ $$
Question Number 115034 Answers: 0 Comments: 0
$${what}\:{the}\:{equation}\:{of}\:{the}\:{hyperbola}\: \\ $$$${with}\:{the}\:{given}\:{asymtotes}\:{y}=\mathrm{43}{x}+\mathrm{13} \\ $$$${and}\:{y}=−\mathrm{43}{x}+\mathrm{13}\:,\:{a}\:{vertex}\:{at}\:\left(−\mathrm{1},\mathrm{7}\right) \\ $$
Question Number 115033 Answers: 2 Comments: 0
$${If}\:{a}\:{and}\:{b}\:{positive}\:{real}\:{number}\:{where} \\ $$$${a}^{\mathrm{505}} \:+\:{b}^{\mathrm{505}} \:=\:\mathrm{1},\:{then}\:{minimum}\:{value} \\ $$$${a}^{\mathrm{2020}} \:+\:{b}^{\mathrm{2020}} \:{is}\:\_\_ \\ $$
Question Number 115031 Answers: 1 Comments: 0
$$\:{circle}\:{of}\:{centre}\:{P}\:\:{touches}\:{externally}\:{both} \\ $$$${the}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}=\mathrm{0}\:{and}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{6}{y}+\mathrm{5}=\mathrm{0}\:.\:{The}\:{locus}\:{of}\:{P}\:{is} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{2}} −\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} \:=\:\lambda\left({y}−{x}\right)\:{where}\:\lambda\:{is}\:\_\_ \\ $$
Question Number 115030 Answers: 2 Comments: 0
$$\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\sqrt{\mathrm{sec}\:{x}−\mathrm{cos}\:{x}}\:{dx}\:=? \\ $$
Question Number 115027 Answers: 1 Comments: 0
$$\mathrm{If}\:\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\:\frac{\mathrm{17}\:\sqrt[{\mathrm{3}\:}]{\mathrm{ax}+\mathrm{3}}\:+\mathrm{b}}{\mathrm{x}−\mathrm{3}}\:=\:\frac{\mathrm{136}}{\mathrm{27}} \\ $$$$\mathrm{then}\:\mathrm{8a}+\mathrm{b}\:=\:? \\ $$
Question Number 115026 Answers: 2 Comments: 0
$$\mathrm{Solve}:\:\:\int_{\mathrm{1}/\pi} ^{\mathrm{1}/\mathrm{2}} \mathrm{ln}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx} \\ $$
Question Number 115023 Answers: 2 Comments: 0
$${solve}\:\begin{cases}{\mathrm{7}{x}−\mathrm{5}{y}+\mathrm{3}{z}=\mathrm{6}}\\{\mathrm{2}{x}+\mathrm{4}{y}−\mathrm{5}{z}=−\mathrm{5}}\\{\mathrm{9}{x}−\mathrm{8}{y}+\mathrm{2}{z}=−\mathrm{1}}\end{cases}.\:{Find}\:{x}+{y}+{z}\: \\ $$
Pg 1041 Pg 1042 Pg 1043 Pg 1044 Pg 1045 Pg 1046 Pg 1047 Pg 1048 Pg 1049 Pg 1050
Terms of Service
Privacy Policy
Contact: info@tinkutara.com