Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1046

Question Number 114107    Answers: 1   Comments: 2

prove that ∫_0 ^(π/2) [((ln(((1−sinx)/(1+sinx)))(√(cosx)))/((1+sinx)(√(1−sinx))))]dx=−8

$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{ln}\left(\frac{\mathrm{1}−\mathrm{sin}{x}}{\mathrm{1}+\mathrm{sin}{x}}\right)\sqrt{\mathrm{cos}{x}}}{\left(\mathrm{1}+\mathrm{sin}{x}\right)\sqrt{\mathrm{1}−\mathrm{sin}{x}}}\right]{dx}=−\mathrm{8} \\ $$

Question Number 114105    Answers: 0   Comments: 1

∫ ((arctan(e^x ))/( (√x))) dx

$$\int\:\frac{{arctan}\left({e}^{{x}} \right)}{\:\sqrt{{x}}}\:{dx} \\ $$

Question Number 114103    Answers: 0   Comments: 1

∫(√(ln(tan(x))))dx

$$\int\sqrt{{ln}\left({tan}\left({x}\right)\right)}{dx} \\ $$

Question Number 114102    Answers: 2   Comments: 0

∫ (dx/(tan x−sin x))

$$\int\:\frac{{dx}}{\mathrm{tan}\:{x}−\mathrm{sin}\:{x}} \\ $$

Question Number 114101    Answers: 0   Comments: 0

Let x are positive even numbers more than 8 . What is the remainder of divisibility : (x + 1)^x − x^x by (x + 2)^2

$${Let}\:\:{x}\:\:{are}\:\:{positive}\:\:{even}\:\:{numbers}\:\:{more}\:\:{than}\:\:\mathrm{8}\:. \\ $$$${What}\:\:{is}\:\:{the}\:\:{remainder}\:\:{of}\:\:\:{divisibility}\:\:: \\ $$$$\left({x}\:+\:\mathrm{1}\right)^{{x}} \:−\:{x}^{{x}} \:\:{by}\:\:\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} \\ $$

Question Number 114100    Answers: 1   Comments: 2

If cos =((acos α−b)/(a−bcos α)), prove that, ((tan (1/2)θ)/( (√(a+b))))=((tan (1/2)α)/( (√(a+b))))

$$ \\ $$$${If}\:\mathrm{cos}\:=\frac{{a}\mathrm{cos}\:\alpha−{b}}{{a}−{b}\mathrm{cos}\:\alpha},\:{prove}\:{that}, \\ $$$$\frac{\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\theta}{\:\sqrt{{a}+{b}}}=\frac{\mathrm{tan}\:\frac{\mathrm{1}}{\mathrm{2}}\alpha}{\:\sqrt{{a}+{b}}} \\ $$

Question Number 114099    Answers: 1   Comments: 0

.... mathematical analysis.... prove that :: Σ_(n=1) ^∞ ( ((3^n −1)/4^n ))ζ(n+1) =π m.n.july.1970#

$$\:\:\:....\:\:{mathematical}\:\:{analysis}....\:\: \\ $$$$\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\:\frac{\mathrm{3}^{{n}} −\mathrm{1}}{\mathrm{4}^{{n}} }\right)\zeta\left({n}+\mathrm{1}\right)\:=\pi\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970}# \\ $$$$ \\ $$

Question Number 114094    Answers: 3   Comments: 0

∫ln(x)sin^(−1) (x)dx

$$\int\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$

Question Number 114088    Answers: 1   Comments: 0

lim_(x→∞) ((2x cot ((2/x))−3cot ((2/x)))/(5x^2 −2x))

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\:\mathrm{cot}\:\left(\frac{\mathrm{2}}{{x}}\right)−\mathrm{3cot}\:\left(\frac{\mathrm{2}}{{x}}\right)}{\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}} \\ $$

Question Number 114079    Answers: 2   Comments: 0

Question Number 114077    Answers: 1   Comments: 0

Question Number 114072    Answers: 3   Comments: 0

∫(1/(sinx + cosx))dx

$$\int\frac{\mathrm{1}}{\boldsymbol{\mathrm{sinx}}\:+\:\boldsymbol{\mathrm{cosx}}}\boldsymbol{\mathrm{dx}} \\ $$

Question Number 114071    Answers: 1   Comments: 4

Find the solution set (√(x^2 −4x−5)) ≥ x

$${Find}\:{the}\:{solution}\:{set}\: \\ $$$$\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{5}}\:\geqslant\:{x} \\ $$

Question Number 114066    Answers: 2   Comments: 1

Given f(x)=7+cos 2x+2sin^2 x find f^((10)) (x) ?

$${Given}\:{f}\left({x}\right)=\mathrm{7}+\mathrm{cos}\:\mathrm{2}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x} \\ $$$${find}\:{f}^{\left(\mathrm{10}\right)} \left({x}\right)\:? \\ $$

Question Number 114061    Answers: 1   Comments: 0

Question Number 114075    Answers: 2   Comments: 0

Question Number 114056    Answers: 4   Comments: 0

calculate ∫_2 ^(+∞) (dt/((2t+3)^4 (t−1)^5 ))

$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\frac{\mathrm{dt}}{\left(\mathrm{2t}+\mathrm{3}\right)^{\mathrm{4}} \left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{5}} } \\ $$

Question Number 114045    Answers: 4   Comments: 0

... advanced calculus... i : prove that :: ∫_0 ^( 1) ((ln(1+ln(1−x)))/(ln(1−x))) dx =^? Σ_(n=1) ^∞ ((Γ(n+1))/n^2 ) ii: prove that :: Ω =∫_0 ^( 1) ((ln(1+x))/(x(1+x^2 )))dx =^? ((5π^2 )/(48)) m.n.july 1970#

$$\:\:\:\:\:\:\:\:...\:\:{advanced}\:{calculus}... \\ $$$$ \\ $$$${i}\::\:\:{prove}\:\:{that}\::: \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}−{x}\right)\right)}{{ln}\left(\mathrm{1}−{x}\right)}\:{dx}\:\overset{?} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${ii}:\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:\overset{?} {=}\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}\:\mathrm{1970}# \\ $$$$\:\:\: \\ $$

Question Number 114044    Answers: 1   Comments: 0

old and unanswered... Mr Mathdave??? ∫x^2 ln(1−x)ln(1+x)dx=?

$${old}\:{and}\:{unanswered}...\:{Mr}\:{Mathdave}??? \\ $$$$\int{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}+{x}\right){dx}=? \\ $$

Question Number 114043    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (1/(n^3 +1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +\mathrm{1}} \\ $$

Question Number 114037    Answers: 2   Comments: 0

∫^( (π/4)) _0 ((tan2x)/(sin2x+cos2x))dx

$$\underset{\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{4}}} \frac{{tan}\mathrm{2}{x}}{{sin}\mathrm{2}{x}+{cos}\mathrm{2}{x}}{dx} \\ $$

Question Number 114028    Answers: 4   Comments: 1

Question Number 114023    Answers: 2   Comments: 1

Σ_(n=1) ^∝ (1/(n^2 −1))=?

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\propto} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$

Question Number 114032    Answers: 0   Comments: 0

Question Number 114020    Answers: 3   Comments: 0

lim_(d→∞) (√(6d)) cos ((2/( (√d)))) sin ((5/( (√d)))) ?

$$\underset{{d}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{6}{d}}\:\mathrm{cos}\:\left(\frac{\mathrm{2}}{\:\sqrt{{d}}}\right)\:\mathrm{sin}\:\left(\frac{\mathrm{5}}{\:\sqrt{{d}}}\right)\:?\: \\ $$$$ \\ $$

Question Number 113997    Answers: 2   Comments: 0

  Pg 1041      Pg 1042      Pg 1043      Pg 1044      Pg 1045      Pg 1046      Pg 1047      Pg 1048      Pg 1049      Pg 1050   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com