Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1040

Question Number 112359    Answers: 0   Comments: 0

Suppose a job consists of n tasks each of which takes time t seconds. Thus if there are no failuers the sum over all computed nodes of the time taken to execute tasks at that node is nt. Sppose also that the probability of a task failing is p per job per second and when a task fails the overhead of management of the restart is such that it adds 10t seconds to the total execution time of the job. What is the total expected execution time of the job?

$$\mathrm{Suppose}\:\mathrm{a}\:\mathrm{job}\:\mathrm{consists}\:\mathrm{of}\:\boldsymbol{{n}}\:\mathrm{tasks} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{takes}\:\mathrm{time}\:\boldsymbol{{t}} \\ $$$$\mathrm{seconds}.\:\mathrm{Thus}\:\mathrm{if}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no} \\ $$$$\mathrm{failuers}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{over}\:\mathrm{all}\:\mathrm{computed} \\ $$$$\mathrm{nodes}\:\mathrm{of}\:\mathrm{the}\:\mathrm{time}\:\mathrm{taken}\:\mathrm{to}\: \\ $$$$\mathrm{execute}\:\mathrm{tasks}\:\mathrm{at}\:\mathrm{that}\:\mathrm{node}\:\mathrm{is}\:\boldsymbol{{nt}}. \\ $$$$\mathrm{Sppose}\:\mathrm{also}\:\mathrm{that}\:\mathrm{the}\:\mathrm{probability} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{task}\:\mathrm{failing}\:\mathrm{is}\:\boldsymbol{{p}}\:\mathrm{per}\:\mathrm{job}\:\mathrm{per} \\ $$$$\mathrm{second}\:\mathrm{and}\:\mathrm{when}\:\mathrm{a}\:\mathrm{task}\:\mathrm{fails}\:\mathrm{the} \\ $$$$\mathrm{overhead}\:\mathrm{of}\:\mathrm{management}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{restart}\:\mathrm{is}\:\mathrm{such}\:\mathrm{that}\:\mathrm{it}\:\mathrm{adds}\:\mathrm{10}\boldsymbol{{t}}\: \\ $$$$\mathrm{seconds}\:\mathrm{to}\:\mathrm{the}\:\mathrm{total}\:\mathrm{execution}\: \\ $$$$\mathrm{time}\:\mathrm{of}\:\mathrm{the}\:\mathrm{job}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{total} \\ $$$$\mathrm{expected}\:\mathrm{execution}\:\mathrm{time}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{job}? \\ $$

Question Number 112358    Answers: 2   Comments: 0

The point of the curve 3x^2 −4y^2 =72 which nearest to the line 3x+2y=1 is___ (a) (6,3) (c) (6,6) (b) (6,−3) (d) (6,5)

$${The}\:{point}\:{of}\:{the}\:{curve}\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} =\mathrm{72} \\ $$$${which}\:{nearest}\:{to}\:{the}\:{line}\:\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{1} \\ $$$${is\_\_\_} \\ $$$$\left({a}\right)\:\left(\mathrm{6},\mathrm{3}\right)\:\:\:\:\:\:\:\left({c}\right)\:\left(\mathrm{6},\mathrm{6}\right) \\ $$$$\left({b}\right)\:\left(\mathrm{6},−\mathrm{3}\right)\:\:\left({d}\right)\:\left(\mathrm{6},\mathrm{5}\right) \\ $$

Question Number 112356    Answers: 3   Comments: 1

Question Number 112338    Answers: 0   Comments: 0

Question Number 112334    Answers: 0   Comments: 0

Question Number 112331    Answers: 0   Comments: 2

Question Number 112328    Answers: 1   Comments: 0

find the all root (m^3 −6m+9)=0

$${find}\:{the}\:{all}\:{root}\:\left({m}^{\mathrm{3}} −\mathrm{6}{m}+\mathrm{9}\right)=\mathrm{0} \\ $$

Question Number 112313    Answers: 5   Comments: 2

solve ∫_0 ^1 ((lnx)/(√(1+x^2 )))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 112323    Answers: 0   Comments: 1

_≤^≥ = SOLVE the EQUATION_ ^ _( •) n−⌊(√n)⌋−⌊(n)^(1/3) ⌋+⌊(n)^(1/6) ⌋=2016

$$\:_{\leqslant} ^{\geqslant} =\:\:\mathbb{SOLVE}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathcal{EQUATION}}_{} ^{\:_{\:\:\bullet} } \\ $$$$\:\:\:\boldsymbol{\mathrm{n}}−\lfloor\sqrt{\boldsymbol{\mathrm{n}}}\rfloor−\lfloor\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{n}}}\rfloor+\lfloor\sqrt[{\mathrm{6}}]{\boldsymbol{\mathrm{n}}}\rfloor=\mathrm{2016} \\ $$$$ \\ $$

Question Number 112320    Answers: 2   Comments: 1

Question Number 112311    Answers: 1   Comments: 2

lim_(x→0) (√((3sin^2 x+cos 2x−1)/(x.tan 2x))) ?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{\frac{\mathrm{3sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:\mathrm{2x}−\mathrm{1}}{\mathrm{x}.\mathrm{tan}\:\mathrm{2x}}}\:? \\ $$

Question Number 112310    Answers: 4   Comments: 0

Question Number 112308    Answers: 0   Comments: 0

Question Number 112301    Answers: 0   Comments: 1

Question Number 112280    Answers: 2   Comments: 0

If 15 ≤ ∣10−(1/3)a∣ < 20 find a ∈ R

$$\:\:\mathrm{If}\:\mathrm{15}\:\leqslant\:\mid\mathrm{10}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{a}\mid\:<\:\mathrm{20}\: \\ $$$$\mathrm{find}\:\mathrm{a}\:\in\:\mathbb{R} \\ $$

Question Number 112271    Answers: 2   Comments: 0

(√(bemath)) ∫ sin x (√(1−sin x)) dx ?

$$\:\:\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\:\:\int\:\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$

Question Number 112266    Answers: 1   Comments: 0

Let Ω denote the circumcircle of ABC. The tangent to Ω at A meets BC at X. Let the angle bisectors of ∠AXB meet AC and AB at E and F respectively. D is the foot of the angle bisector from ∠BAC on BC. Let AD intersect EF at K and Ω again at L(other than A). Prove that AEDF is a rhombus and further prove that the circle defined by triangle KLX passes through the midpoint of line segment BC.

$$\mathrm{Let}\:\Omega\:\mathrm{denote}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{of}\:\mathrm{ABC}. \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{to}\:\Omega\:\mathrm{at}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{BC}\:\mathrm{at}\:\mathrm{X}. \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{bisectors}\:\mathrm{of}\:\angle\mathrm{AXB}\:\mathrm{meet} \\ $$$$\mathrm{AC}\:\mathrm{and}\:\mathrm{AB}\:\mathrm{at}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F} \\ $$$$\mathrm{respectively}.\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{bisector}\:\mathrm{from}\:\angle\mathrm{BAC}\:\mathrm{on}\:\mathrm{BC}.\:\mathrm{Let}\:\mathrm{AD} \\ $$$$\mathrm{intersect}\:\mathrm{EF}\:\mathrm{at}\:\mathrm{K}\:\mathrm{and}\:\Omega\:\mathrm{again}\:\mathrm{at} \\ $$$$\mathrm{L}\left(\mathrm{other}\:\mathrm{than}\:\mathrm{A}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{AEDF}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rhombus}\:\mathrm{and}\:\mathrm{further}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{triangle}\:\mathrm{KLX}\:\mathrm{passes} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:\mathrm{line}\:\mathrm{segment} \\ $$$$\mathrm{BC}. \\ $$

Question Number 112287    Answers: 3   Comments: 0

{ ((x^2 + 3xy + y^2 = −1)),((x^3 + y^3 = 7)) :}

$$\begin{cases}{{x}^{\mathrm{2}} \:+\:\mathrm{3}{xy}\:+\:{y}^{\mathrm{2}} \:=\:−\mathrm{1}}\\{{x}^{\mathrm{3}} \:+\:{y}^{\mathrm{3}} \:=\:\mathrm{7}}\end{cases} \\ $$

Question Number 112254    Answers: 1   Comments: 0

sin ((π/( 7))).sin (((2π)/7)).sin (((3π)/7)) =?

$$\:\:\:\mathrm{sin}\:\left(\frac{\pi}{\:\mathrm{7}}\right).\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right).\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=? \\ $$

Question Number 112251    Answers: 1   Comments: 0

∫ (dx/((x^4 −1)(√(x^2 +1))))

$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{1}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Question Number 112249    Answers: 2   Comments: 1

∫(dx/((αx^2 +px+β)(√(αx^2 +qx+β))))=?

$$\int\frac{{dx}}{\left(\alpha{x}^{\mathrm{2}} +{px}+\beta\right)\sqrt{\alpha{x}^{\mathrm{2}} +{qx}+\beta}}=? \\ $$

Question Number 112248    Answers: 0   Comments: 0

∫_(−((π )/2)) ^(π/2) cos^(2019) (x)cos(2020x)dx pls help

$$\int_{−\frac{\pi\:\:\:}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2019}} \left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{2020x}\right)\mathrm{dx} \\ $$$$\mathrm{pls}\:\mathrm{help} \\ $$

Question Number 112489    Answers: 0   Comments: 0

solve ∫_0 ^(π/2) ln^2 (sinx)dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}{x}\right){dx} \\ $$

Question Number 112488    Answers: 0   Comments: 0

solve ∫_0 ^∞ ((ln(1+x^2 ))/(1+x^4 ))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$

Question Number 112487    Answers: 0   Comments: 0

solve ∫_0 ^∞ ((ln(1+x^3 ))/(1+x^2 ))dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 112245    Answers: 0   Comments: 0

(1/(1+x^2 ))+(1/(1+x^4 ))+(1/(1+x^8 ))+..... ( x>1)

$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }+\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{8}} }+.....\:\:\:\:\:\:\:\:\:\:\left(\:{x}>\mathrm{1}\right) \\ $$

  Pg 1035      Pg 1036      Pg 1037      Pg 1038      Pg 1039      Pg 1040      Pg 1041      Pg 1042      Pg 1043      Pg 1044   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com