Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1039
Question Number 115472 Answers: 1 Comments: 1
Question Number 115489 Answers: 1 Comments: 0
$${find}\:{range}\:{for} \\ $$$$\mathrm{1}.\:{f}\left({x}\right)=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}−\mathrm{1}} \\ $$$$\mathrm{2}.\:{f}\left({x}\right)=\mathrm{ln}\:\left(\sqrt{\mathrm{4}−\mathrm{9}{x}^{\mathrm{2}} }\right) \\ $$
Question Number 115459 Answers: 3 Comments: 0
$${I}=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\sqrt[{\mathrm{3}\:}]{\mathrm{1}+{x}^{\mathrm{3}} }}\:? \\ $$$${I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:{dx}\:=\:? \\ $$$$ \\ $$
Question Number 115455 Answers: 1 Comments: 1
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{8}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{16}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{32}\pi}{\mathrm{65}}\right)=? \\ $$
Question Number 115449 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$
Question Number 115439 Answers: 0 Comments: 1
Question Number 115438 Answers: 2 Comments: 0
Question Number 115436 Answers: 1 Comments: 0
$$\sqrt{\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}}=\frac{\mathrm{1}}{\:\sqrt{{b}−{a}×{s}^{\mathrm{3}} }}\left(\frac{−{s}^{\mathrm{2}} ×\sqrt[{\mathrm{3}}]{{a}^{\mathrm{2}} }}{\mathrm{2}}+{s}\sqrt[{\mathrm{3}}]{{ab}}+\sqrt[{\mathrm{3}}]{{b}^{\mathrm{2}} }\right) \\ $$$${what}\:{is}\:{s}? \\ $$
Question Number 115429 Answers: 0 Comments: 9
$${how}\:{many}\:{ways}\:{can}\:{you}\:{arrange}\:\mathrm{15}\:{distinct} \\ $$$${balls}\:{into}\:\mathrm{5}\:{cups}\:{if}\:{there}\:{has}\:{to}\:{be}\:{at}\:{least} \\ $$$$\mathrm{1}\:{ball}\:{in}\:{each}\:{cup}? \\ $$$$ \\ $$
Question Number 115418 Answers: 3 Comments: 1
Question Number 115417 Answers: 2 Comments: 0
$$\mathrm{with}\:\mathrm{the}\:\mathrm{use}\:\mathrm{of}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{n}!>\mathrm{2n}^{\mathrm{3}} ,\:\forall\mathrm{n}\geqslant\mathrm{6}. \\ $$
Question Number 115464 Answers: 5 Comments: 0
$${I}=\:\underset{\mathrm{0}\:} {\overset{\mathrm{1}} {\int}}\:{x}\:\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:{dx}\:? \\ $$$${I}=\int\:\sqrt{\mathrm{sin}\:{x}}\:.\mathrm{cos}\:^{\mathrm{3}} {x}\:{dx}\:? \\ $$
Question Number 115408 Answers: 1 Comments: 0
$${how}\:{many}\:\mathrm{6}\:{digit}\:{numbers}\:{exist} \\ $$$${which}\:{are}\:{divisible}\:{by}\:\mathrm{11}\:{and}\:{have}\:{no} \\ $$$${repeating}\:{digits}? \\ $$
Question Number 115405 Answers: 1 Comments: 0
$${find}\:{the}\:{close}\:{form}\:{of} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$
Question Number 115404 Answers: 4 Comments: 0
$$\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:= \\ $$
Question Number 115403 Answers: 0 Comments: 0
$$\int\:{e}^{{x}} \:\frac{\mathrm{1}+{n}\:{x}^{{n}−\mathrm{1}} −{x}^{\mathrm{2}{n}} }{\left(\mathrm{1}−{x}\right)^{{n}} \:\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}{n}} }}\:{dx}\:= \\ $$
Question Number 115399 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{term}\:\mathrm{independent} \\ $$$$\mathrm{of}\:{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −\:{x}^{\mathrm{1}/\mathrm{3}} +\:\mathrm{1}}\:−\:\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} }\right)^{\mathrm{10}} \:\:\mathrm{is} \\ $$
Question Number 115397 Answers: 0 Comments: 0
Question Number 115396 Answers: 3 Comments: 0
$$\mathrm{If}\:\mathrm{a}\:\mathrm{page}\:\mathrm{is}\:\mathrm{torn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{book},\:\mathrm{then} \\ $$$$\mathrm{the}\:\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{pages}\:\mathrm{is}\:\mathrm{718797}\:\mathrm{so} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{torn}\:\mathrm{pages}? \\ $$
Question Number 115401 Answers: 2 Comments: 0
$$\int\frac{\sqrt{\mathrm{x}}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}=? \\ $$
Question Number 115391 Answers: 1 Comments: 0
$$\mathrm{Who}\:\mathrm{can}\:\mathrm{explain} \\ $$$$\mathrm{me}\:\mathrm{what}\:\mathrm{is}\:``\mathbb{R}_{{n}} \left[{x}\right]''? \\ $$$${In}\:{French}\:{if}\:{possible}. \\ $$
Question Number 115387 Answers: 0 Comments: 6
Question Number 115384 Answers: 1 Comments: 0
$${solve}\:{the}\:{limit}\:{problem} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{cos}{x}}{\mathrm{1}−{e}^{−{x}} }\right) \\ $$
Question Number 115471 Answers: 0 Comments: 1
$${For}\:{angles}\:{a},{b},{c}\in\mathbb{R}\:{with}\:{a}+{b}+{c}=\pi,\: \\ $$$${prove}\:{the}\:{following}\:{identities}: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{\mathrm{2}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{\mathrm{2}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{c}}{\mathrm{2}}\right)=\left(\mathrm{tan}\left(\frac{{a}}{\mathrm{2}}\right)\mathrm{tan}\left(\frac{{b}}{\mathrm{2}}\right)\mathrm{tan}\left(\frac{{c}}{\mathrm{2}}\right)\right)^{−\mathrm{1}} \\ $$$$\mathrm{H}{elp} \\ $$$$ \\ $$
Question Number 115380 Answers: 2 Comments: 0
$${if}\: \\ $$$${a}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{3}{b}^{\mathrm{2}} =\mathrm{1},{prove}\:{that}\: \\ $$$$\left({a}+\mathrm{3}{b}\right)^{\mathrm{3}} \frac{{d}^{\mathrm{2}} {b}}{{da}^{\mathrm{2}} }+\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{3}{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$
Question Number 115368 Answers: 1 Comments: 0
$${an}\:{open}\:{rectanqular}\:{container}\:{is}\:{to} \\ $$$${have}\:{a}\:{volume}\:{of}\:\mathrm{62}.\mathrm{5}{cm}^{\mathrm{3}} .{find}\:{the}\:{least} \\ $$$${possible}\:{surface}\:{area}\:{of}\:{the}\:{material} \\ $$$${required} \\ $$
Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039 Pg 1040 Pg 1041 Pg 1042 Pg 1043
Terms of Service
Privacy Policy
Contact: info@tinkutara.com