Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1039

Question Number 115014    Answers: 1   Comments: 0

if I_n =∫_x ^(π/2) xcos^n xdx,where n≻1 show that I_n =((n(n−1)I_(n−2) −1)/n^2 ) and then evaluate ∫_x ^(π/2) xcos^8 xdx

$${if}\:{I}_{{n}} =\int_{{x}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{cos}^{{n}} {xdx},{where}\:{n}\succ\mathrm{1}\:{show} \\ $$$${that}\:{I}_{{n}} =\frac{{n}\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} −\mathrm{1}}{{n}^{\mathrm{2}} }\:{and}\:{then} \\ $$$${evaluate}\:\:\int_{{x}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{cos}^{\mathrm{8}} {xdx} \\ $$

Question Number 115013    Answers: 0   Comments: 0

consider the change in the direction of a curve W=f(θ) between point A and B. Derive from first principle an expression for the radius of curvature R for the hyperbola

$${consider}\:{the}\:{change}\:{in}\:{the}\:{direction}\:{of} \\ $$$${a}\:{curve}\:{W}={f}\left(\theta\right)\:{between}\:{point}\:{A}\:{and} \\ $$$${B}.\:{Derive}\:{from}\:{first}\:{principle}\:{an} \\ $$$${expression}\:{for}\:{the}\:{radius}\:{of}\:{curvature} \\ $$$${R}\:{for}\:{the}\:{hyperbola} \\ $$

Question Number 115011    Answers: 0   Comments: 0

given the quadratic function f(x)=x+2+px+q where p and q are?integer.s let a,b, and c distinc integers such that 2^(2020) evenly divides f(a),f(b),and f(c),but 2^(1000) does not divide b−a and also does not divide c−a.show that 2^(1021) just divide b−c?

$${given}\:{the}\:{quadratic}\:{function}\: \\ $$$${f}\left({x}\right)={x}+\mathrm{2}+{px}+{q}\:{where}\:{p}\:{and}\:{q}\:{are}?{integer}.{s} \\ $$$${let}\:{a},{b},\:{and}\:{c}\:{distinc}\:{integers}\:{such}\:{that} \\ $$$$\mathrm{2}^{\mathrm{2020}} \:\:{evenly}\:{divides}\:{f}\left({a}\right),{f}\left({b}\right),{and}\:{f}\left({c}\right),{but} \\ $$$$\mathrm{2}^{\mathrm{1000}} \:{does}\:{not}\:{divide}\:{b}−{a}\:{and}\:{also}\:{does}\:{not} \\ $$$${divide}\:{c}−{a}.{show}\:{that}\:\mathrm{2}^{\mathrm{1021}} \:{just}\:{divide}\:{b}−{c}? \\ $$

Question Number 115009    Answers: 2   Comments: 0

∫_C (e^z /(1−cos z))dz ; C:∣z∣=1

$$\int_{\mathrm{C}} \frac{{e}^{{z}} }{\mathrm{1}−\mathrm{cos}\:{z}}{dz}\:;\:\mathrm{C}:\mid{z}\mid=\mathrm{1} \\ $$

Question Number 115000    Answers: 2   Comments: 0

....nice math... if y =(cos(2x))^(−(1/2)) then prove :: y+y^(′′) = 3y^5 ...m.n.july.1970...

$$\:\:\:\:\:\:\:\:\:\:\:\:....{nice}\:\:\:{math}... \\ $$$$ \\ $$$$\:{if}\:\:{y}\:=\left({cos}\left(\mathrm{2}{x}\right)\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{then} \\ $$$${prove}\:::\:\:\:{y}+{y}^{''} =\:\mathrm{3}{y}^{\mathrm{5}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$

Question Number 115095    Answers: 2   Comments: 0

Question Number 114990    Answers: 0   Comments: 0

Question Number 114988    Answers: 2   Comments: 0

Prove tan^2 x=sin^2 x+sec^2 x

$$\mathrm{Prove}\:\mathrm{tan}^{\mathrm{2}} {x}=\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{sec}^{\mathrm{2}} {x} \\ $$

Question Number 114981    Answers: 2   Comments: 2

Without L′Hopital (1)lim_(x→1) ((x(x+(1/x))^5 −32)/(x−1)) =? (2) lim_(x→∞) (√(2x+(√(2x+(√(2x+(√(2x+(√(...)))))))))) −(√(2x)) = ?

$${Without}\:{L}'{Hopital} \\ $$$$\:\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{5}} −\mathrm{32}}{{x}−\mathrm{1}}\:=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2}{x}+\sqrt{\mathrm{2}{x}+\sqrt{\mathrm{2}{x}+\sqrt{\mathrm{2}{x}+\sqrt{...}}}}}\:−\sqrt{\mathrm{2}{x}}\:=\:? \\ $$

Question Number 114980    Answers: 1   Comments: 0

Question Number 114978    Answers: 2   Comments: 0

Solve x^2 dy + y(x+y)dx=0

$$ \\ $$$$\:\:{Solve}\: \\ $$$$\:{x}^{\mathrm{2}} {dy}\:+\:{y}\left({x}+{y}\right){dx}=\mathrm{0} \\ $$

Question Number 114975    Answers: 1   Comments: 0

.... nice mathematics.... show that :: Φ = ∫_0 ^( 1) li_2 (x)dx = (π^2 /6) −1 ✓ m.n.july.1970

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\:{nice}\:\:{mathematics}....\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{show}\:\:{that}\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left({x}\right){dx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\mathrm{1}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$ \\ $$

Question Number 114967    Answers: 0   Comments: 1

Question Number 114965    Answers: 1   Comments: 0

find all irational numbers x such that x 2+20x+20 and x^(3 ) −2020x+1 both is a rasional number.

$${find}\:{all}\:{irational}\:{numbers}\:{x}\:{such}\:{that}\:{x} \\ $$$$\mathrm{2}+\mathrm{20}{x}+\mathrm{20}\:{and}\:{x}^{\mathrm{3}\:} −\mathrm{2020}{x}+\mathrm{1}\:\:\:{both}\:{is}\:{a} \\ $$$${rasional}\:{number}. \\ $$

Question Number 114996    Answers: 2   Comments: 1

...nice mathematics... prove that::: i:: Σ_(n=1) ^∞ (1/(sinh^2 (πn))) =(1/6) −(1/(2π)) ✓ ii:: Σ_(n=1) ^∞ (n/(e^(2πn) −1))=(1/(24)) −(1/(8π)) ✓✓ iii::Σ_(n=1) ^∞ (1/( nsinh(πn))) =(π/(12))−((ln(2))/4) ✓✓✓ .... M..n..july..1970 ....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{mathematics}...\: \\ $$$$\:\:\:\:{prove}\:{that}::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{i}::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{sinh}^{\mathrm{2}} \left(\pi{n}\right)}\:=\frac{\mathrm{1}}{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{2}\pi}\:\:\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{8}\pi}\:\:\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{iii}::\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\:{nsinh}\left(\pi{n}\right)}\:=\frac{\pi}{\mathrm{12}}−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{4}}\:\checkmark\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\:\:\:\mathscr{M}..{n}..{july}..\mathrm{1970}\:.... \\ $$$$ \\ $$

Question Number 114959    Answers: 2   Comments: 0

long time question proposed by math abdo ∫_0 ^∞ ((lnx)/(1+x^2 +x^4 ))dx

$${long}\:{time}\:{question}\:{proposed}\:{by} \\ $$$${math}\:{abdo} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }{dx} \\ $$$$ \\ $$

Question Number 114956    Answers: 0   Comments: 5

Question Number 114950    Answers: 0   Comments: 0

note the tringle ABC is not isosceles with the elevtions of AA1,BB1, and CC1.suppose BA amd CA respectively point at BB1 and CC1 so that A1BA is pependiculer to BB1 and A1CA perpendiculer to CC1.the read and BC lines intersect at the TA point. define in the same way TB and TC poits. prove that TA,TB,and TC are collinear.

$${note}\:{the}\:{tringle}\:{ABC}\:\:{is}\:{not}\:{isosceles}\:{with}\: \\ $$$${the}\:{elevtions}\:{of}\:{AA}\mathrm{1},{BB}\mathrm{1},\:{and}\:{CC}\mathrm{1}.{suppose} \\ $$$${BA}\:\:{amd}\:{CA}\:{respectively}\:{point}\:{at}\:{BB}\mathrm{1}\:{and} \\ $$$${CC}\mathrm{1}\:{so}\:{that}\:{A}\mathrm{1}{BA}\:{is}\:{pependiculer}\:{to}\:{BB}\mathrm{1} \\ $$$${and}\:{A}\mathrm{1}{CA}\:{perpendiculer}\:{to}\:{CC}\mathrm{1}.{the}\:{read}\: \\ $$$${and}\:{BC}\:{lines}\:{intersect}\:{at}\:{the}\:{TA}\:{point}. \\ $$$${define}\:{in}\:{the}\:{same}\:{way}\:\:{TB}\:{and}\:{TC}\:{poits}. \\ $$$${prove}\:{that}\:{TA},{TB},{and}\:{TC}\:{are}\:{collinear}. \\ $$

Question Number 114945    Answers: 1   Comments: 0

Question Number 114943    Answers: 1   Comments: 0

If ^m C_1 =^n C_2 , express m in terms of n.

$$\mathrm{If}\:\:^{{m}} {C}_{\mathrm{1}} =\:^{{n}} {C}_{\mathrm{2}} \:, \\ $$$$\mathrm{express}\:{m}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}. \\ $$

Question Number 114971    Answers: 0   Comments: 2

Question Number 114933    Answers: 2   Comments: 0

find the value of ∫_0 ^∞ ((cos(2x))/(x^4 +x^2 +1))dx

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 114922    Answers: 2   Comments: 0

find minimum value of function y=(√((x+6)^2 +25)) +(√((x−6)^2 +121))

$${find}\:{minimum}\:{value}\:{of}\:{function} \\ $$$${y}=\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:+\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$

Question Number 114919    Answers: 0   Comments: 0

Question Number 114912    Answers: 0   Comments: 0

Question Number 114917    Answers: 0   Comments: 3

  Pg 1034      Pg 1035      Pg 1036      Pg 1037      Pg 1038      Pg 1039      Pg 1040      Pg 1041      Pg 1042      Pg 1043   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com