Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1038
Question Number 115531 Answers: 0 Comments: 0
Question Number 115532 Answers: 0 Comments: 0
Question Number 115520 Answers: 1 Comments: 0
$${Given}\:{matrix}\:{A}\:=\:\begin{pmatrix}{{a}\:\:\:\mathrm{1}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:{a}\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{1}\:\:\:\:{a}}\end{pmatrix}\: \\ $$$${If}\:{B}\:=\:{b}.{A}\:{and}\:{B}\:{is}\:{orthogonal}\: \\ $$$${determine}\:{value}\:{of}\:{a}\:{and}\:{b}. \\ $$
Question Number 115516 Answers: 1 Comments: 1
$${Find}\:{the}\:{supremum}\:{and}\:{the}\:{infimum} \\ $$$${of}\:\frac{{x}}{\mathrm{sin}\:{x}}\:{on}\:{the}\:{interval}\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right] \\ $$
Question Number 115508 Answers: 2 Comments: 0
$${If}\begin{vmatrix}{{a}\:\:\:\:{a}^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{1}+{a}^{\mathrm{3}} }\\{{b}\:\:\:\:{b}^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{1}+{b}^{\mathrm{3}} }\\{{c}\:\:\:\:{c}^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{1}+{c}^{\mathrm{3}} }\end{vmatrix}=\:\mathrm{0} \\ $$$${a}\neq{b}\neq{c}\:\rightarrow\begin{cases}{{a}\:=?}\\{{b}=?\:}\\{{c}=?}\end{cases} \\ $$
Question Number 115507 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:....\:\:\:...{matematical}\:{analysis}...\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:{prove}\:{that}\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}>\mathrm{0}\:::\:\:\:\begin{bmatrix}{{i}\::\:\:\int_{\mathrm{0}\:} ^{\:\infty} \frac{{sin}^{\mathrm{2}} \left({ax}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}=\:\sqrt{\pi{a}}}\\{{ii}:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\mathrm{3}} \left({ax}\right)}{\:\sqrt{{x}}}\:{dx}\:=\:\frac{−\mathrm{1}+\mathrm{3}\sqrt{\mathrm{3}\:}}{\mathrm{4}}\:\sqrt{\frac{\pi}{\mathrm{6}{a}}\:\:}\:}\end{bmatrix} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 115499 Answers: 0 Comments: 0
$${form}\:{a}\:{double}\:{integral}\:{to}\:{represent} \\ $$$${the}\:{area}\:{of}\:{a}\:{plane}\:{fiqure}\:{bounded}\:{by} \\ $$$${the}\:{polar}\:{centre} \\ $$
Question Number 115498 Answers: 5 Comments: 2
$$\int\:\mathrm{sec}\:{x}\:{dx}\:? \\ $$$$\int\:\sqrt{{x}−\sqrt{{x}}}\:{dx}\:? \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\sqrt[{{n}\:}]{\mathrm{1}+\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }}\right)\left(\sqrt[{{n}\:}]{\mathrm{2}+\sqrt{\mathrm{4}+{n}^{\mathrm{2}} }}\right)\left(\sqrt[{{n}\:}]{\mathrm{3}+\sqrt{\mathrm{9}+{n}^{\mathrm{2}} }}\right)...\left(\sqrt[{{n}\:}]{{n}+\sqrt{\mathrm{2}{n}^{\mathrm{2}} }}\right)}{{n}}? \\ $$
Question Number 115487 Answers: 0 Comments: 3
Question Number 115484 Answers: 1 Comments: 3
$${find}\:{the}\:{value}\:{of}\: \\ $$$$\frac{\mathrm{111}}{\mathrm{1}+\mathrm{1}+\mathrm{1}}\:,\:\frac{\mathrm{222}}{\mathrm{2}+\mathrm{2}+\mathrm{2}}\:,\:\frac{\mathrm{333}}{\mathrm{3}+\mathrm{3}+\mathrm{3}},\:\frac{\mathrm{444}}{\mathrm{4}+\mathrm{4}+\mathrm{4}} \\ $$$$\frac{\mathrm{555}}{\mathrm{5}+\mathrm{5}+\mathrm{5}},\:\frac{\mathrm{666}}{\mathrm{6}+\mathrm{6}+\mathrm{6}}\:,\:\frac{\mathrm{777}}{\mathrm{7}+\mathrm{7}+\mathrm{7}}\:,\:\frac{\mathrm{888}}{\mathrm{8}+\mathrm{8}+\mathrm{8}} \\ $$$$\frac{\mathrm{999}}{\mathrm{9}+\mathrm{9}+\mathrm{9}} \\ $$
Question Number 115472 Answers: 1 Comments: 1
Question Number 115489 Answers: 1 Comments: 0
$${find}\:{range}\:{for} \\ $$$$\mathrm{1}.\:{f}\left({x}\right)=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}−\mathrm{1}} \\ $$$$\mathrm{2}.\:{f}\left({x}\right)=\mathrm{ln}\:\left(\sqrt{\mathrm{4}−\mathrm{9}{x}^{\mathrm{2}} }\right) \\ $$
Question Number 115459 Answers: 3 Comments: 0
$${I}=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\sqrt[{\mathrm{3}\:}]{\mathrm{1}+{x}^{\mathrm{3}} }}\:? \\ $$$${I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{cos}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:{dx}\:=\:? \\ $$$$ \\ $$
Question Number 115455 Answers: 1 Comments: 1
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{8}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{16}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{32}\pi}{\mathrm{65}}\right)=? \\ $$
Question Number 115449 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$
Question Number 115439 Answers: 0 Comments: 1
Question Number 115438 Answers: 2 Comments: 0
Question Number 115436 Answers: 1 Comments: 0
$$\sqrt{\sqrt[{\mathrm{3}}]{{a}}+\sqrt[{\mathrm{3}}]{{b}}}=\frac{\mathrm{1}}{\:\sqrt{{b}−{a}×{s}^{\mathrm{3}} }}\left(\frac{−{s}^{\mathrm{2}} ×\sqrt[{\mathrm{3}}]{{a}^{\mathrm{2}} }}{\mathrm{2}}+{s}\sqrt[{\mathrm{3}}]{{ab}}+\sqrt[{\mathrm{3}}]{{b}^{\mathrm{2}} }\right) \\ $$$${what}\:{is}\:{s}? \\ $$
Question Number 115429 Answers: 0 Comments: 9
$${how}\:{many}\:{ways}\:{can}\:{you}\:{arrange}\:\mathrm{15}\:{distinct} \\ $$$${balls}\:{into}\:\mathrm{5}\:{cups}\:{if}\:{there}\:{has}\:{to}\:{be}\:{at}\:{least} \\ $$$$\mathrm{1}\:{ball}\:{in}\:{each}\:{cup}? \\ $$$$ \\ $$
Question Number 115418 Answers: 3 Comments: 1
Question Number 115417 Answers: 2 Comments: 0
$$\mathrm{with}\:\mathrm{the}\:\mathrm{use}\:\mathrm{of}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{n}!>\mathrm{2n}^{\mathrm{3}} ,\:\forall\mathrm{n}\geqslant\mathrm{6}. \\ $$
Question Number 115464 Answers: 5 Comments: 0
$${I}=\:\underset{\mathrm{0}\:} {\overset{\mathrm{1}} {\int}}\:{x}\:\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:{dx}\:? \\ $$$${I}=\int\:\sqrt{\mathrm{sin}\:{x}}\:.\mathrm{cos}\:^{\mathrm{3}} {x}\:{dx}\:? \\ $$
Question Number 115408 Answers: 1 Comments: 0
$${how}\:{many}\:\mathrm{6}\:{digit}\:{numbers}\:{exist} \\ $$$${which}\:{are}\:{divisible}\:{by}\:\mathrm{11}\:{and}\:{have}\:{no} \\ $$$${repeating}\:{digits}? \\ $$
Question Number 115405 Answers: 1 Comments: 0
$${find}\:{the}\:{close}\:{form}\:{of} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$
Question Number 115404 Answers: 4 Comments: 0
$$\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:= \\ $$
Question Number 115403 Answers: 0 Comments: 0
$$\int\:{e}^{{x}} \:\frac{\mathrm{1}+{n}\:{x}^{{n}−\mathrm{1}} −{x}^{\mathrm{2}{n}} }{\left(\mathrm{1}−{x}\right)^{{n}} \:\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}{n}} }}\:{dx}\:= \\ $$
Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039 Pg 1040 Pg 1041 Pg 1042
Terms of Service
Privacy Policy
Contact: info@tinkutara.com