Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1038
Question Number 115368 Answers: 1 Comments: 0
$${an}\:{open}\:{rectanqular}\:{container}\:{is}\:{to} \\ $$$${have}\:{a}\:{volume}\:{of}\:\mathrm{62}.\mathrm{5}{cm}^{\mathrm{3}} .{find}\:{the}\:{least} \\ $$$${possible}\:{surface}\:{area}\:{of}\:{the}\:{material} \\ $$$${required} \\ $$
Question Number 115367 Answers: 1 Comments: 0
$${solve}\:{xy}^{''} −\left({x}^{\mathrm{2}} +\mathrm{1}\right){y}^{'} \:\:={x}^{\mathrm{2}} {sin}\left(\mathrm{2}{x}\right) \\ $$
Question Number 115366 Answers: 2 Comments: 0
$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{2}} \:\frac{{dx}}{{ch}^{\mathrm{2}} {x}\:+{sh}^{\mathrm{2}} {x}} \\ $$
Question Number 115365 Answers: 0 Comments: 0
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\frac{{arctan}\left({xy}\right)}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$
Question Number 115364 Answers: 1 Comments: 0
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\sqrt{{xy}}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$
Question Number 115363 Answers: 1 Comments: 0
$${evaluate} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{2}} {x}}{dx} \\ $$
Question Number 115362 Answers: 1 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sinx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 115361 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\pi{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 115348 Answers: 1 Comments: 0
$${If}\:{x}\:\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:{and}\:\mathrm{2cos}\:{x}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)+\mathrm{tan}\:^{\mathrm{2}} {x}\:<\:\mathrm{sec}\:^{\mathrm{2}} {x}\: \\ $$$${has}\:{solution}\:{set}\:{is}\:{a}<{x}<{b}.\:{find}\:{the} \\ $$$${value}\:{of}\:{a}+{b} \\ $$
Question Number 115345 Answers: 3 Comments: 0
$$\mathrm{sec}\:\theta\:\left(\mathrm{sec}\:\theta\:\left(\mathrm{sin}\:^{\mathrm{2}} \theta\right)+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)=\mathrm{1} \\ $$$${has}\:{the}\:{roots}\:{are}\:\theta_{\mathrm{1}} \:{and}\:\theta_{\mathrm{2}} .\:{Find}\:{the} \\ $$$${value}\:{of}\:\mathrm{tan}\:\theta_{\mathrm{1}} ×\mathrm{tan}\:\theta_{\mathrm{2}} . \\ $$
Question Number 115341 Answers: 1 Comments: 0
$${If}\:\mathrm{log}\:\mathrm{tan}\:\mathrm{1}°+\mathrm{log}\:\mathrm{tan}\:\mathrm{2}°+\mathrm{log}\:\mathrm{tan}\:\mathrm{3}°+...+\mathrm{log}\:\mathrm{tan}\:\mathrm{89}°={p} \\ $$$${then}\:{p}^{\mathrm{2}} +\mathrm{3}\:=\: \\ $$
Question Number 115333 Answers: 1 Comments: 3
Question Number 115332 Answers: 4 Comments: 3
$${Minimum}\:{value}\:{of}\:{function}\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{16}{x}^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{4}}{{x}\:\mathrm{cos}\:{x}}\:{where}\:−\pi<{x}<\mathrm{0} \\ $$
Question Number 115328 Answers: 1 Comments: 0
$${If}\:\frac{\mathrm{sin}\:\mathrm{1}°+\mathrm{sin}\:\mathrm{2}°+\mathrm{sin}\:\mathrm{3}°+...+\mathrm{sin}\:\mathrm{44}°}{\mathrm{cos}\:\mathrm{1}°+\mathrm{cos}\:\mathrm{2}°+\mathrm{cos}\:\mathrm{3}°+...+\mathrm{cos}\:\mathrm{44}°}=\chi \\ $$$${then}\:\chi^{\mathrm{4}} +\mathrm{4}\chi^{\mathrm{3}} +\mathrm{4}\chi^{\mathrm{2}} +\mathrm{4}= \\ $$
Question Number 115325 Answers: 0 Comments: 5
Question Number 115320 Answers: 4 Comments: 0
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2}{x}\right)\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{3}{x}\right)}{\mathrm{3}{x}^{\mathrm{2}} }\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x}.\mathrm{cos}\:\mathrm{4}{x}}{{x}^{\mathrm{2}} .\mathrm{cos}\:\mathrm{3}{x}}? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}−\sqrt{\mathrm{sin}\:{x}}}\:?\: \\ $$
Question Number 115318 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{sin}\:{x}}{\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)−{x}^{\mathrm{2}} \mathrm{cos}\:{x}} \\ $$
Question Number 115312 Answers: 3 Comments: 2
$${Solve}\:\:{for}\:\:{x}\:\in\:\mathbb{R}\:\:{that}\:\:{suitable}\:\:{on}\:\:{this} \\ $$$${inequality}\::\:\:\:\:\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }\:\:>\:\:{x} \\ $$
Question Number 115302 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:...\:{nice}\:\:{math}... \\ $$$$\:\:\:\:\:{find} \\ $$$$\:\:\:\:{lim}_{{n}\rightarrow\infty\:\:} \left\{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\int_{{k}−\mathrm{1}} ^{\:\:{k}} {tan}^{−\mathrm{1}} \left(\frac{{nx}−{nk}}{{kx}+{n}^{\mathrm{2}} }\right){dx}\right\} \\ $$$$\: \\ $$
Question Number 115301 Answers: 2 Comments: 0
$${if}\: \\ $$$${jx}^{\mathrm{2}} +\mathrm{2}{kxy}+{by}^{\mathrm{2}} =\mathrm{1}\:{show}\:{that} \\ $$$$\left({kx}+{by}\right)^{\mathrm{3}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={k}^{\mathrm{2}} −{jb} \\ $$
Question Number 115300 Answers: 1 Comments: 0
$${find}\:{from}\:{fourier}\:{series}\:{an} \\ $$$${expression}\:{for} \\ $$$$\mathrm{log}\left(\mathrm{tan}{x}\right) \\ $$
Question Number 115298 Answers: 1 Comments: 2
$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{log}\left(\mathrm{y}\right)=\mathrm{0} \\ $$
Question Number 115294 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{N}=\mathrm{1}×\mathrm{2}×\mathrm{3}×...×\mathrm{500}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{500}. \\ $$$$ \\ $$$$\mathrm{If}\:{N}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{6}^{{k}} ,\:\mathrm{find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{possible} \\ $$$$\mathrm{value}\:\mathrm{of}\:{k}. \\ $$
Question Number 115285 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:...\spadesuit{nice}\:\:\:{topology}\:\spadesuit... \\ $$$${suppose}\:\:\langle{S}\:,\:\tau\:\rangle\:{is}\:\:{Baire}'{s} \\ $$$${space}\:\:\:{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\cup}}{F}_{{n}} \:\:\:{such} \\ $$$${that}\:\:{F}_{{n}} '{s}\:\:{are}\:{closed}\:{sets}\: \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\exists\:{m}\:;\:{F}_{{m}} ^{\:°} \:\neq\:\varnothing\:\:\:..{m}.{n}.{july} \\ $$$$\:\:\:\:\:\:\:\:\:...\clubsuit{m}.{n}.{july}.\mathrm{1970}\clubsuit... \\ $$
Question Number 115273 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:...\:{advanced}\:\:{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:{evaluate}::: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Delta=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left({ln}\left({x}\right)\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$$$\: \\ $$
Question Number 115268 Answers: 1 Comments: 0
$$\sqrt{\mathrm{4}^{{x}} −\mathrm{5}.\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{25}}\:+\sqrt{\mathrm{9}^{{x}} −\mathrm{2}.\mathrm{3}^{{x}+\mathrm{2}} +\mathrm{17}}\:\leqslant\:\mathrm{2}^{{x}} −\mathrm{5} \\ $$
Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039 Pg 1040 Pg 1041 Pg 1042
Terms of Service
Privacy Policy
Contact: info@tinkutara.com