Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1038
Question Number 116006 Answers: 1 Comments: 0
$$\mathrm{3}\left(\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\right)^{\mathrm{4}} +\mathrm{6}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{4}\left(\mathrm{sin}^{\mathrm{6}} {x}+\mathrm{cos}^{\mathrm{6}} {x}\right)\:=\:\_\_\_\_\_. \\ $$
Question Number 116005 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left(\:\zeta\left(\:{x}\:\right)\:−\frac{\mathrm{1}}{{x}\:−\:\mathrm{1}}\right)\:\overset{???} {=}\gamma\:\:\: \\ $$$$\:\:\gamma::\:\mathscr{E}{uler}\:−\:{mascheroni}\:{constant}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{huly}\:\mathrm{1970} \\ $$$$ \\ $$
Question Number 116000 Answers: 0 Comments: 0
$${U}\left({n}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{tanh}\:{x}}{\:\sqrt[{{n}}]{\mathrm{tanh}\:{x}}}{dx} \\ $$$${another}\:{way}? \\ $$$$ \\ $$
Question Number 115999 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}\:}]{\mathrm{cos}\:\mathrm{4}{x}}}{{x}^{\mathrm{2}} } \\ $$
Question Number 115997 Answers: 1 Comments: 0
Question Number 115988 Answers: 1 Comments: 2
Question Number 115986 Answers: 1 Comments: 0
Question Number 115974 Answers: 0 Comments: 0
$$\int\frac{{e}^{\mathrm{3}{x}} −{e}^{{x}} }{{x}\left({e}^{\mathrm{3}{x}} +\mathrm{1}\right)\left({e}^{{x}} +\mathrm{1}\right)}{dx}\:=\:? \\ $$
Question Number 115968 Answers: 1 Comments: 0
Question Number 115961 Answers: 2 Comments: 8
Question Number 115960 Answers: 0 Comments: 1
$${f}^{\mathrm{2}} \left({x}\right)={f}\left(\mathrm{2}{x}\right)+\mathrm{2}{f}\left({x}\right)−\mathrm{2}\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{3}\:\:\:\Rightarrow\:{f}\left(\mathrm{6}\right)=? \\ $$
Question Number 115951 Answers: 1 Comments: 0
$${x},{y},{z}\:\epsilon\:{R}^{+} \:\: \\ $$$$\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{4}{z}=\mathrm{1}\:\:\Rightarrow\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\:{smallest}\:{integer}\:{value}?\: \\ $$
Question Number 115943 Answers: 4 Comments: 4
Question Number 115940 Answers: 0 Comments: 0
$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 115927 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{4x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Question Number 115946 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{geometric} \\ $$$$\mathrm{series}\:{a}−\mathrm{2}{ar}+\mathrm{4}{ar}^{\mathrm{2}} −\mathrm{8}{ar}^{\mathrm{3}} +...{a}\left(−\mathrm{2}{r}\right)^{{n}−\mathrm{1}} \:+...\mathrm{is}\:\mathrm{3} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{geometric}\:\mathrm{series} \\ $$$${a}+{ar}+{ar}^{\mathrm{2}} +{ar}^{\mathrm{3}} +...{ar}^{{n}−\mathrm{1}} +...\:\mathrm{is}\:{k},\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$
Question Number 115922 Answers: 1 Comments: 0
$${find}\:{the}\:{stationary}\:{points}\:{of}\:{the} \\ $$$${function}\:{U}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{subjects}\:{to} \\ $$$${the}\:{constraint}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 115932 Answers: 2 Comments: 0
$$\mathrm{13}^{\mathrm{14}} \boldsymbol{\div}\mathrm{4} \\ $$$$\mathrm{Remaining}? \\ $$
Question Number 115920 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{prove}\:\:\:{that}\::: \\ $$$$\: \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \left({tanh}^{{a}} \left({x}\right)\:−{tanh}^{{b}} \left({x}\right)\right){dx}\: \\ $$$$\:\:\:\:\:\:\overset{???} {=}\:\:\:\frac{\psi\left(\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$\: \\ $$
Question Number 115935 Answers: 0 Comments: 0
Question Number 115934 Answers: 0 Comments: 0
Question Number 115916 Answers: 1 Comments: 0
Question Number 115910 Answers: 0 Comments: 1
$${let}\:{x}\:{be}\:{a}\:{posative}\:{real}\:{number} \\ $$$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({n}−\mathrm{1}\right)!}{\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)}=\frac{\mathrm{1}}{{x}} \\ $$
Question Number 115909 Answers: 1 Comments: 0
$${solve}\:{the}\:{system}\:{of}\:{equations} \\ $$$${x}+\frac{\mathrm{3}{x}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{3}\:,\:{y}−\frac{{x}+\mathrm{3}{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{0} \\ $$
Question Number 115908 Answers: 1 Comments: 2
$${what}\:{is}\:{the}\:{cofficient}\:{of}\:{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\left(\mathrm{1}+\mathrm{4}{x}\right)......\left(\mathrm{1}+\mathrm{2}^{{n}} {x}\right) \\ $$
Question Number 115906 Answers: 1 Comments: 0
$${find}\:{all}\:{pairs}\:{of}\:{integers}\:\left({x},{y}\right)\:{such}\:{that} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\left({x}+{y}\right)^{\mathrm{2}} \\ $$
Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039 Pg 1040 Pg 1041 Pg 1042
Terms of Service
Privacy Policy
Contact: info@tinkutara.com