| Let say r^((n)) = Ξ _(k=0) ^(nβ1) (rβk) and r^((0)) =1
With nβN and rβR...
1. Show that (nβ1βr)^((n)) = (β1)^((n)) (r)^((n))
2. If mβ€n, show that (r^((n)) /r^((m)) )=(rβm)^((nβm))
3. Espress r^((n+m)) as w^((n)) wβ²^((m))
4. Show that (2r)^((2n)) =2^(2n) r^((n)) (rβ(1/2))^((n))
Can you help me... please...
|