Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1038

Question Number 115368    Answers: 1   Comments: 0

an open rectanqular container is to have a volume of 62.5cm^3 .find the least possible surface area of the material required

$${an}\:{open}\:{rectanqular}\:{container}\:{is}\:{to} \\ $$$${have}\:{a}\:{volume}\:{of}\:\mathrm{62}.\mathrm{5}{cm}^{\mathrm{3}} .{find}\:{the}\:{least} \\ $$$${possible}\:{surface}\:{area}\:{of}\:{the}\:{material} \\ $$$${required} \\ $$

Question Number 115367    Answers: 1   Comments: 0

solve xy^(′′) −(x^2 +1)y^′ =x^2 sin(2x)

$${solve}\:{xy}^{''} −\left({x}^{\mathrm{2}} +\mathrm{1}\right){y}^{'} \:\:={x}^{\mathrm{2}} {sin}\left(\mathrm{2}{x}\right) \\ $$

Question Number 115366    Answers: 2   Comments: 0

calculate ∫_(−1) ^2 (dx/(ch^2 x +sh^2 x))

$${calculate}\:\int_{−\mathrm{1}} ^{\mathrm{2}} \:\frac{{dx}}{{ch}^{\mathrm{2}} {x}\:+{sh}^{\mathrm{2}} {x}} \\ $$

Question Number 115365    Answers: 0   Comments: 0

calculate ∫∫_([0,1]^2 ) ((arctan(xy))/( (√(x^2 +y^2 ))))dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\frac{{arctan}\left({xy}\right)}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{dxdy} \\ $$

Question Number 115364    Answers: 1   Comments: 0

calculate ∫∫_([0,1]^2 ) (√(xy))(x^2 +y^2 )dxdy

$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\sqrt{{xy}}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$

Question Number 115363    Answers: 1   Comments: 0

evaluate ∫_0 ^(π/3) (1/(sin^2 x+cos^2 x))dx

$${evaluate} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{2}} {x}}{dx} \\ $$

Question Number 115362    Answers: 1   Comments: 0

calculate ∫_0 ^1 ((sinx)/(1+x^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sinx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 115361    Answers: 1   Comments: 0

find ∫_0 ^∞ ((cos(πx^2 ))/((x^2 +3)^2 ))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\pi{x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dx} \\ $$

Question Number 115348    Answers: 1   Comments: 0

If x ∈ (0,(π/2)) and 2cos x(sin x+cos x)+tan^2 x < sec^2 x has solution set is a<x<b. find the value of a+b

$${If}\:{x}\:\in\:\left(\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\:{and}\:\mathrm{2cos}\:{x}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)+\mathrm{tan}\:^{\mathrm{2}} {x}\:<\:\mathrm{sec}\:^{\mathrm{2}} {x}\: \\ $$$${has}\:{solution}\:{set}\:{is}\:{a}<{x}<{b}.\:{find}\:{the} \\ $$$${value}\:{of}\:{a}+{b} \\ $$

Question Number 115345    Answers: 3   Comments: 0

sec θ (sec θ (sin^2 θ)+2(√3) sin θ)=1 has the roots are θ_1 and θ_2 . Find the value of tan θ_1 ×tan θ_2 .

$$\mathrm{sec}\:\theta\:\left(\mathrm{sec}\:\theta\:\left(\mathrm{sin}\:^{\mathrm{2}} \theta\right)+\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)=\mathrm{1} \\ $$$${has}\:{the}\:{roots}\:{are}\:\theta_{\mathrm{1}} \:{and}\:\theta_{\mathrm{2}} .\:{Find}\:{the} \\ $$$${value}\:{of}\:\mathrm{tan}\:\theta_{\mathrm{1}} ×\mathrm{tan}\:\theta_{\mathrm{2}} . \\ $$

Question Number 115341    Answers: 1   Comments: 0

If log tan 1°+log tan 2°+log tan 3°+...+log tan 89°=p then p^2 +3 =

$${If}\:\mathrm{log}\:\mathrm{tan}\:\mathrm{1}°+\mathrm{log}\:\mathrm{tan}\:\mathrm{2}°+\mathrm{log}\:\mathrm{tan}\:\mathrm{3}°+...+\mathrm{log}\:\mathrm{tan}\:\mathrm{89}°={p} \\ $$$${then}\:{p}^{\mathrm{2}} +\mathrm{3}\:=\: \\ $$

Question Number 115333    Answers: 1   Comments: 3

Question Number 115332    Answers: 4   Comments: 3

Minimum value of function f(x)= ((16x^2 cos^2 x+4)/(x cos x)) where −π<x<0

$${Minimum}\:{value}\:{of}\:{function}\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{16}{x}^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{4}}{{x}\:\mathrm{cos}\:{x}}\:{where}\:−\pi<{x}<\mathrm{0} \\ $$

Question Number 115328    Answers: 1   Comments: 0

If ((sin 1°+sin 2°+sin 3°+...+sin 44°)/(cos 1°+cos 2°+cos 3°+...+cos 44°))=χ then χ^4 +4χ^3 +4χ^2 +4=

$${If}\:\frac{\mathrm{sin}\:\mathrm{1}°+\mathrm{sin}\:\mathrm{2}°+\mathrm{sin}\:\mathrm{3}°+...+\mathrm{sin}\:\mathrm{44}°}{\mathrm{cos}\:\mathrm{1}°+\mathrm{cos}\:\mathrm{2}°+\mathrm{cos}\:\mathrm{3}°+...+\mathrm{cos}\:\mathrm{44}°}=\chi \\ $$$${then}\:\chi^{\mathrm{4}} +\mathrm{4}\chi^{\mathrm{3}} +\mathrm{4}\chi^{\mathrm{2}} +\mathrm{4}= \\ $$

Question Number 115325    Answers: 0   Comments: 5

Question Number 115320    Answers: 4   Comments: 0

(1)lim_(x→0) ((1−cos^6 (2x)cos^3 (3x))/(3x^2 )) ? (2)lim_(x→0) ((1−cos 4x+2sin^2 x.cos 4x)/(x^2 .cos 3x))? (3) lim_(x→(π/2)) ((sin x−2cos^2 x−1)/( (√(sin^3 x))−(√(sin x)))) ?

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2}{x}\right)\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{3}{x}\right)}{\mathrm{3}{x}^{\mathrm{2}} }\:? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x}.\mathrm{cos}\:\mathrm{4}{x}}{{x}^{\mathrm{2}} .\mathrm{cos}\:\mathrm{3}{x}}? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{2cos}\:^{\mathrm{2}} {x}−\mathrm{1}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}−\sqrt{\mathrm{sin}\:{x}}}\:?\: \\ $$

Question Number 115318    Answers: 2   Comments: 0

lim_(x→0) ((xsin x)/(2sin^2 (3x)−x^2 cos x))

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\mathrm{sin}\:{x}}{\mathrm{2sin}\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)−{x}^{\mathrm{2}} \mathrm{cos}\:{x}} \\ $$

Question Number 115312    Answers: 3   Comments: 2

Solve for x ∈ R that suitable on this inequality : (√(8−x^2 )) > x

$${Solve}\:\:{for}\:\:{x}\:\in\:\mathbb{R}\:\:{that}\:\:{suitable}\:\:{on}\:\:{this} \\ $$$${inequality}\::\:\:\:\:\sqrt{\mathrm{8}−{x}^{\mathrm{2}} }\:\:>\:\:{x} \\ $$

Question Number 115302    Answers: 1   Comments: 0

... nice math... find lim_(n→∞ ) {Σ_(k=1) ^n ∫_(k−1) ^( k) tan^(−1) (((nx−nk)/(kx+n^2 )))dx}

$$\:\:\:\:\:\:\:...\:{nice}\:\:{math}... \\ $$$$\:\:\:\:\:{find} \\ $$$$\:\:\:\:{lim}_{{n}\rightarrow\infty\:\:} \left\{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\int_{{k}−\mathrm{1}} ^{\:\:{k}} {tan}^{−\mathrm{1}} \left(\frac{{nx}−{nk}}{{kx}+{n}^{\mathrm{2}} }\right){dx}\right\} \\ $$$$\: \\ $$

Question Number 115301    Answers: 2   Comments: 0

if jx^2 +2kxy+by^2 =1 show that (kx+by)^3 (d^2 y/dx^2 )=k^2 −jb

$${if}\: \\ $$$${jx}^{\mathrm{2}} +\mathrm{2}{kxy}+{by}^{\mathrm{2}} =\mathrm{1}\:{show}\:{that} \\ $$$$\left({kx}+{by}\right)^{\mathrm{3}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={k}^{\mathrm{2}} −{jb} \\ $$

Question Number 115300    Answers: 1   Comments: 0

find from fourier series an expression for log(tanx)

$${find}\:{from}\:{fourier}\:{series}\:{an} \\ $$$${expression}\:{for} \\ $$$$\mathrm{log}\left(\mathrm{tan}{x}\right) \\ $$

Question Number 115298    Answers: 1   Comments: 2

(d^2 y/dx^2 )+log(y)=0

$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{log}\left(\mathrm{y}\right)=\mathrm{0} \\ $$

Question Number 115294    Answers: 2   Comments: 0

Given that N=1×2×3×...×500 is the product of the positive integers from 1 to 500. If N is divisible by 6^k , find the largest possible value of k.

$$\mathrm{Given}\:\mathrm{that}\:{N}=\mathrm{1}×\mathrm{2}×\mathrm{3}×...×\mathrm{500}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{500}. \\ $$$$ \\ $$$$\mathrm{If}\:{N}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{6}^{{k}} ,\:\mathrm{find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{possible} \\ $$$$\mathrm{value}\:\mathrm{of}\:{k}. \\ $$

Question Number 115285    Answers: 0   Comments: 0

...♠nice topology ♠... suppose ⟨S , τ ⟩ is Baire′s space and S = ∪_(n=1) ^∞ F_n such that F_n ′s are closed sets prove that:: ∃ m ; F_m ^( °) ≠ ∅ ..m.n.july ...♣m.n.july.1970♣...

$$\:\:\:\:\:\:\:\:...\spadesuit{nice}\:\:\:{topology}\:\spadesuit... \\ $$$${suppose}\:\:\langle{S}\:,\:\tau\:\rangle\:{is}\:\:{Baire}'{s} \\ $$$${space}\:\:\:{and}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\cup}}{F}_{{n}} \:\:\:{such} \\ $$$${that}\:\:{F}_{{n}} '{s}\:\:{are}\:{closed}\:{sets}\: \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\exists\:{m}\:;\:{F}_{{m}} ^{\:°} \:\neq\:\varnothing\:\:\:..{m}.{n}.{july} \\ $$$$\:\:\:\:\:\:\:\:\:...\clubsuit{m}.{n}.{july}.\mathrm{1970}\clubsuit... \\ $$

Question Number 115273    Answers: 2   Comments: 0

... advanced mathematics... evaluate::: Δ=∫_0 ^( ∞) ((cos(ln(x)))/((x+1)^2 )) dx =??? ...m.n.july.1970...

$$\:\:\:\:\:\:\:\:...\:{advanced}\:\:{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:{evaluate}::: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Delta=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{cos}\left({ln}\left({x}\right)\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\:=??? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$$$\: \\ $$

Question Number 115268    Answers: 1   Comments: 0

(√(4^x −5.2^(x+1) +25)) +(√(9^x −2.3^(x+2) +17)) ≤ 2^x −5

$$\sqrt{\mathrm{4}^{{x}} −\mathrm{5}.\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{25}}\:+\sqrt{\mathrm{9}^{{x}} −\mathrm{2}.\mathrm{3}^{{x}+\mathrm{2}} +\mathrm{17}}\:\leqslant\:\mathrm{2}^{{x}} −\mathrm{5} \\ $$

  Pg 1033      Pg 1034      Pg 1035      Pg 1036      Pg 1037      Pg 1038      Pg 1039      Pg 1040      Pg 1041      Pg 1042   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com