Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1037
Question Number 114061 Answers: 1 Comments: 0
Question Number 114075 Answers: 2 Comments: 0
Question Number 114056 Answers: 4 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\frac{\mathrm{dt}}{\left(\mathrm{2t}+\mathrm{3}\right)^{\mathrm{4}} \left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Question Number 114045 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:...\:\:{advanced}\:{calculus}... \\ $$$$ \\ $$$${i}\::\:\:{prove}\:\:{that}\::: \\ $$$$\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{ln}\left(\mathrm{1}−{x}\right)\right)}{{ln}\left(\mathrm{1}−{x}\right)}\:{dx}\:\overset{?} {=}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\mathrm{1}\right)}{{n}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${ii}:\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:\overset{?} {=}\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}\:\mathrm{1970}# \\ $$$$\:\:\: \\ $$
Question Number 114044 Answers: 1 Comments: 0
$${old}\:{and}\:{unanswered}...\:{Mr}\:{Mathdave}??? \\ $$$$\int{x}^{\mathrm{2}} {ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}+{x}\right){dx}=? \\ $$
Question Number 114043 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +\mathrm{1}} \\ $$
Question Number 114037 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{4}}} \frac{{tan}\mathrm{2}{x}}{{sin}\mathrm{2}{x}+{cos}\mathrm{2}{x}}{dx} \\ $$
Question Number 114028 Answers: 4 Comments: 1
Question Number 114023 Answers: 2 Comments: 1
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\propto} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$
Question Number 114032 Answers: 0 Comments: 0
Question Number 114020 Answers: 3 Comments: 0
$$\underset{{d}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{6}{d}}\:\mathrm{cos}\:\left(\frac{\mathrm{2}}{\:\sqrt{{d}}}\right)\:\mathrm{sin}\:\left(\frac{\mathrm{5}}{\:\sqrt{{d}}}\right)\:?\: \\ $$$$ \\ $$
Question Number 113997 Answers: 2 Comments: 0
Question Number 113996 Answers: 1 Comments: 1
Question Number 113991 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\bigtriangleup{ABC},\:\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:=\:\frac{\mathrm{sin}\:\left({A}−{B}\right)}{\mathrm{sin}\:\left({A}+{B}\right)}\:, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{is} \\ $$
Question Number 113989 Answers: 1 Comments: 0
Question Number 113986 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{4}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\mathrm{2}\:\mathrm{cos}\:\theta−\mathrm{2}\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta+\sqrt{\mathrm{3}}\:=\mathrm{0} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\:\left(\mathrm{0},\:\mathrm{2}\pi\right)\:\:\mathrm{is} \\ $$
Question Number 113983 Answers: 2 Comments: 0
$${if}\:{Z}_{\mathrm{1}} =\mathrm{1}−{i}\:{and}\:{Z}_{\mathrm{2}} ={i}^{\mathrm{4}} \:{by}\:{using}\:{demover}\:{find}\:\frac{{Z}_{\mathrm{1}} }{{Z}_{\mathrm{2}} }\:? \\ $$
Question Number 113981 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{smallest}\:\mathrm{positive}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\:\mathrm{tan}\:{x}−{x}=\mathrm{0},\:\mathrm{lies}\:\mathrm{in} \\ $$
Question Number 113976 Answers: 0 Comments: 1
$$\mathrm{A}\:\mathrm{ball}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{0}.\mathrm{25kg}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{to}\:\mathrm{the}\:\mathrm{right}\:\mathrm{at} \\ $$$$\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{7}.\mathrm{4m}/\mathrm{s}.\:\mathrm{it}\:\mathrm{strikes}\:\mathrm{a}\:\mathrm{wall}\:\mathrm{at}\:\mathrm{90}^{\mathrm{0}} \mathrm{and}\: \\ $$$$\mathrm{rebounds}\:\mathrm{from}\:\mathrm{the}\:\mathrm{wall}\:\mathrm{leaving}\:\mathrm{it}\:\mathrm{with}\:\mathrm{a}\:\mathrm{speed} \\ $$$$\mathrm{of}\:\mathrm{5}.\mathrm{8n}/\mathrm{s}\:\mathrm{moving}\:\mathrm{to}\:\mathrm{the}\:\mathrm{left}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{direction}\: \\ $$$$\mathrm{and}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{change}\:\mathrm{in}\:\mathrm{direction} \\ $$
Question Number 113975 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}:\:\:\:\mathrm{1},\:\:\mathrm{0},\:\:−\:\mathrm{1},\:\:\mathrm{0},\:\:\mathrm{1},\:\:\mathrm{0},\:\:−\:\mathrm{1},\:\:\mathrm{0},\:\:... \\ $$
Question Number 113970 Answers: 0 Comments: 0
Question Number 113959 Answers: 1 Comments: 0
$${if}\:{a},{b}\:{areal}\:{number}\:{such}\:{that}\:{a}>{b}\:,{c}<\mathrm{0}\:{then}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right){c}.{b}\geqslant{c}.{a}\:\:\:\:\left(\mathrm{2}\right)\:{c}.{b}>{c}.{a}\:\:\:\:\left(\mathrm{3}\right)\:{c}.{a}>{c}.{b} \\ $$$$ \\ $$$${chouse}\:{the}\:{right}\:{answer} \\ $$
Question Number 113957 Answers: 0 Comments: 0
$${the}\:{sequence}\:...........\:{is}\:{partial}\:{from}\:{sequence}\:\langle\frac{\mathrm{1}}{{n}+\mathrm{1}}\rangle_{{n}\in{N}} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\langle\frac{\mathrm{1}−{n}}{{n}}\rangle\:\:\:\:\:\:\:\left(\mathrm{2}\right)\langle\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\rangle\:\:\:\:\:\:\left(\mathrm{3}\right)\langle\frac{\mathrm{1}}{\mathrm{2}{n}}\rangle\: \\ $$$$ \\ $$$${chouse}\:{the}\:{right}\:{answer} \\ $$
Question Number 113954 Answers: 2 Comments: 1
$${x}^{{y}} ={y}^{{x}} \:\:\:\: \\ $$$$\begin{cases}{\mathrm{x}}\\{\mathrm{y}}\end{cases}=? \\ $$
Question Number 113952 Answers: 2 Comments: 4
$${find}\:{all}\:{asymptotes}\:{of}\:{function} \\ $$$${f}\left({x}\right)=\left(\frac{{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{5}}{{x}^{\mathrm{2}} +{x}+\mathrm{3}}\right)^{{x}+\mathrm{5}} \\ $$
Question Number 113931 Answers: 1 Comments: 2
$$\mid\:{x}\:\mid=\mathrm{2}\Rightarrow\:{x}=\mathrm{2}\:\vee\:{x}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{OR} \\ $$$$\mid\:{x}\:\mid=\mathrm{2}\Rightarrow\:{x}=\mathrm{2}\:\wedge\:{x}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:? \\ $$
Pg 1032 Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039 Pg 1040 Pg 1041
Terms of Service
Privacy Policy
Contact: info@tinkutara.com