Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1037
Question Number 114699 Answers: 1 Comments: 1
$$\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{4}} {x}}}\:? \\ $$
Question Number 114696 Answers: 1 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sinh}\:\left(\mathrm{2}{x}\right)−\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{5}} }\:=? \\ $$
Question Number 114689 Answers: 1 Comments: 0
$$\int{xsin}^{{n}} {xdx} \\ $$
Question Number 114682 Answers: 1 Comments: 0
Question Number 114681 Answers: 3 Comments: 0
$${Prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{n}} }{{e}^{{x}} −\mathrm{1}}{dx}={n}!\zeta\left({n}+\mathrm{1}\right) \\ $$
Question Number 114676 Answers: 1 Comments: 0
$$\mathrm{If}\:{a}^{\frac{\mathrm{1}}{\mathrm{2}}} −{a}^{−\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1},\:\mathrm{prove}\:\mathrm{that}\:{a}+{a}^{−\mathrm{1}} =\mathrm{3} \\ $$
Question Number 114673 Answers: 0 Comments: 1
$$\:\:\:\:\bigstar\:\:\:\mathrm{x}^{\mathrm{3}} −\mathrm{x}−\frac{\mathrm{1}}{\mathrm{6}}=\mathrm{0}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{x}=? \\ $$
Question Number 114671 Answers: 1 Comments: 0
$$ \\ $$$$\:\mathrm{Integrate}\:\:\int\:\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{−\mathrm{4}} }{\mathrm{x}^{\mathrm{6}} +\mathrm{x}^{−\mathrm{6}} }\mathrm{dx} \\ $$
Question Number 114668 Answers: 1 Comments: 0
$$\frac{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:+\:\frac{{x}−\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:=\:\mathrm{98}\: \\ $$
Question Number 114665 Answers: 1 Comments: 0
Question Number 114660 Answers: 1 Comments: 1
Question Number 114656 Answers: 1 Comments: 2
$$\mathrm{2}{tanx}−\mathrm{1}=\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{2}{tanx}=\mathrm{1}+\mathrm{1} \\ $$$${tanx}=\frac{\mathrm{2}}{\mathrm{2}}=\mathrm{1} \\ $$
Question Number 114654 Answers: 2 Comments: 2
Question Number 114653 Answers: 2 Comments: 0
$${solve}\:\mathrm{6}{x}^{\mathrm{4}} −\mathrm{25}{x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} −\mathrm{25}{x}+\mathrm{6}=\mathrm{0} \\ $$
Question Number 114647 Answers: 0 Comments: 5
Question Number 114638 Answers: 1 Comments: 0
$${Given}\:{a}\:=\:\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{16}^{\mathrm{2}} −\mathrm{16}}{\mathrm{1}.\mathrm{3}+\mathrm{2}.\mathrm{4}+\mathrm{3}.\mathrm{5}+...+\mathrm{15}.\mathrm{17}} \\ $$$$\:\:\:{c}\:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right).\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right).\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right).\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$$${find}\:{a}×{c}\:=\: \\ $$
Question Number 114637 Answers: 1 Comments: 0
$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\frac{\pi}{\mathrm{2}}−\mathrm{cos}\:^{−\mathrm{1}} \left(\mathrm{2}{x}−\pi\right)}{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\pi}\right)}\:? \\ $$
Question Number 114635 Answers: 1 Comments: 3
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{4}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:\: \\ $$
Question Number 114627 Answers: 2 Comments: 0
$$\mathrm{sin}\:{A}+\mathrm{sin}\:\mathrm{2}{A}+\mathrm{sin}\:\mathrm{3}{A}+...+\mathrm{sin}\:{nA}\:=?? \\ $$
Question Number 114625 Answers: 1 Comments: 0
Question Number 114615 Answers: 1 Comments: 0
Question Number 114597 Answers: 3 Comments: 0
$$\: \\ $$$$\:\:\:\boldsymbol{\mathrm{What}}\:\:\boldsymbol{\mathrm{is}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{number}}\:\:\boldsymbol{\mathrm{value}}\:\:\boldsymbol{\mathrm{of}}\:\:\:\boldsymbol{\mathrm{f}}\left[\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{log}}\left(\frac{\:\sqrt{\boldsymbol{\mathrm{x}}\:\:}\:−\:\:\:\mathrm{1}\:}{\boldsymbol{\mathrm{x}}\:\:\:−\:\:\:\mathrm{1}}\right)\:\:}\right]\:\:=\:\:\sqrt{\sqrt{\boldsymbol{\mathrm{x}}\:}\:\:\:+\:\:\:\boldsymbol{\mathrm{x}}\:}\:\:\boldsymbol{\mathrm{for}}\:\:\boldsymbol{\mathrm{f}}\left(−\mathrm{1}\right)? \\ $$$$\: \\ $$$$\left.\:\:\:\boldsymbol{\mathrm{a}}\right)\:\mathrm{0},\mathrm{1} \\ $$$$\left.\:\:\:\boldsymbol{\mathrm{b}}\right)\:\mathrm{27} \\ $$$$\left.\:\:\:\boldsymbol{\mathrm{c}}\right)\:\mathrm{81} \\ $$$$\left.\:\:\:\boldsymbol{\mathrm{d}}\right)\:\mathrm{10} \\ $$$$\left.\:\:\:\boldsymbol{\mathrm{e}}\right)\:\mathrm{12} \\ $$$$\: \\ $$
Question Number 114593 Answers: 1 Comments: 0
$$\frac{\mid{x}−\mathrm{1}\mid}{\mid{x}\mid−\mathrm{1}}\:\leqslant\:\mathrm{1} \\ $$
Question Number 114592 Answers: 3 Comments: 0
$$\mathrm{Solve}\::\:{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{3}\right) \\ $$
Question Number 114586 Answers: 1 Comments: 2
$$\mathrm{f}\left(\mathrm{x}\right)−\mathrm{2f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{3x}−\mathrm{2} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=? \\ $$
Question Number 114582 Answers: 0 Comments: 1
Pg 1032 Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039 Pg 1040 Pg 1041
Terms of Service
Privacy Policy
Contact: info@tinkutara.com