Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1035
Question Number 116039 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:^{\mathrm{4}} \left({x}\right)}}{\left(\mathrm{1}−\mathrm{sin}\:\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:? \\ $$
Question Number 116037 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{27}^{{x}} −\mathrm{1}}{\mathrm{9}^{{x}} −\mathrm{1}}\:=\:?? \\ $$
Question Number 116029 Answers: 1 Comments: 0
$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=?\: \\ $$
Question Number 116024 Answers: 4 Comments: 0
$$\int\:{tan}^{\mathrm{3}} \mathrm{2}{xdx} \\ $$
Question Number 116023 Answers: 2 Comments: 0
$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:+\:\frac{\mathrm{x}}{\mathrm{a}}\:\left(\mathrm{1}\:+\:\mathrm{x}\right)+\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:\left(\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \right)+\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{a}^{\mathrm{3}} }\:\left(\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \right)\:+\:\ldots \\ $$$$ \\ $$
Question Number 116338 Answers: 0 Comments: 1
Question Number 116019 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\mathrm{sin}\:\left({t}^{\mathrm{3}} \right)\:{dt}}{\mathrm{2}{x}^{\mathrm{4}} }\:? \\ $$
Question Number 116016 Answers: 1 Comments: 0
$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{6}+{x}−{x}^{\mathrm{2}} }}\:? \\ $$
Question Number 116014 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:...{nice}\:\:{calculus}\:...\:\:\: \\ $$$$\:{prove}\:: \\ $$$$\:\:\:{i}:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{2}}} \right)^{\sqrt{\mathrm{2}}} }\:=\mathrm{0}\:\:\:\:\:\:\checkmark \\ $$$$\:\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{1}+\sqrt{\mathrm{2}}} \right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\checkmark\:\: \\ $$$$\:\:\:{iii}:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({x}^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({cos}\left({x}\right)\right)\right){dx}=\pi{ln}\left({ln}\left(\mathrm{2}\right)\right)\checkmark \\ $$$$\:\:\:\:\:\:\:...\:{m}.{n}.\:{july}.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 116009 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{tan}\left(\mathrm{a}+\mathrm{b}\right)=\mathrm{y}}\\{\mathrm{tan}\:\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{x}}\end{cases}\:\:\:\mathrm{tan2a}=? \\ $$
Question Number 116007 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\propto} {\mathrm{lim}}\frac{\sqrt{\mathrm{x}}}{\sqrt{\mathrm{x}+\sqrt{\mathrm{x}\sqrt{\mathrm{x}}}}} \\ $$
Question Number 116006 Answers: 1 Comments: 0
$$\mathrm{3}\left(\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\right)^{\mathrm{4}} +\mathrm{6}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{4}\left(\mathrm{sin}^{\mathrm{6}} {x}+\mathrm{cos}^{\mathrm{6}} {x}\right)\:=\:\_\_\_\_\_. \\ $$
Question Number 116005 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left(\:\zeta\left(\:{x}\:\right)\:−\frac{\mathrm{1}}{{x}\:−\:\mathrm{1}}\right)\:\overset{???} {=}\gamma\:\:\: \\ $$$$\:\:\gamma::\:\mathscr{E}{uler}\:−\:{mascheroni}\:{constant}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{huly}\:\mathrm{1970} \\ $$$$ \\ $$
Question Number 116000 Answers: 0 Comments: 0
$${U}\left({n}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{tanh}\:{x}}{\:\sqrt[{{n}}]{\mathrm{tanh}\:{x}}}{dx} \\ $$$${another}\:{way}? \\ $$$$ \\ $$
Question Number 115999 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}\:}]{\mathrm{cos}\:\mathrm{4}{x}}}{{x}^{\mathrm{2}} } \\ $$
Question Number 115997 Answers: 1 Comments: 0
Question Number 115988 Answers: 1 Comments: 2
Question Number 115986 Answers: 1 Comments: 0
Question Number 115974 Answers: 0 Comments: 0
$$\int\frac{{e}^{\mathrm{3}{x}} −{e}^{{x}} }{{x}\left({e}^{\mathrm{3}{x}} +\mathrm{1}\right)\left({e}^{{x}} +\mathrm{1}\right)}{dx}\:=\:? \\ $$
Question Number 115968 Answers: 1 Comments: 0
Question Number 115961 Answers: 2 Comments: 8
Question Number 115960 Answers: 0 Comments: 1
$${f}^{\mathrm{2}} \left({x}\right)={f}\left(\mathrm{2}{x}\right)+\mathrm{2}{f}\left({x}\right)−\mathrm{2}\: \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{3}\:\:\:\Rightarrow\:{f}\left(\mathrm{6}\right)=? \\ $$
Question Number 115951 Answers: 1 Comments: 0
$${x},{y},{z}\:\epsilon\:{R}^{+} \:\: \\ $$$$\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{4}{z}=\mathrm{1}\:\:\Rightarrow\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\:{smallest}\:{integer}\:{value}?\: \\ $$
Question Number 115943 Answers: 4 Comments: 4
Question Number 115940 Answers: 0 Comments: 0
$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 115927 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{dx}}{\left(\mathrm{4x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Pg 1030 Pg 1031 Pg 1032 Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039
Terms of Service
Privacy Policy
Contact: info@tinkutara.com