Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1035
Question Number 116601 Answers: 2 Comments: 0
$$\mathrm{If}\:\left({x},{y}\right)\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$$\begin{cases}{\mid{x}\mid−{x}−{y}+\mathrm{2}=\mathrm{0}}\\{\mid{y}\mid+{y}+\mathrm{5}{x}=\mathrm{1}}\end{cases}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}+{y}.\: \\ $$
Question Number 116595 Answers: 1 Comments: 0
$$\mathrm{If}\:\left(\mathrm{1}−\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{10}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{a}_{\mathrm{20}} {x}^{\mathrm{20}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{\mathrm{20}} \\ $$
Question Number 116590 Answers: 2 Comments: 0
$$\:\int\:\frac{\sqrt{\mathrm{x}}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx}\:=? \\ $$
Question Number 116588 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4x}}{\mathrm{2}\:\mathrm{cosec}\:\mathrm{x}\:\left(\mathrm{1}−\sqrt{\mathrm{cos}\:\mathrm{x}}\right)}\:=? \\ $$
Question Number 116586 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\:{explicite}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{1}+{x}\left(\mathrm{2}+{t}^{\mathrm{2}} \right)\right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt} \\ $$$${withx}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){determine}\:{values}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{3}+{t}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt}\:{and}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left(\mathrm{5}+\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{2}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 116578 Answers: 3 Comments: 0
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\: \\ $$$$\:\begin{vmatrix}{\mathrm{1}\:\:\:\mathrm{x}\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:\:\:\mathrm{x}^{\mathrm{3}} }\\{\mathrm{1}\:\:\:\mathrm{2}\:\:\:\:\mathrm{2}^{\mathrm{2}} \:\:\:\:\mathrm{2}^{\mathrm{3}} }\\{\mathrm{1}\:\:\:\mathrm{3}\:\:\:\:\mathrm{3}^{\mathrm{2}} \:\:\:\:\mathrm{3}^{\mathrm{3}} }\\{\mathrm{1}\:\:\:\mathrm{4}\:\:\:\:\mathrm{4}^{\mathrm{2}} \:\:\:\:\mathrm{4}^{\mathrm{3}} }\end{vmatrix}=\:\mathrm{0} \\ $$
Question Number 116576 Answers: 3 Comments: 1
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\right)^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \:=? \\ $$
Question Number 116564 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\mathrm{x}+\sqrt[{\mathrm{3}\:}]{\mathrm{x}}}\:? \\ $$
Question Number 116560 Answers: 1 Comments: 1
$${if}\:{arctan}\left({x}+{iy}\right)\:={a}+{ib} \\ $$$${with}\:{a}\:{and}\:{b}\:{reals}\:{determine} \\ $$$${a}\:{and}\:{b} \\ $$
Question Number 116557 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right.}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$${with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{3}+\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 116556 Answers: 1 Comments: 0
$${let}\:{g}\left({x}\right)={ln}\left({cos}\left({ax}\right)\right) \\ $$$${developp}\:{g}\:{at}\:{fourier}\:{serie} \\ $$$$\left({a}\:{real}\:{given}\right) \\ $$
Question Number 116555 Answers: 1 Comments: 0
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{3}} \left({n}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$
Question Number 116554 Answers: 1 Comments: 0
$${study}\:{the}\:{integral}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{{n}} {x}}{{x}^{{n}} }{dx} \\ $$$${n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$
Question Number 116538 Answers: 0 Comments: 2
$$\mathrm{x}+\sqrt{\mathrm{y}}=\mathrm{11} \\ $$$$\sqrt{\mathrm{x}}−\mathrm{y}=\mathrm{24} \\ $$$$\mathrm{x},\mathrm{y}=? \\ $$
Question Number 116533 Answers: 2 Comments: 0
$${find}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}^{{n}} {x}}{{x}}{dx}\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$
Question Number 116529 Answers: 1 Comments: 1
Question Number 116524 Answers: 1 Comments: 1
$$\mathrm{if}\:\alpha+\beta+\gamma=\mathrm{180}° \\ $$$$\mathrm{prove}: \\ $$$$\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta+\mathrm{sin}\:\gamma+\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\:<\:\mathrm{4}\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}} \\ $$
Question Number 116523 Answers: 2 Comments: 0
Question Number 116520 Answers: 1 Comments: 0
$${find}\:{the}\:{center}\:{of}\:{circle}\:{with}\:{radius}\:{R} \\ $$$${and}\:{tangent}\:{by}\:{sides}\:{AB}\:{and}\:{BC}\:{of}\: \\ $$$${triangle}? \\ $$
Question Number 116516 Answers: 2 Comments: 0
Question Number 116513 Answers: 1 Comments: 0
$${give}\:{a}\in{Z}\:{and}\:{prove}\:{that}\:{if}\:\left({a}−\mathrm{2}\right)\mid\mathrm{4}\:{than}\:\left({a}−\mathrm{3}\right){can}'{t}\mid\mathrm{6} \\ $$
Question Number 116512 Answers: 0 Comments: 1
$${give}\:{x}\in{R}\:{and}\:{prove}\:{that}\:{if}\:\:{x}=\sqrt{\mathrm{2}{x}+\mathrm{3}}\:{than}\:{x}=\mathrm{3} \\ $$
Question Number 116509 Answers: 2 Comments: 0
$$\mathrm{x}^{\mathrm{4}} −\mathrm{48x}^{\mathrm{2}} +\mathrm{x}+\mathrm{565}=\mathrm{0}\: \\ $$$$\mathrm{x}=? \\ $$
Question Number 116507 Answers: 1 Comments: 0
Question Number 116503 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{tan}\:\alpha\:\mathrm{and}\:\mathrm{tan}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{equation}\:\mathrm{2x}^{\mathrm{2}} −\mathrm{5x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{find}\:\begin{cases}{\mathrm{tan}\:\left(\frac{\alpha}{\mathrm{2}}+\mathrm{2}\beta\right)}\\{\mathrm{tan}\:\left(\mathrm{2}\alpha−\frac{\beta}{\mathrm{2}}\right)}\end{cases} \\ $$
Question Number 116501 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}}{\:\sqrt{\mathrm{sin}\:\mathrm{2x}}}\:\mathrm{dx}\:? \\ $$
Pg 1030 Pg 1031 Pg 1032 Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039
Terms of Service
Privacy Policy
Contact: [email protected]