Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1035

Question Number 115695    Answers: 2   Comments: 0

The product of all the solutions of the equation ∣(x−2)^2 ∣−3∣x−2∣+2=0 is

$$\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\:\mid\left({x}−\mathrm{2}\right)^{\mathrm{2}} \mid−\mathrm{3}\mid{x}−\mathrm{2}\mid+\mathrm{2}=\mathrm{0}\:\:\mathrm{is} \\ $$

Question Number 115689    Answers: 1   Comments: 0

Question Number 115685    Answers: 1   Comments: 0

If α, β, γ, δ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then the value of 4 sin (α/2)+3 sin (β/2)+2 sin (γ/2)+sin (δ/2) is equal to

$$\mathrm{If}\:\:\alpha,\:\beta,\:\gamma,\:\delta\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\: \\ $$$$\mathrm{angles}\:\mathrm{in}\:\mathrm{ascending}\:\mathrm{order}\:\mathrm{of} \\ $$$$\mathrm{magnitude}\:\mathrm{which}\:\mathrm{have}\:\mathrm{their}\:\mathrm{sines}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{quantity}\:{k},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{4}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}+\mathrm{3}\:\mathrm{sin}\:\frac{\beta}{\mathrm{2}}+\mathrm{2}\:\mathrm{sin}\:\frac{\gamma}{\mathrm{2}}+\mathrm{sin}\:\frac{\delta}{\mathrm{2}}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 115674    Answers: 1   Comments: 0

Solve for x x ≡ 1 mod 3 x ≡ 4 mod 5 x ≡ 6 mod 7

$${Solve}\:\:{for}\:\:{x} \\ $$$$\:\:\:\:\:\:{x}\:\:\equiv\:\:\mathrm{1}\:\:{mod}\:\:\mathrm{3} \\ $$$$\:\:\:\:\:\:{x}\:\:\equiv\:\:\mathrm{4}\:\:{mod}\:\:\mathrm{5} \\ $$$$\:\:\:\:\:\:{x}\:\:\equiv\:\:\mathrm{6}\:\:{mod}\:\:\mathrm{7} \\ $$

Question Number 115664    Answers: 2   Comments: 0

If lim_(x→p) ((p^x −x^p )/(x^x −p^p )) = 1 then p = ?

$${If}\:\underset{{x}\rightarrow{p}} {\mathrm{lim}}\:\frac{{p}^{{x}} −{x}^{{p}} }{{x}^{{x}} −{p}^{{p}} }\:=\:\mathrm{1}\:{then}\:{p}\:=\:? \\ $$

Question Number 115661    Answers: 2   Comments: 0

(1) ∫ sin ((√x)) dx (2) ∫ cos ((√x) ) dx (3) ∫ tan ((√x) ) dx

$$\left(\mathrm{1}\right)\:\int\:\mathrm{sin}\:\left(\sqrt{{x}}\right)\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int\:\mathrm{cos}\:\left(\sqrt{{x}}\:\right)\:{dx}\: \\ $$$$\left(\mathrm{3}\right)\:\int\:\mathrm{tan}\:\left(\sqrt{{x}}\:\right)\:{dx}\: \\ $$

Question Number 115683    Answers: 1   Comments: 0

Question Number 115656    Answers: 3   Comments: 1

∫ (√((x−a)/(b−x))) dx = ? where a <x < b

$$\int\:\sqrt{\frac{{x}−{a}}{{b}−{x}}}\:{dx}\:=\:? \\ $$$${where}\:{a}\:<{x}\:<\:{b} \\ $$

Question Number 115653    Answers: 0   Comments: 1

Question Number 115646    Answers: 1   Comments: 3

Question Number 115645    Answers: 1   Comments: 2

Question Number 115643    Answers: 0   Comments: 0

Question Number 115642    Answers: 0   Comments: 0

A vertical post of height h m rises from a plane which slopes down towards the South at an angle α to the horizontal. Prove that the length of its shadow when the sun is S𝛉W at an elevation β is ((h(√((1+tan^2 α cos^2 θ) )))/(tanβ + tanα cos θ))m

$${A}\:{vertical}\:{post}\:{of}\:{height}\:{h}\:{m}\:{rises}\:{from}\:{a}\:{plane}\:{which}\: \\ $$$${slopes}\:{down}\:{towards}\:{the}\:{South}\:{at}\:{an}\:{angle} \\ $$$$\alpha\:{to}\:{the}\:{horizontal}.\:{Prove}\:{that}\:{the}\:{length} \\ $$$${of}\:{its}\:{shadow}\:{when}\:{the}\:{sun}\:{is}\:\boldsymbol{{S}\theta{W}}\:\: \\ $$$${at}\:{an}\:{elevation}\:\beta\:{is} \\ $$$$ \\ $$$$\frac{{h}\sqrt{\left(\mathrm{1}+{tan}^{\mathrm{2}} \alpha\:{cos}^{\mathrm{2}} \theta\right)\:}}{{tan}\beta\:+\:{tan}\alpha\:\mathrm{cos}\:\theta}{m} \\ $$

Question Number 115632    Answers: 1   Comments: 6

Question Number 115629    Answers: 0   Comments: 2

Question Number 115628    Answers: 0   Comments: 0

Question Number 115627    Answers: 0   Comments: 1

Question Number 115621    Answers: 2   Comments: 0

... advanced calculus... evaluate :: show that lim_(n→∞) (1/n)[cos^(2p) (π/(2n))+cos^(2p) ((2π)/(2n))+cos^(2p) ((3π)/(2n))......cos^(2p) (π/2)] =Π_(r=1) ^p ((p+r)/(4r))

$$ \\ $$$$\:\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}...\: \\ $$$$\:\:\:\:\:\:\:{evaluate}\::: \\ $$$${show}\:{that}\:{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\left[{cos}^{\mathrm{2}{p}} \frac{\pi}{\mathrm{2}{n}}+{cos}^{\mathrm{2}{p}} \frac{\mathrm{2}\pi}{\mathrm{2}{n}}+{cos}^{\mathrm{2}{p}} \frac{\mathrm{3}\pi}{\mathrm{2}{n}}......{cos}^{\mathrm{2}{p}} \frac{\pi}{\mathrm{2}}\right]\:=\underset{{r}=\mathrm{1}} {\overset{{p}} {\prod}}\frac{{p}+{r}}{\mathrm{4}{r}} \\ $$

Question Number 115616    Answers: 2   Comments: 0

lim_(x→0) ((((256+tan x))^(1/(8 )) −((1+sin x))^(1/(3 )) −1)/( ((1+tan x))^(1/(6 )) −1)) ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{8}\:}]{\mathrm{256}+\mathrm{tan}\:\:{x}}\:−\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\mathrm{sin}\:{x}}\:−\mathrm{1}}{\:\sqrt[{\mathrm{6}\:}]{\mathrm{1}+\mathrm{tan}\:{x}}\:−\mathrm{1}}\:? \\ $$

Question Number 115604    Answers: 6   Comments: 1

(1)lim_(x→(π/2)) ((cos 2x)/(tan x)) =? (2) lim_(x→π) (((√(2 +cos x)) −1)/((π−x)^2 )) = ?

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{tan}\:{x}}\:=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}\:+\mathrm{cos}\:{x}}\:−\mathrm{1}}{\left(\pi−{x}\right)^{\mathrm{2}} }\:=\:? \\ $$

Question Number 115597    Answers: 4   Comments: 0

Question Number 115595    Answers: 1   Comments: 0

Prove that, for all primes p>3, 13∣10^(2p) −10^p +1

$$\mathrm{Prove}\:\mathrm{that},\:\mathrm{for}\:\mathrm{all}\:\mathrm{primes}\:\mathrm{p}>\mathrm{3}, \\ $$$$\mathrm{13}\mid\mathrm{10}^{\mathrm{2p}} −\mathrm{10}^{\mathrm{p}} +\mathrm{1} \\ $$

Question Number 115594    Answers: 1   Comments: 0

old question, I couldn′t find it: ∫(√(x−(√x)))dx=?

$$\mathrm{old}\:\mathrm{question},\:\mathrm{I}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{find}\:\mathrm{it}: \\ $$$$\int\sqrt{{x}−\sqrt{{x}}}{dx}=? \\ $$

Question Number 115592    Answers: 0   Comments: 1

Question Number 115625    Answers: 0   Comments: 1

Question Number 115575    Answers: 3   Comments: 2

lim_(n→∞) Π_(k=1) ^n (1−(1/(k+1)))=?

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{k}+\mathrm{1}}\right)=? \\ $$

  Pg 1030      Pg 1031      Pg 1032      Pg 1033      Pg 1034      Pg 1035      Pg 1036      Pg 1037      Pg 1038      Pg 1039   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com