Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1035
Question Number 116056 Answers: 2 Comments: 0
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{5}^{{n}} }{{n}!}=? \\ $$
Question Number 116055 Answers: 1 Comments: 1
$$\mathrm{3}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{4}\frac{{dy}}{{dx}}+\mathrm{5}{y}=\mathrm{0}\:\:\:\:\:\:{y}=? \\ $$
Question Number 116054 Answers: 1 Comments: 1
$$\left({x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{1}\right){dx}+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}\right){dy}=\mathrm{0} \\ $$$${y}=? \\ $$
Question Number 116053 Answers: 2 Comments: 0
$${y}\frac{{dy}}{{dx}}=\mathrm{1}+{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:{y}=? \\ $$
Question Number 116052 Answers: 2 Comments: 1
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{25}{y}=\mathrm{0}\:\:\:\:\:\:\:{y}=? \\ $$
Question Number 116051 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{modulus}\:\mathrm{and}\:\mathrm{the}\:\mathrm{argument} \\ $$$$\mathrm{of}\:\:\:\mathrm{1}+{i}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:\:? \\ $$
Question Number 116043 Answers: 1 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}}\:? \\ $$$$\:\:\:\int\:\mathrm{sinh}\:^{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{cosh}\:\left(\mathrm{x}\right)\:\mathrm{dx}\: \\ $$$$\:\:\:\mathrm{find}\:\mathrm{x}\:\mathrm{from}\:\mathrm{equation}\:\mathrm{cos}\:\left(\mathrm{2tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 116039 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:^{\mathrm{4}} \left({x}\right)}}{\left(\mathrm{1}−\mathrm{sin}\:\left({x}\right)\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:? \\ $$
Question Number 116037 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{27}^{{x}} −\mathrm{1}}{\mathrm{9}^{{x}} −\mathrm{1}}\:=\:?? \\ $$
Question Number 116029 Answers: 1 Comments: 0
$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=?\: \\ $$
Question Number 116024 Answers: 4 Comments: 0
$$\int\:{tan}^{\mathrm{3}} \mathrm{2}{xdx} \\ $$
Question Number 116023 Answers: 2 Comments: 0
$$\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:+\:\frac{\mathrm{x}}{\mathrm{a}}\:\left(\mathrm{1}\:+\:\mathrm{x}\right)+\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:\left(\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \right)+\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{a}^{\mathrm{3}} }\:\left(\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \right)\:+\:\ldots \\ $$$$ \\ $$
Question Number 116338 Answers: 0 Comments: 1
Question Number 116019 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\mathrm{sin}\:\left({t}^{\mathrm{3}} \right)\:{dt}}{\mathrm{2}{x}^{\mathrm{4}} }\:? \\ $$
Question Number 116016 Answers: 1 Comments: 0
$$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\frac{{dx}}{\:\sqrt{\mathrm{6}+{x}−{x}^{\mathrm{2}} }}\:? \\ $$
Question Number 116014 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:...{nice}\:\:{calculus}\:...\:\:\: \\ $$$$\:{prove}\:: \\ $$$$\:\:\:{i}:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\sqrt{\mathrm{2}}} \right)^{\sqrt{\mathrm{2}}} }\:=\mathrm{0}\:\:\:\:\:\:\checkmark \\ $$$$\:\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{1}+\sqrt{\mathrm{2}}} \right)^{\mathrm{1}+\sqrt{\mathrm{2}}} }\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\checkmark\:\: \\ $$$$\:\:\:{iii}:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({x}^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({cos}\left({x}\right)\right)\right){dx}=\pi{ln}\left({ln}\left(\mathrm{2}\right)\right)\checkmark \\ $$$$\:\:\:\:\:\:\:...\:{m}.{n}.\:{july}.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 116009 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{tan}\left(\mathrm{a}+\mathrm{b}\right)=\mathrm{y}}\\{\mathrm{tan}\:\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{x}}\end{cases}\:\:\:\mathrm{tan2a}=? \\ $$
Question Number 116007 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\propto} {\mathrm{lim}}\frac{\sqrt{\mathrm{x}}}{\sqrt{\mathrm{x}+\sqrt{\mathrm{x}\sqrt{\mathrm{x}}}}} \\ $$
Question Number 116006 Answers: 1 Comments: 0
$$\mathrm{3}\left(\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\right)^{\mathrm{4}} +\mathrm{6}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{4}\left(\mathrm{sin}^{\mathrm{6}} {x}+\mathrm{cos}^{\mathrm{6}} {x}\right)\:=\:\_\_\_\_\_. \\ $$
Question Number 116005 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}::: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{1}^{+} } \left(\:\zeta\left(\:{x}\:\right)\:−\frac{\mathrm{1}}{{x}\:−\:\mathrm{1}}\right)\:\overset{???} {=}\gamma\:\:\: \\ $$$$\:\:\gamma::\:\mathscr{E}{uler}\:−\:{mascheroni}\:{constant}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{huly}\:\mathrm{1970} \\ $$$$ \\ $$
Question Number 116000 Answers: 0 Comments: 0
$${U}\left({n}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{tanh}\:{x}}{\:\sqrt[{{n}}]{\mathrm{tanh}\:{x}}}{dx} \\ $$$${another}\:{way}? \\ $$$$ \\ $$
Question Number 115999 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\:\sqrt[{\mathrm{3}\:}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}\:}]{\mathrm{cos}\:\mathrm{4}{x}}}{{x}^{\mathrm{2}} } \\ $$
Question Number 115997 Answers: 1 Comments: 0
Question Number 115988 Answers: 1 Comments: 2
Question Number 115986 Answers: 1 Comments: 0
Question Number 115974 Answers: 0 Comments: 0
$$\int\frac{{e}^{\mathrm{3}{x}} −{e}^{{x}} }{{x}\left({e}^{\mathrm{3}{x}} +\mathrm{1}\right)\left({e}^{{x}} +\mathrm{1}\right)}{dx}\:=\:? \\ $$
Pg 1030 Pg 1031 Pg 1032 Pg 1033 Pg 1034 Pg 1035 Pg 1036 Pg 1037 Pg 1038 Pg 1039
Terms of Service
Privacy Policy
Contact: info@tinkutara.com