Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1030
Question Number 116166 Answers: 1 Comments: 0
$$\forall{n}\in\mathbb{N}^{\ast} ,\:\mathrm{suppose}\:{u}_{{n}} =\left(\mathrm{5sin}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}}\mathrm{cos}\:{n}\right)^{{n}} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{u}_{{n}} =\mathrm{0} \\ $$
Question Number 116162 Answers: 1 Comments: 0
$$\:\: \\ $$$$ \\ $$$$\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{16}^{{n}} \left({n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\right)}\:\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \:=\frac{\mathrm{8}}{\mathrm{3}\pi}\: \\ $$$$ \\ $$$${m}.{n}.{july}\:\mathrm{1970}. \\ $$$$\: \\ $$
Question Number 116163 Answers: 1 Comments: 0
$$\mathrm{I}\:\mathrm{need}\:\mathrm{a}\:\mathrm{general}\:\mathrm{rule}\:\mathrm{for}\:\mathrm{factorising} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{a}^{\mathrm{n}} +\mathrm{b}^{\mathrm{n}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{a}^{\mathrm{n}} −\mathrm{b}^{\mathrm{n}} \\ $$$$\mathrm{when}\:\mathrm{n}\:\mathrm{is}\:\mathrm{even}\:\mathrm{and}\:\mathrm{when}\:\mathrm{n}\:\mathrm{is}\:\mathrm{odd}. \\ $$
Question Number 116196 Answers: 6 Comments: 0
$$\:\:\:\:\:{please}\:{solve}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {tan}^{\mathrm{9}} \left({x}\right){dx}\:=??? \\ $$
Question Number 116149 Answers: 0 Comments: 1
Question Number 116138 Answers: 3 Comments: 1
$$\mathrm{If}\:\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{quadratic}\:\mathrm{equation}\: \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{10x}+\mathrm{2}=\mathrm{0}\:\mathrm{and}\:\alpha\:>\beta,\:\mathrm{find}: \\ $$$$\left(\mathrm{i}\right)\:\frac{\mathrm{1}}{\beta}−\frac{\mathrm{1}}{\alpha} \\ $$$$\left(\mathrm{ii}\right)\alpha^{\mathrm{3}} −\beta^{\mathrm{3}} \\ $$
Question Number 116136 Answers: 3 Comments: 0
$$\mathrm{y}'\:=\frac{\mathrm{y}}{\mathrm{x}}\:+\frac{\mathrm{2x}^{\mathrm{3}} \:\mathrm{cos}\:\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{y}} \\ $$$$\mathrm{where}\:\mathrm{y}\left(\sqrt{\pi}\right)\:=\:\mathrm{0} \\ $$
Question Number 116114 Answers: 1 Comments: 0
Question Number 116113 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{exponent}}\:\boldsymbol{\mathrm{of}}\:\mathrm{12}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{expansion}}\:\boldsymbol{\mathrm{of}}\:\mathrm{100}! \\ $$
Question Number 116112 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\int_{\:\mathrm{0}} ^{\:\infty} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}\:=\:\mathrm{0} \\ $$$$ \\ $$
Question Number 116226 Answers: 2 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{3}}}\:+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{3}\sqrt{\mathrm{4}}}+...+\frac{\mathrm{1}}{\mathrm{100}\sqrt{\mathrm{99}}+\mathrm{99}\sqrt{\mathrm{100}}} \\ $$
Question Number 116123 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{Study}\:\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{real}\:\alpha\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{integral}\:\:\int_{\alpha} ^{+\infty} \frac{{ln}\mid{x}\mid}{\:\sqrt[{\mathrm{3}}]{{x}\left({x}+\mathrm{1}\right)}}{dx} \\ $$
Question Number 116105 Answers: 2 Comments: 0
$${solve}\:{the}\:{Cauchy}-{Euler}\: \\ $$$${Differential}\:{Equation}\:{by} \\ $$$${substituting}\:{x}={e}^{{t}} \\ $$$${x}^{\mathrm{3}} \:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:+\:\mathrm{2}{x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}{y}\:=\:\mathrm{10}{x}\:+\:\frac{\mathrm{10}}{{x}} \\ $$$$ \\ $$
Question Number 116098 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{calculate}\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\frac{\mathrm{d}\theta}{\mathrm{x}^{\mathrm{2}} −\mathrm{2x}\:\mathrm{cos}\theta\:+\mathrm{1}}\:\:\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\mathrm{explicite}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{cos}\theta}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{d}\theta \\ $$
Question Number 116097 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\mathrm{dx}\: \\ $$
Question Number 116096 Answers: 1 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{x}^{\mathrm{2}} −\mathrm{i}}\mathrm{dx}\:\:\:\:\:\left(\mathrm{i}=\sqrt{−\mathrm{1}}\right) \\ $$
Question Number 116094 Answers: 1 Comments: 0
Question Number 116093 Answers: 2 Comments: 0
$${Find}\:{the}\:{equation}\:{of}\:{a}\:{circle}\:{which}\:{touches} \\ $$$${x}−{axis}\:{and}\:{the}\:{line}\:{y}={x}\:{in}\:{the}\:\mathrm{1}^{{st}} \:{quadrant}. \\ $$$${Determine}\:{its}\:{centre}\:{and}\:{radius}\:{if}\:{it}\:{touches}\:{the}\:{line}\:{y}+{x}=\mathrm{4}. \\ $$
Question Number 116092 Answers: 1 Comments: 2
$${Solve}\:{for}\:{x}\:{and}\:{y}\:{if} \\ $$$${x}^{{y}} =\mathrm{36} \\ $$
Question Number 116091 Answers: 2 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{formular}\:\mathrm{to}\:\mathrm{tell}\:\mathrm{how}\:\mathrm{many}\:\mathrm{times}\:\mathrm{a}\:\mathrm{digit}\:\mathrm{occur}\:\mathrm{in}\:\mathrm{an}\:\mathrm{interval}. \\ $$$$ \\ $$$$\mathrm{e}.\mathrm{g}.\:\:\mathrm{How}\:\mathrm{many}\:\mathrm{times}\:\mathrm{digits}\:\:\mathrm{2}\:\:\mathrm{occur}\:\mathrm{between}\:\:\mathrm{1}\:−\:\mathrm{100} \\ $$
Question Number 116090 Answers: 1 Comments: 0
$${what}\:{is}\:\mathrm{3}\frac{\mathrm{7}}{\mathrm{8}}{hrs}? \\ $$
Question Number 116087 Answers: 0 Comments: 2
$${soit}\:{f}\:{la}\:{fonction}\:{d}\acute {{e}finie}\:{sur}\left[\mathrm{0},\mathrm{2}\right]\:{par}\: \\ $$$${f}\left({x}\right)=\mathrm{3}\:\:\:{si}\:{x}\in\left[\mathrm{0},\mathrm{2}\right]\cap\mathbb{Q} \\ $$$${f}\left({x}\right)=\mathrm{1}\:\:\:{si}\:{x}\in\left[\mathrm{0},\mathrm{2}\right]\cap\mathbb{R}\backslash\mathbb{Q} \\ $$
Question Number 116083 Answers: 0 Comments: 0
$$\mathrm{Given}\:{X}\:\mid\:\Theta=\theta\:\backsim\:{Uniform}\left(\mathrm{0},\theta\right)\:\mathrm{and}\: \\ $$$$\Theta\:\backsim\:{Uniform}\left(\mathrm{20},\mathrm{40}\right). \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cdf}\:\mathrm{of}\:{X},\:\:{F}_{{X}} \left({x}\right)\:\mathrm{for}\:{x}\in\left[\mathrm{0},\mathrm{20}\right)\:\mathrm{and}\:{x}\in\left[\mathrm{20},\mathrm{40}\right) \\ $$
Question Number 116085 Answers: 0 Comments: 1
$$\mathrm{6}+\mathrm{log}_{\frac{\mathrm{3}}{\mathrm{2}}} \left\{\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\sqrt{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\sqrt{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\sqrt{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\centerdot\centerdot\centerdot}}}\right\}=\:? \\ $$
Question Number 116079 Answers: 1 Comments: 0
$${prove}\:{that}\:{Re}=\frac{\rho\centerdot{v}\centerdot{d}}{\mu}\:\:\:\:\:{renulds}\:{number} \\ $$
Question Number 116078 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\:{Fr}=\frac{{v}^{\mathrm{2}} }{{gh}}\:\:\:\:{froude}\:{numer} \\ $$
Pg 1025 Pg 1026 Pg 1027 Pg 1028 Pg 1029 Pg 1030 Pg 1031 Pg 1032 Pg 1033 Pg 1034
Terms of Service
Privacy Policy
Contact: info@tinkutara.com