Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1030
Question Number 115882 Answers: 1 Comments: 0
Question Number 115876 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}\:\mathrm{has}\: \\ $$$$\mathrm{no}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:{a}\centerdot\left[{f}\left(−\frac{{b}}{\mathrm{2}{a}}\right)\right]>\mathrm{0} \\ $$
Question Number 115869 Answers: 0 Comments: 0
$$\:\frac{{dy}}{{dx}}\:+\mathrm{2}{y}\:=\:{x}^{\mathrm{3}} .{e}^{−\mathrm{2}{y}} \\ $$
Question Number 115859 Answers: 2 Comments: 0
$${Determine},\:{in}\:{simplest}\:{form}\:{the} \\ $$$${smallest}\:{of}\:{the}\:{three}\:{numbers}\:{x}, \\ $$$${y}\:{and}\:{z}\:{which}\:{satisfy}\:{the}\:{system} \\ $$$$\begin{cases}{\mathrm{log}\:_{\mathrm{9}} \left({x}\right)+\mathrm{log}\:_{\mathrm{9}} \left({y}\right)+\mathrm{log}\:_{\mathrm{3}} \left({z}\right)=\mathrm{2}}\\{\mathrm{log}\:_{\mathrm{16}} \left({x}\right)+\mathrm{log}\:_{\mathrm{4}} \left({y}\right)+\mathrm{log}\:_{\mathrm{16}} \left({z}\right)=\mathrm{1}}\\{\mathrm{log}\:_{\mathrm{5}} \left({x}\right)+\mathrm{log}\:_{\mathrm{25}} \left({y}\right)+\mathrm{log}\:_{\mathrm{25}} \left({z}\right)=\mathrm{0}}\end{cases} \\ $$
Question Number 115858 Answers: 2 Comments: 0
$${What}\:{are}\:{all}\:{ordered}\:{pairs}\:{of}\:{real} \\ $$$${number}\:\left({x},{y}\right)\:{for}\:{which}\: \\ $$$$\mathrm{5}^{{y}−{x}} \:\left({x}+{y}\right)\:=\:\mathrm{1}\:{and}\:\left({x}+{y}\right)^{{x}−{y}} \:=\:\mathrm{5} \\ $$
Question Number 115857 Answers: 1 Comments: 0
$${What}\:{are}\:{all}\:{real}\:{values}\:{of}\:{p}\:{for} \\ $$$${which}\:{the}\:{inequality}\: \\ $$$$−\mathrm{3}<\frac{{x}^{\mathrm{2}} +{px}−\mathrm{2}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}<\mathrm{2}\:{is}\:{satisfied}\: \\ $$$${by}\:{all}\:{real}\:{values}\:{of}\:{x} \\ $$
Question Number 115856 Answers: 2 Comments: 0
$${Which}\:{is}\:{greater} \\ $$$${P}\:=\:\left(\mathrm{1983}\right)\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{1984}\right)\:,\:{or} \\ $$$${Q}\:=\:\left(\mathrm{1984}\right)\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{1983}\right) \\ $$
Question Number 115854 Answers: 1 Comments: 0
$${If}\:{f}\left(\mathrm{2}{x}\right)=\:{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\:,\:{what}\:{all} \\ $$$${values}\:{of}\:{t}\:{for}\:{which}\:{f}\left(\frac{{t}}{\mathrm{2}}\right)\:=\:−\frac{\mathrm{11}}{\mathrm{4}} \\ $$$${where}\:{f}\:{represents}\:{a}\:{function} \\ $$
Question Number 115871 Answers: 1 Comments: 1
Question Number 115846 Answers: 2 Comments: 1
$${given}\:{vertex}\:{parabola}\:{at}\:{point} \\ $$$$\left(\mathrm{1},−\mathrm{2}\right)\:{and}\:{focus}\:{at}\:\left(−\mathrm{1},−\mathrm{2}\right). \\ $$$${find}\:{the}\:{equation}\:{of}\:{parabola} \\ $$
Question Number 115817 Answers: 1 Comments: 9
Question Number 115815 Answers: 1 Comments: 0
$$\mathrm{Montrer}\:\mathrm{que}\:\:\forall\left(\mathrm{a},\mathrm{b},\mathrm{c}\right)\in\left(\mathbb{R}_{+} ^{\ast} \right)^{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} +\mathrm{bc}}+\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} +\mathrm{ac}}+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} +\mathrm{ab}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{ab}}+\frac{\mathrm{1}}{\mathrm{bc}}+\frac{\mathrm{1}}{\mathrm{ac}}\right) \\ $$
Question Number 115812 Answers: 2 Comments: 4
$${solve} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\zeta\left({x}\right)−\mathrm{1}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$
Question Number 115798 Answers: 1 Comments: 1
Question Number 115793 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\underset{\backsim} {{p}}=\begin{pmatrix}{\:\:\mathrm{2}}\\{−\mathrm{3}}\end{pmatrix}\:,\:\underset{\backsim} {{q}}=\begin{pmatrix}{−\mathrm{4}}\\{\:\:\:{m}}\end{pmatrix}\:\mathrm{and}\:\underset{\backsim} {{r}}=\begin{pmatrix}{{n}}\\{\mathrm{4}}\end{pmatrix} \\ $$$$\mathrm{If}\:\underset{\backsim} {{p}}+\underset{\backsim} {{q}}−\underset{\backsim} {{r}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{m}\:\mathrm{and}\:{n}. \\ $$
Question Number 115781 Answers: 4 Comments: 0
$$\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {\int}}\:\frac{{x}\:\mathrm{sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{4}} }}\:{dx}\:=? \\ $$$$\int\mathrm{2}^{−{x}} \:\mathrm{tanh}\:\left(\mathrm{2}^{\mathrm{1}−{x}} \right)\:{dx}\:=? \\ $$
Question Number 115780 Answers: 10 Comments: 1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{cos}\:{x}\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \:=\:? \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({e}^{\mathrm{3}{x}} −\mathrm{5}{x}\right)^{\frac{\mathrm{1}}{{x}}} \:=? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{\mathrm{2}{x}} −\mathrm{2}{e}^{{x}} +\mathrm{1}}{\mathrm{cos}\:\mathrm{3}{x}−\mathrm{2cos}\:\mathrm{2}{x}+\mathrm{cos}\:{x}}=? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{cot}\:^{\mathrm{2}} {x}\:=? \\ $$
Question Number 115777 Answers: 3 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:{x}−\mathrm{tan}^{−\mathrm{1}} {x}}{{x}^{\mathrm{2}} \:\mathrm{ln}\:\left(\mathrm{1}+{x}\right)} \\ $$
Question Number 115775 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{3}\:}]{\frac{\left(\mathrm{3}−\sqrt{{x}}\right)\left(\sqrt{{x}}+\mathrm{2}\right)}{\mathrm{8}{x}−\mathrm{4}}} \\ $$
Question Number 121180 Answers: 1 Comments: 1
Question Number 115773 Answers: 0 Comments: 0
$$\:\frac{\mathrm{1}−{x}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5}}}\:=\:\frac{\mathrm{3}}{\mathrm{5}} \\ $$
Question Number 115771 Answers: 2 Comments: 0
$${y}''−{y}'−\mathrm{2}{y}={e}^{\mathrm{2}{x}} .\mathrm{cos}\:^{\mathrm{2}} {x} \\ $$
Question Number 115769 Answers: 1 Comments: 0
$${There}\:{are}\:\mathrm{3}\:{teachers}\:{and}\:\mathrm{6}\:{students} \\ $$$${who}\:{will}\:{sit}\:{on}\:{the}\:\mathrm{9}\:{available}\:{seats}.\:{many} \\ $$$${arrangements}\:{they}\:{sit}\:{if}\:{each}\: \\ $$$${teacher}\:{is}\:{flanked}\:{by}\:\mathrm{2}\:{students} \\ $$
Question Number 115765 Answers: 1 Comments: 3
$$\: \\ $$$$\:\:\:\mathrm{Show}\:\mathrm{that}\:\mathrm{sin}\:\left(\alpha\:+\:\beta\right)\:=\:\mathrm{sin}\:\alpha\:\mathrm{cos}\:\beta\:+\:\mathrm{cos}\:\alpha\:\mathrm{sin}\:\beta. \\ $$
Question Number 115761 Answers: 2 Comments: 1
$$\:\:\:\:\:\:....\:\:\:{advanced}\:\:{calculus}...\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:...\:\:\:{evaluate}\:...\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Psi=\:\int_{−\infty} ^{\:+\infty} \left(\frac{{x}}{\mathrm{2}+\mathrm{2}^{−{x}} +\mathrm{2}^{{x}} }\right)^{\mathrm{2}} {dx}\:=??? \\ $$$$\:{m}.{n}.{july}\:\mathrm{70} \\ $$$$ \\ $$
Question Number 115830 Answers: 0 Comments: 1
$${create}\:{the}\:{differention}\:{equation}\:{from} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{ax}+\mathrm{2}{by}+{c}=\mathrm{0} \\ $$
Pg 1025 Pg 1026 Pg 1027 Pg 1028 Pg 1029 Pg 1030 Pg 1031 Pg 1032 Pg 1033 Pg 1034
Terms of Service
Privacy Policy
Contact: info@tinkutara.com