Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1030
Question Number 117163 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{4}\:\mathrm{dx}}{\mathrm{x}\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:=? \\ $$
Question Number 117144 Answers: 1 Comments: 0
$$\boldsymbol{{S}}_{\boldsymbol{{n}}} =\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\prod}}\boldsymbol{{cos}}\left(\boldsymbol{{kx}}\right)=?????? \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{help}} \\ $$
Question Number 117143 Answers: 1 Comments: 0
Question Number 117142 Answers: 0 Comments: 0
Question Number 117140 Answers: 1 Comments: 0
Question Number 117216 Answers: 1 Comments: 0
$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{dx}}{\:\sqrt{\mathrm{sin}\:\mathrm{x}}}\:=?\: \\ $$$$ \\ $$
Question Number 117213 Answers: 3 Comments: 0
$$\:\:\underset{\mathrm{0}} {\overset{\:\:\:\:\:\:\:\infty} {\int}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{4}}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{x}}{\mathrm{6}}\right)}{\mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 117184 Answers: 0 Comments: 0
$${let}\:{I}\:{be}\:{an}\:{interval}.{prove}\:{that} \\ $$$${c}^{\left(\infty\right)} \left({I}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\cap}}{c}^{{n}} \left({I}\right) \\ $$
Question Number 117122 Answers: 0 Comments: 4
$$\mathrm{Given}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\mathbb{R}^{\mathrm{3}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{abc}=\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}: \\ $$$$\:\:\:\:\:\left(\mathrm{a}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{b}}\right)\left(\mathrm{b}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{c}}\right)\left(\mathrm{c}−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{a}}\right)\leqslant\mathrm{1} \\ $$
Question Number 117116 Answers: 0 Comments: 2
$${x}\:,\:{y}\:,{z}\:,\:{t}\:\in\:\mathbb{Z}. \\ $$$${x}\:{and}\:{y}\:{are}\:{x}\:{are}\:{respectively}\:{the} \\ $$$${divisor}\:{of}\:{y}\:{and}\:{t}. \\ $$$${Justify}\:{the}\:{existence}\:{of}\:{k}\:\in\:\mathbb{Z}\:{such} \\ $$$${that}\:{yt}={xzk}. \\ $$$${Deduct}\:{that}\:{x}^{{m}\:} {is}\:{a}\:{divisor}\:{of}\:{y}^{{m}} \\ $$$${where}\:{m}\:\in\:\mathbb{N}. \\ $$
Question Number 117107 Answers: 1 Comments: 0
Question Number 117101 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{sin}^{\mathrm{2}} \theta\:\mathrm{and}\:\mathrm{cos}^{\mathrm{2}} \theta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\: \\ $$$$\mathrm{of}\:\mathrm{quadratic}\:\mathrm{equation},\:\mathrm{find}\:\mathrm{the}\:\mathrm{equation}. \\ $$
Question Number 117100 Answers: 3 Comments: 0
$$\int\:\mathrm{sin}\:^{\mathrm{6}} \left(\mathrm{2x}\right)\:\mathrm{cos}\:^{\mathrm{6}} \left(\mathrm{2x}\right)\:\mathrm{dx}\:=? \\ $$
Question Number 117148 Answers: 2 Comments: 0
$$\:\:\:\int\:\mathrm{x}^{\mathrm{6}} \:\mathrm{e}^{−\mathrm{4x}^{\mathrm{2}} } \:\mathrm{dx}\:=? \\ $$
Question Number 117147 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{cosh}\:\left(\mathrm{2x}\right)}{\mathrm{cosh}\:\left(\mathrm{x}\right)}\right)^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \:=? \\ $$
Question Number 117095 Answers: 1 Comments: 0
Question Number 117090 Answers: 0 Comments: 0
Question Number 117089 Answers: 0 Comments: 0
Question Number 117088 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{evsluate}\::: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xsin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$$$\:\:\:\:\:{hint}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:=\frac{\pi}{\mathrm{2}}{e}^{−{p}} \:\:\:\:\left({p}>\mathrm{0}\right)\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:.{m}.{n}\:\mathrm{1970} \\ $$$$ \\ $$
Question Number 117087 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:...\:\:{nice}\:\:{calculus}... \\ $$$$\:{please}\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$
Question Number 117086 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:...{nice}\:\:{mathematics}... \\ $$$$\:{evaluate}\:... \\ $$$$\:\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{4}{n}}\right)\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 117085 Answers: 6 Comments: 0
Question Number 117082 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{6}−\mathrm{3x}\:\mathrm{is}\:\mathrm{the}\:\mathrm{geometric}\:\mathrm{mean}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{integer}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2}\:\mathrm{and}\:\bar {\mathrm{2}}\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\: \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:? \\ $$
Question Number 117078 Answers: 1 Comments: 0
$$\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2n}}\right).\mathrm{tan}\:\left(\frac{\mathrm{2}\pi}{\mathrm{2n}}\right).\mathrm{tan}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2n}}\right)...\mathrm{tan}\:\left(\frac{\mathrm{n}\pi}{\mathrm{2n}}\right)\right]^{\frac{\mathrm{1}}{\mathrm{n}}} =?\: \\ $$
Question Number 117066 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:.\:\mathrm{If}\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right),\: \\ $$$$\mathrm{f}^{\mathrm{3}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:,\:\mathrm{f}^{\mathrm{1998}} \left(\mathrm{x}\right)\:=\:\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\mathrm{then}\:\int_{\frac{\mathrm{1}}{\mathrm{e}}} ^{\mathrm{1}} \mathrm{g}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\_? \\ $$
Question Number 117061 Answers: 2 Comments: 3
$$\mathrm{How}\:\mathrm{many}\:\mathrm{5}-\mathrm{digits}\:\mathrm{positive}\:\mathrm{integers} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} {x}_{\mathrm{4}} {x}_{\mathrm{5}} \:\mathrm{are}\:\mathrm{there}\:\mathrm{such}\:\mathrm{that}\: \\ $$$${x}_{\mathrm{1}} \leqslant{x}_{\mathrm{2}} \leqslant{x}_{\mathrm{3}} \leqslant{x}_{\mathrm{4}} \leqslant{x}_{\mathrm{5}} ? \\ $$
Pg 1025 Pg 1026 Pg 1027 Pg 1028 Pg 1029 Pg 1030 Pg 1031 Pg 1032 Pg 1033 Pg 1034
Terms of Service
Privacy Policy
Contact: [email protected]