Let say r^((n)) = Π_(k=0) ^(n−1) (r−k) and r^((0)) =1
With n∈N and r∈R...
1. Show that (n−1−r)^((n)) = (−1)^((n)) (r)^((n))
2. If m≤n, show that (r^((n)) /r^((m)) )=(r−m)^((n−m))
3. Espress r^((n+m)) as w^((n)) w′^((m))
4. Show that (2r)^((2n)) =2^(2n) r^((n)) (r−(1/2))^((n))
Can you help me... please...