Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1030

Question Number 108619    Answers: 1   Comments: 3

Question Number 108614    Answers: 0   Comments: 0

Question Number 108612    Answers: 0   Comments: 0

Question Number 108609    Answers: 1   Comments: 1

1 + 2 + 3 + 4 + 5 + ... ∞ = ???

$$\mathrm{1}\:+\:\mathrm{2}\:+\:\mathrm{3}\:+\:\mathrm{4}\:+\:\mathrm{5}\:+\:...\:\infty\:=\:??? \\ $$

Question Number 108605    Answers: 2   Comments: 0

((BeMath)/≊) ∫ (x^(11) /((x^8 +1)^2 )) dx

$$\:\:\:\frac{\boldsymbol{{B}}{e}\boldsymbol{{M}}{ath}}{\approxeq} \\ $$$$\:\int\:\frac{{x}^{\mathrm{11}} }{\left({x}^{\mathrm{8}} +\mathrm{1}\right)^{\mathrm{2}} }\:{dx}\: \\ $$

Question Number 108597    Answers: 3   Comments: 0

((∠ BeMath∠)/∦) (1) ∫ cos (ln x) dx (2) ∫ sin (ln x) dx

$$\:\:\:\:\:\frac{\angle\:\mathcal{B}{e}\mathcal{M}{ath}\angle}{\nparallel} \\ $$$$\left(\mathrm{1}\right)\:\int\:\mathrm{cos}\:\left(\mathrm{ln}\:{x}\right)\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\:\int\:\mathrm{sin}\:\left(\mathrm{ln}\:{x}\right)\:{dx}\: \\ $$

Question Number 108594    Answers: 2   Comments: 0

Question Number 108593    Answers: 1   Comments: 0

Question Number 108588    Answers: 2   Comments: 1

Question Number 108584    Answers: 0   Comments: 0

find ∫_0 ^1 ((ln(1+x^2 ))/(x+2))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}+\mathrm{2}}\mathrm{dx} \\ $$

Question Number 108583    Answers: 1   Comments: 0

find ∫_0 ^1 ((ln(1+x^2 ))/(1+x^2 ))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 108582    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((ln(1+x))/(1+x^2 )) dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 108573    Answers: 3   Comments: 0

please: in AB^Δ C prove that: ((cos(A))/(sin(B)sin(C))) +((cos(B))/(sin(A)sin(C)))+((cos(C))/(sin(A)sin(B))) =2

$$\:\:\:\:\:\:\:\:\:\mathrm{please}:\:\:\:\mathrm{in}\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\:\frac{{cos}\left(\mathrm{A}\right)}{{sin}\left(\mathrm{B}\right){sin}\left(\mathrm{C}\right)}\:+\frac{{cos}\left(\mathrm{B}\right)}{{sin}\left(\mathrm{A}\right){sin}\left(\mathrm{C}\right)}+\frac{{cos}\left(\mathrm{C}\right)}{{sin}\left(\mathrm{A}\right){sin}\left(\mathrm{B}\right)}\:=\mathrm{2}\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 108571    Answers: 2   Comments: 0

Question Number 108570    Answers: 0   Comments: 0

Question Number 108568    Answers: 0   Comments: 0

Question Number 108553    Answers: 0   Comments: 0

If a_1 , a_2 , a_3 , be an AP, then prove that: Σ_(n = 1) ^(2m) (− 1)^(n − 1) a_n ^2 = (m/(2m − 1))(a_n ^2 − a_(2m) ^2 )

$$\mathrm{If}\:\:\:\:\mathrm{a}_{\mathrm{1}} ,\:\:\mathrm{a}_{\mathrm{2}} ,\:\:\mathrm{a}_{\mathrm{3}} ,\:\:\:\:\mathrm{be}\:\mathrm{an}\:\mathrm{AP},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{1}} {\overset{\mathrm{2m}} {\sum}}\:\left(−\:\mathrm{1}\right)^{\mathrm{n}\:\:−\:\:\mathrm{1}} \:\mathrm{a}_{\mathrm{n}} ^{\mathrm{2}} \:\:\:\:=\:\:\:\frac{\mathrm{m}}{\mathrm{2m}\:\:−\:\:\mathrm{1}}\left(\mathrm{a}_{\mathrm{n}} ^{\mathrm{2}} \:\:\:−\:\:\mathrm{a}_{\mathrm{2m}} ^{\mathrm{2}} \right) \\ $$

Question Number 108538    Answers: 0   Comments: 1

Question Number 108548    Answers: 0   Comments: 0

Question Number 108547    Answers: 1   Comments: 0

Solve the following equation: cosz =2

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation}: \\ $$$$\mathrm{cosz}\:=\mathrm{2} \\ $$

Question Number 108507    Answers: 1   Comments: 0

∫_0 ^(π/6) (√((3cos2x−1)/(cos^2 (x)))) dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{6}}} \sqrt{\frac{\mathrm{3}{cos}\mathrm{2}{x}−\mathrm{1}}{{cos}^{\mathrm{2}} \left({x}\right)}}\:{dx} \\ $$

Question Number 108506    Answers: 1   Comments: 0

Question Number 108502    Answers: 1   Comments: 1

Question Number 108498    Answers: 2   Comments: 0

Question Number 108491    Answers: 1   Comments: 0

(1+2x)y′′+(4x−2)y′−8y=0

$$\left(\mathrm{1}+\mathrm{2x}\right)\mathrm{y}''+\left(\mathrm{4x}−\mathrm{2}\right)\mathrm{y}'−\mathrm{8y}=\mathrm{0} \\ $$

Question Number 108483    Answers: 0   Comments: 3

  Pg 1025      Pg 1026      Pg 1027      Pg 1028      Pg 1029      Pg 1030      Pg 1031      Pg 1032      Pg 1033      Pg 1034   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com