Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1029
Question Number 116491 Answers: 1 Comments: 0
$$\left(\mathrm{0}.\mathrm{16}\right)^{\mathrm{log}\:_{\mathrm{2}.\mathrm{5}} \left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }+...\right)} \:=? \\ $$
Question Number 116486 Answers: 2 Comments: 0
Question Number 116483 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{8}\:\mathrm{cos}\:\mathrm{x}−\mathrm{8}\:\mathrm{sin}\:\mathrm{x}\:=\:\mathrm{3}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{55}\:\mathrm{tan}\:\mathrm{x}\:+\:\frac{\mathrm{55}}{\mathrm{tan}\:\mathrm{x}}\:? \\ $$
Question Number 116480 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{18}}+\frac{\mathrm{1}}{\mathrm{30}}+\frac{\mathrm{1}}{\mathrm{44}}+\frac{\mathrm{1}}{\mathrm{60}}+\frac{\mathrm{1}}{\mathrm{78}}+\frac{\mathrm{1}}{\mathrm{98}}+\frac{\mathrm{1}}{\mathrm{120}}+........ \\ $$
Question Number 116466 Answers: 0 Comments: 5
Question Number 116459 Answers: 2 Comments: 0
Question Number 116457 Answers: 1 Comments: 0
$$\mathrm{Use}\:\mathrm{Laplace}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\: \\ $$$$\mathrm{initial}\:\mathrm{value}\:\mathrm{problem}\:\mathrm{ty}''+\left(\mathrm{4t}−\mathrm{2}\right)\mathrm{y}'+\left(\mathrm{13t}−\mathrm{4}\right)\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{where}\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{y}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Question Number 116455 Answers: 0 Comments: 0
Question Number 116452 Answers: 2 Comments: 0
Question Number 116451 Answers: 3 Comments: 1
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{n}}]{\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)\left(\mathrm{n}+\mathrm{3}\right)...\left(\mathrm{n}+\mathrm{n}\right)}}{\mathrm{n}}\:=? \\ $$
Question Number 116448 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{sin}\:\left(\mathrm{P}\right)\:=\:−\frac{\mathrm{8}}{\mathrm{17}}\:,\mathrm{where}\:\frac{\mathrm{3}\pi}{\mathrm{2}}<\mathrm{P}<\mathrm{2}\pi \\ $$$$\mathrm{and}\:\mathrm{cos}\:\left(\mathrm{Q}\right)=−\frac{\mathrm{24}}{\mathrm{25}},\:\mathrm{where}\:\pi<\mathrm{Q}<\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cos}\:\left(\mathrm{2P}+\mathrm{Q}\right)\:=? \\ $$
Question Number 116443 Answers: 0 Comments: 0
Question Number 116441 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{sin}\:\left(\mathrm{45}°−\mathrm{x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{3}}\:,\:\mathrm{where}\:\mathrm{45}°<\mathrm{x}<\mathrm{90}° \\ $$$$.\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{6sin}\:\mathrm{x}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \\ $$
Question Number 116437 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\pi<\frac{\mathrm{22}}{\mathrm{7}} \\ $$
Question Number 116433 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{f}\left(\theta\right)\:=\:\mathrm{2}^{\mathrm{cos}\:^{\mathrm{2}} \left(\theta\right)} \:+\:\mathrm{2}^{\mathrm{sin}\:^{\mathrm{2}} \left(\theta\right)} \\ $$$$\mathrm{find}\:\begin{cases}{\mathrm{maximum}\:\mathrm{value}}\\{\mathrm{minimum}\:\mathrm{value}}\end{cases} \\ $$
Question Number 116427 Answers: 1 Comments: 0
$$\:\int\:\left(\mathrm{sec}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}\right)^{\mathrm{2}} \:\mathrm{dx}\:=? \\ $$
Question Number 116425 Answers: 2 Comments: 1
$$\:\mathrm{y}'−\mathrm{y}\:=\:−\mathrm{2xy}^{\mathrm{3}} \\ $$
Question Number 116418 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{5}} \:\sqrt{\mathrm{4}+\mathrm{x}^{\mathrm{2}} }}\:=? \\ $$
Question Number 116417 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\mathrm{x}\:\mathrm{sin}\:\mathrm{x}}\:−\sqrt{\mathrm{cos}\:\mathrm{2x}}\:}{\mathrm{tan}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\:=? \\ $$
Question Number 116413 Answers: 0 Comments: 0
Question Number 116397 Answers: 2 Comments: 0
$${The}\:{number}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},...,\mathrm{7}\:{are}\:{randomly} \\ $$$${divided}\:{into}\:{two}\:{non}\:−{empty}\:{subsets}. \\ $$$${The}\:{probability}\:{that}\:{the}\:{sum}\:{of}\:{the} \\ $$$${numbers}\:{in}\:{the}\:{two}\:{subsets}\:{being} \\ $$$${equal}\:{is}\:\frac{{r}}{{s}}\:{expressed}\:{in}\:{the}\:{lowest} \\ $$$${term}.\:{Find}\:{r}+{s}\:? \\ $$
Question Number 116436 Answers: 3 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}=\:\int_{\:\mathrm{0}} ^{\:\:\infty} \:\:\left(\frac{{sin}\left({x}\right).{sin}\left(\mathrm{2}{x}\right)}{{x}}\right)\:{dx}\:=???\: \\ $$$$\:\:\:\:\:\:\:\:\:...\:{m}.{n}.\mathrm{1970}... \\ $$$$\: \\ $$$$ \\ $$
Question Number 116391 Answers: 1 Comments: 7
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{x}}\:}\:? \\ $$
Question Number 116385 Answers: 3 Comments: 0
$$\:\int\:\frac{\mathrm{xe}^{\mathrm{x}} }{\:\sqrt{\mathrm{1}+\mathrm{e}^{\mathrm{x}} }}\:\mathrm{dx}\: \\ $$
Question Number 116376 Answers: 2 Comments: 0
$$\mathrm{Let}\:\mathrm{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{on}\:\mathrm{non}\:\mathrm{zero}\:\: \\ $$$$\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{27}\:\mathrm{f}\left(−\mathrm{x}\right)}{\mathrm{x}}\:−\mathrm{x}^{\mathrm{2}} \:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:=−\mathrm{2x}^{\mathrm{2}} \\ $$$$\mathrm{for}\:\forall\mathrm{x}\:\neq\:\mathrm{0}\:.\:\mathrm{Find}\:\rightarrow\begin{cases}{\mathrm{f}\left(\mathrm{x}\right)}\\{\mathrm{f}\left(\mathrm{3}\right)}\end{cases}\:?\: \\ $$
Question Number 116375 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:...\:\:{nice}\:\:{calculus}... \\ $$$$\:{ordinary}\:{differential} \\ $$$${equation}\left({o}.{d}.{e}\right) \\ $$$$\:\:\: \\ $$$$\:\:\:{y}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:−\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} ={y}^{\mathrm{2}} \left({lny}\right)\:\:... \\ $$$$\:\:\:{find}\::\:\:{general}\:\:{solution} \\ $$$$\:\:\:\:\:..{m}.{n}.\mathrm{1970}.. \\ $$
Pg 1024 Pg 1025 Pg 1026 Pg 1027 Pg 1028 Pg 1029 Pg 1030 Pg 1031 Pg 1032 Pg 1033
Terms of Service
Privacy Policy
Contact: info@tinkutara.com