Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1029

Question Number 115026    Answers: 2   Comments: 0

Solve: ∫_(1/π) ^(1/2) ln ⌊(1/x)⌋dx

$$\mathrm{Solve}:\:\:\int_{\mathrm{1}/\pi} ^{\mathrm{1}/\mathrm{2}} \mathrm{ln}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx} \\ $$

Question Number 115023    Answers: 2   Comments: 0

solve { ((7x−5y+3z=6)),((2x+4y−5z=−5)),((9x−8y+2z=−1)) :}. Find x+y+z

$${solve}\:\begin{cases}{\mathrm{7}{x}−\mathrm{5}{y}+\mathrm{3}{z}=\mathrm{6}}\\{\mathrm{2}{x}+\mathrm{4}{y}−\mathrm{5}{z}=−\mathrm{5}}\\{\mathrm{9}{x}−\mathrm{8}{y}+\mathrm{2}{z}=−\mathrm{1}}\end{cases}.\:{Find}\:{x}+{y}+{z}\: \\ $$

Question Number 115022    Answers: 1   Comments: 0

[Q.1 ] Find the domain of f(x)=((⌊cos^(−1) (x^4 )⌋+∣⌊x−2tan^(−1) (x)⌋∣+(√(sin(lnx))))/({3x^2 −7}+a^(√(sin(x)+3cos(x))) +ln cos((1/( (√(−x^2 ))))))) where {x} reprents the fractionare part of x: A) ]−2, (√2)[ B) ]0,2[ C) ]−1, 1 [ D) ]−2, −(√2) Explanation please!

$$\left[\boldsymbol{{Q}}.\mathrm{1}\:\right]\:\:\:{Find}\:{the}\:{domain}\:{of} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{f}\left({x}\right)=\frac{\lfloor{cos}^{−\mathrm{1}} \left({x}^{\mathrm{4}} \right)\rfloor+\mid\lfloor{x}−\mathrm{2}{tan}^{−\mathrm{1}} \left({x}\right)\rfloor\mid+\sqrt{{sin}\left({lnx}\right)}}{\left\{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{7}\right\}+{a}^{\sqrt{{sin}\left({x}\right)+\mathrm{3}{cos}\left({x}\right)}} +{ln}\:{cos}\left(\frac{\mathrm{1}}{\:\sqrt{−{x}^{\mathrm{2}} }}\right)} \\ $$$${where}\:\left\{{x}\right\}\:{reprents}\:\:{the}\:{fractionare}\:{part}\:{of}\:{x}: \\ $$$$ \\ $$$$\left.{A}\left.\right)\left.\:\left.\right]\left.−\mathrm{2},\:\sqrt{\mathrm{2}}\left[\:\:\:\:\:\:\:{B}\right)\:\:\right]\mathrm{0},\mathrm{2}\left[\:\:\:\:\:\:{C}\right)\:\right]−\mathrm{1},\:\mathrm{1}\:\left[\:\:\:\:{D}\right)\:\right]−\mathrm{2},\:−\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\:\:\:\:\:\:{Explanation}\:{please}! \\ $$

Question Number 115018    Answers: 2   Comments: 0

If 9^x +9^(−x) = 3^(2+x) +3^(2−x) −20, then 27^x +27^(−x) =?

$${If}\:\mathrm{9}^{{x}} +\mathrm{9}^{−{x}} \:=\:\mathrm{3}^{\mathrm{2}+{x}} +\mathrm{3}^{\mathrm{2}−{x}} \:−\mathrm{20},\:{then}\: \\ $$$$\mathrm{27}^{{x}} +\mathrm{27}^{−{x}} \:=? \\ $$

Question Number 115014    Answers: 1   Comments: 0

if I_n =∫_x ^(π/2) xcos^n xdx,where n≻1 show that I_n =((n(n−1)I_(n−2) −1)/n^2 ) and then evaluate ∫_x ^(π/2) xcos^8 xdx

$${if}\:{I}_{{n}} =\int_{{x}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{cos}^{{n}} {xdx},{where}\:{n}\succ\mathrm{1}\:{show} \\ $$$${that}\:{I}_{{n}} =\frac{{n}\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} −\mathrm{1}}{{n}^{\mathrm{2}} }\:{and}\:{then} \\ $$$${evaluate}\:\:\int_{{x}} ^{\frac{\pi}{\mathrm{2}}} {x}\mathrm{cos}^{\mathrm{8}} {xdx} \\ $$

Question Number 115013    Answers: 0   Comments: 0

consider the change in the direction of a curve W=f(θ) between point A and B. Derive from first principle an expression for the radius of curvature R for the hyperbola

$${consider}\:{the}\:{change}\:{in}\:{the}\:{direction}\:{of} \\ $$$${a}\:{curve}\:{W}={f}\left(\theta\right)\:{between}\:{point}\:{A}\:{and} \\ $$$${B}.\:{Derive}\:{from}\:{first}\:{principle}\:{an} \\ $$$${expression}\:{for}\:{the}\:{radius}\:{of}\:{curvature} \\ $$$${R}\:{for}\:{the}\:{hyperbola} \\ $$

Question Number 115011    Answers: 0   Comments: 0

given the quadratic function f(x)=x+2+px+q where p and q are?integer.s let a,b, and c distinc integers such that 2^(2020) evenly divides f(a),f(b),and f(c),but 2^(1000) does not divide b−a and also does not divide c−a.show that 2^(1021) just divide b−c?

$${given}\:{the}\:{quadratic}\:{function}\: \\ $$$${f}\left({x}\right)={x}+\mathrm{2}+{px}+{q}\:{where}\:{p}\:{and}\:{q}\:{are}?{integer}.{s} \\ $$$${let}\:{a},{b},\:{and}\:{c}\:{distinc}\:{integers}\:{such}\:{that} \\ $$$$\mathrm{2}^{\mathrm{2020}} \:\:{evenly}\:{divides}\:{f}\left({a}\right),{f}\left({b}\right),{and}\:{f}\left({c}\right),{but} \\ $$$$\mathrm{2}^{\mathrm{1000}} \:{does}\:{not}\:{divide}\:{b}−{a}\:{and}\:{also}\:{does}\:{not} \\ $$$${divide}\:{c}−{a}.{show}\:{that}\:\mathrm{2}^{\mathrm{1021}} \:{just}\:{divide}\:{b}−{c}? \\ $$

Question Number 115009    Answers: 2   Comments: 0

∫_C (e^z /(1−cos z))dz ; C:∣z∣=1

$$\int_{\mathrm{C}} \frac{{e}^{{z}} }{\mathrm{1}−\mathrm{cos}\:{z}}{dz}\:;\:\mathrm{C}:\mid{z}\mid=\mathrm{1} \\ $$

Question Number 115000    Answers: 2   Comments: 0

....nice math... if y =(cos(2x))^(−(1/2)) then prove :: y+y^(′′) = 3y^5 ...m.n.july.1970...

$$\:\:\:\:\:\:\:\:\:\:\:\:....{nice}\:\:\:{math}... \\ $$$$ \\ $$$$\:{if}\:\:{y}\:=\left({cos}\left(\mathrm{2}{x}\right)\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{then} \\ $$$${prove}\:::\:\:\:{y}+{y}^{''} =\:\mathrm{3}{y}^{\mathrm{5}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$

Question Number 115095    Answers: 2   Comments: 0

Question Number 114990    Answers: 0   Comments: 0

Question Number 114988    Answers: 2   Comments: 0

Prove tan^2 x=sin^2 x+sec^2 x

$$\mathrm{Prove}\:\mathrm{tan}^{\mathrm{2}} {x}=\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{sec}^{\mathrm{2}} {x} \\ $$

Question Number 114981    Answers: 2   Comments: 2

Without L′Hopital (1)lim_(x→1) ((x(x+(1/x))^5 −32)/(x−1)) =? (2) lim_(x→∞) (√(2x+(√(2x+(√(2x+(√(2x+(√(...)))))))))) −(√(2x)) = ?

$${Without}\:{L}'{Hopital} \\ $$$$\:\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{5}} −\mathrm{32}}{{x}−\mathrm{1}}\:=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2}{x}+\sqrt{\mathrm{2}{x}+\sqrt{\mathrm{2}{x}+\sqrt{\mathrm{2}{x}+\sqrt{...}}}}}\:−\sqrt{\mathrm{2}{x}}\:=\:? \\ $$

Question Number 114980    Answers: 1   Comments: 0

Question Number 114978    Answers: 2   Comments: 0

Solve x^2 dy + y(x+y)dx=0

$$ \\ $$$$\:\:{Solve}\: \\ $$$$\:{x}^{\mathrm{2}} {dy}\:+\:{y}\left({x}+{y}\right){dx}=\mathrm{0} \\ $$

Question Number 114975    Answers: 1   Comments: 0

.... nice mathematics.... show that :: Φ = ∫_0 ^( 1) li_2 (x)dx = (π^2 /6) −1 ✓ m.n.july.1970

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\:{nice}\:\:{mathematics}....\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{show}\:\:{that}\:::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left({x}\right){dx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\mathrm{1}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$ \\ $$

Question Number 114967    Answers: 0   Comments: 1

Question Number 114965    Answers: 1   Comments: 0

find all irational numbers x such that x 2+20x+20 and x^(3 ) −2020x+1 both is a rasional number.

$${find}\:{all}\:{irational}\:{numbers}\:{x}\:{such}\:{that}\:{x} \\ $$$$\mathrm{2}+\mathrm{20}{x}+\mathrm{20}\:{and}\:{x}^{\mathrm{3}\:} −\mathrm{2020}{x}+\mathrm{1}\:\:\:{both}\:{is}\:{a} \\ $$$${rasional}\:{number}. \\ $$

Question Number 114996    Answers: 2   Comments: 1

...nice mathematics... prove that::: i:: Σ_(n=1) ^∞ (1/(sinh^2 (πn))) =(1/6) −(1/(2π)) ✓ ii:: Σ_(n=1) ^∞ (n/(e^(2πn) −1))=(1/(24)) −(1/(8π)) ✓✓ iii::Σ_(n=1) ^∞ (1/( nsinh(πn))) =(π/(12))−((ln(2))/4) ✓✓✓ .... M..n..july..1970 ....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:{mathematics}...\: \\ $$$$\:\:\:\:{prove}\:{that}::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{i}::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{sinh}^{\mathrm{2}} \left(\pi{n}\right)}\:=\frac{\mathrm{1}}{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{2}\pi}\:\:\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ii}::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{e}^{\mathrm{2}\pi{n}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{24}}\:−\frac{\mathrm{1}}{\mathrm{8}\pi}\:\:\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{iii}::\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\:{nsinh}\left(\pi{n}\right)}\:=\frac{\pi}{\mathrm{12}}−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{4}}\:\checkmark\checkmark\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\:\:\:\mathscr{M}..{n}..{july}..\mathrm{1970}\:.... \\ $$$$ \\ $$

Question Number 114959    Answers: 2   Comments: 0

long time question proposed by math abdo ∫_0 ^∞ ((lnx)/(1+x^2 +x^4 ))dx

$${long}\:{time}\:{question}\:{proposed}\:{by} \\ $$$${math}\:{abdo} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }{dx} \\ $$$$ \\ $$

Question Number 114956    Answers: 0   Comments: 5

Question Number 114950    Answers: 0   Comments: 0

note the tringle ABC is not isosceles with the elevtions of AA1,BB1, and CC1.suppose BA amd CA respectively point at BB1 and CC1 so that A1BA is pependiculer to BB1 and A1CA perpendiculer to CC1.the read and BC lines intersect at the TA point. define in the same way TB and TC poits. prove that TA,TB,and TC are collinear.

$${note}\:{the}\:{tringle}\:{ABC}\:\:{is}\:{not}\:{isosceles}\:{with}\: \\ $$$${the}\:{elevtions}\:{of}\:{AA}\mathrm{1},{BB}\mathrm{1},\:{and}\:{CC}\mathrm{1}.{suppose} \\ $$$${BA}\:\:{amd}\:{CA}\:{respectively}\:{point}\:{at}\:{BB}\mathrm{1}\:{and} \\ $$$${CC}\mathrm{1}\:{so}\:{that}\:{A}\mathrm{1}{BA}\:{is}\:{pependiculer}\:{to}\:{BB}\mathrm{1} \\ $$$${and}\:{A}\mathrm{1}{CA}\:{perpendiculer}\:{to}\:{CC}\mathrm{1}.{the}\:{read}\: \\ $$$${and}\:{BC}\:{lines}\:{intersect}\:{at}\:{the}\:{TA}\:{point}. \\ $$$${define}\:{in}\:{the}\:{same}\:{way}\:\:{TB}\:{and}\:{TC}\:{poits}. \\ $$$${prove}\:{that}\:{TA},{TB},{and}\:{TC}\:{are}\:{collinear}. \\ $$

Question Number 114945    Answers: 1   Comments: 0

Question Number 114943    Answers: 1   Comments: 0

If ^m C_1 =^n C_2 , express m in terms of n.

$$\mathrm{If}\:\:^{{m}} {C}_{\mathrm{1}} =\:^{{n}} {C}_{\mathrm{2}} \:, \\ $$$$\mathrm{express}\:{m}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}. \\ $$

Question Number 114971    Answers: 0   Comments: 2

Question Number 114933    Answers: 2   Comments: 0

find the value of ∫_0 ^∞ ((cos(2x))/(x^4 +x^2 +1))dx

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$

  Pg 1024      Pg 1025      Pg 1026      Pg 1027      Pg 1028      Pg 1029      Pg 1030      Pg 1031      Pg 1032      Pg 1033   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com