Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1029
Question Number 116824 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{a}>\mathrm{b}>\mathrm{0}\:,\:\mathrm{a\&b}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{a}^{\mathrm{2}} −\mathrm{ab}+\mathrm{b}^{\mathrm{2}} =\mathrm{7}\:\mathrm{and}\:\mathrm{a}−\mathrm{ab}+\mathrm{b}=−\mathrm{1}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \\ $$
Question Number 116822 Answers: 3 Comments: 1
$$\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{{i}}\:=? \\ $$
Question Number 116820 Answers: 0 Comments: 0
$${prove}\:{that}\:{lim}\:{f}\left({x}\right)={L}\:{and}\:{lim}\:{f}\left({x}\right)={M}, \\ $$$${then}\:{L}={M} \\ $$
Question Number 116819 Answers: 1 Comments: 0
$${prove}\:{the}\:{limit} \\ $$$${li}\underset{{x}−\rangle\mathrm{2}} {{m}}\sqrt{\mathrm{2}{x}}=\mathrm{2} \\ $$
Question Number 116872 Answers: 1 Comments: 0
Question Number 116815 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)}\:=? \\ $$
Question Number 116813 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\underset{\mathrm{1}} {\overset{\sqrt{\mathrm{3}}} {\int}}\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$
Question Number 116803 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$$$\begin{cases}{\frac{\partial\mathrm{Z}}{\partial\mathrm{y}}−\frac{\partial\mathrm{Y}}{\partial\mathrm{z}}=\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\\{\frac{\partial\mathrm{Z}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{z}}=−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\partial\mathrm{Y}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{y}}=\mathrm{z}\left(\mathrm{2x}−\mathrm{y}\right)}\end{cases}\:\mathrm{where}\:\begin{cases}{\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\mathrm{0}}\end{cases} \\ $$
Question Number 116806 Answers: 2 Comments: 0
$$\mathrm{Hi} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\:\int_{-\infty} ^{+\infty} -\mathrm{e}^{-\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\sqrt{\pi} \\ $$$$\mathrm{Thanks}\:\mathrm{beforehand} \\ $$$$ \\ $$
Question Number 116800 Answers: 1 Comments: 0
Question Number 116798 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:{a},{b},{c}\:\in\mathbb{R}^{+\:} :: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{find} \\ $$$$ \\ $$$$\:\:\:\:{min}\left(\sqrt{\:\frac{{b}+{c}}{{a}}}\:+\sqrt{\frac{{a}+{c}}{{b}}}\:+\sqrt{\frac{{a}+{b}}{{c}}}\:\right)=??? \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:...\:{m}.{n}.\mathrm{1970}... \\ $$$$\:\: \\ $$
Question Number 116797 Answers: 0 Comments: 0
Question Number 116796 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:...\:\:\:\:\:\:{calculus}\:\:... \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}} }{{log}\left({x}\right)}{dx}\overset{???} {=}{log}\left(\:\frac{\left({p}+{q}+{r}+\mathrm{1}\right){r}}{\left({p}+{r}\right)\left({q}+{r}\right)}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\: \\ $$
Question Number 116793 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:..{calculus}.. \\ $$$$\:\:{x},{y},{z}\:\in\mathbb{R}^{+} \:\:{and}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\mathrm{1} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{find}\:\:\:\:\:\: \\ $$$$\:\:\:\:{min}_{{x},{y},{z}\in\mathbb{R}^{+\:\:\:\:} } \left(\left(\frac{{yz}}{{x}}+\frac{{xz}}{{y}}+\frac{{xy}}{{z}}\right)\:\right)=? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970}.. \\ $$
Question Number 116780 Answers: 2 Comments: 1
Question Number 116779 Answers: 1 Comments: 0
$${solve} \\ $$$${x}^{{x}} =\mathrm{2} \\ $$
Question Number 116776 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{function}: \\ $$$${f}\left({x}\right)=\begin{cases}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1},\:\:\mid{x}\mid<\mathrm{3}}\\{\mathrm{5x}−\mathrm{1},\:\:\mid{x}\mid\geqslant\mathrm{3}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{out}:\:{f}\left({x}^{\mathrm{2}} +\mathrm{7}\right)=? \\ $$$$ \\ $$$$\left.\mathrm{A}\left.\right)\left.\mathrm{5x}^{\mathrm{2}} −\mathrm{34}\:\:\:\:\:\mathrm{B}\right)\mathrm{2x}^{\mathrm{2}} +\mathrm{8}\:\:\:\mathrm{C}\right)\mathrm{5x}^{\mathrm{2}} +\mathrm{36} \\ $$$$\left.\mathrm{D}\left.\right)\mathrm{5x}^{\mathrm{2}} +\mathrm{34}\:\:\:\:\mathrm{E}\right)\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{7}\right)^{\mathrm{2}} +\mathrm{1} \\ $$$$\mathrm{Please}\:\mathrm{help} \\ $$
Question Number 116771 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}−\frac{\mathrm{y}}{\mathrm{x}^{\mathrm{2}} }=\frac{\sqrt{\mathrm{y}^{\mathrm{2}} −\mathrm{1}}}{\mathrm{x}} \\ $$$$\mathrm{Please}\:\mathrm{help} \\ $$
Question Number 116770 Answers: 1 Comments: 1
$${how}\:{to}\:{prove}\:{the}\:{Pythagorean}\:{theorem}\left({c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$
Question Number 116768 Answers: 2 Comments: 0
$$\mathrm{sin}\:\left(\mathrm{4sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)\:=\:\mathrm{sin}\:\left(\mathrm{2sin}^{−\mathrm{1}} \left(\mathrm{x}\right)\right) \\ $$
Question Number 116767 Answers: 0 Comments: 1
$${if}\:\:{A}×{B}=\mathrm{0}\:{how}\:{to}\:{prove}\:{A}=\mathrm{0}\:{or}\:{B}=\mathrm{0} \\ $$
Question Number 116756 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{x}−\mathrm{2}}}{\mathrm{x}−\mathrm{2}}\:=? \\ $$
Question Number 116753 Answers: 1 Comments: 0
$${if}\:\mathrm{4}^{{x}} =\mathrm{8}{x}\:{find}\:{x} \\ $$
Question Number 116746 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{an}\:\mathrm{orthogonal}\:\mathrm{matrix}\:\mathrm{A}\:\mathrm{whose} \\ $$$$\mathrm{first}\:\mathrm{row}\:\mathrm{is}\:\mathrm{u}_{\mathrm{1}} =\:\left(\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{2}}{\mathrm{3}},\:\frac{\mathrm{2}}{\mathrm{3}}\right). \\ $$
Question Number 116744 Answers: 4 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\frac{\:{nice}}{{calculus}}\:... \\ $$$$\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\mathrm{1}} ^{\:\infty} \frac{{e}^{−\mathrm{4}{x}} }{\:\sqrt{{x}+\mathrm{1}}}\:{dx}\:=\frac{\sqrt{\pi}}{\mathrm{2}}\:{e}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{m}.{n}\:.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 116742 Answers: 0 Comments: 0
$${the}\:{curve}\:{y}={f}\left({x}\right)\:{is}\:{rotated}\:{about}\:{the} \\ $$$${x}−{axis}\:{to}\:{form}\:{solid}.{the}\:{volume}\:{of}\:{this} \\ $$$${solid}\:{is}\:\mathrm{0}.\mathrm{5}\pi\left({a}−\mathrm{2}{sina}\:{cosa}\right)\:{for}\:{the}\:{limit} \\ $$$${of}\:\mathrm{0}\leqslant{x}\leqslant{a}.\:{find}\:{the}\:{value}\:{of}\:{a} \\ $$$$ \\ $$
Pg 1024 Pg 1025 Pg 1026 Pg 1027 Pg 1028 Pg 1029 Pg 1030 Pg 1031 Pg 1032 Pg 1033
Terms of Service
Privacy Policy
Contact: info@tinkutara.com