Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 102

Question Number 211759    Answers: 4   Comments: 1

lim_(x→0) ((e^(sin x) −e^x )/(sin x−x))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\mathrm{sin}\:{x}} −{e}^{{x}} }{\mathrm{sin}\:{x}−{x}}=? \\ $$

Question Number 211753    Answers: 1   Comments: 0

find all (n,m) such that ((n^2 −m)/(m^2 −n)) ∈ Z

$${find}\:{all}\:\left({n},{m}\right)\:{such}\:{that}\:\frac{{n}^{\mathrm{2}} −{m}}{{m}^{\mathrm{2}} −{n}}\:\in\:\mathbb{Z} \\ $$

Question Number 211750    Answers: 1   Comments: 0

lim_(x→∞) (((a^(1/x) +b^(1/x) )/2))^x ;(a,b)∈R_+ ^∗

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{a}^{\mathrm{1}/{x}} +{b}^{\mathrm{1}/{x}} }{\mathrm{2}}\right)^{{x}} ;\left({a},{b}\right)\in\mathbb{R}_{+} ^{\ast} \\ $$

Question Number 211749    Answers: 3   Comments: 0

volume bounded by the curve z = (√(3x^2 +3y^2 )) and x^2 +y^2 +z^2 = 6^2

$${volume}\:{bounded}\:{by}\:{the}\:{curve} \\ $$$$\:{z}\:=\:\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }\:\:\:{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\:\mathrm{6}^{\mathrm{2}} \\ $$

Question Number 211745    Answers: 1   Comments: 1

lim_(x→5) (10^2 +5x−20)

$$\underset{{x}\rightarrow\mathrm{5}} {\mathrm{lim}}\left(\mathrm{10}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{20}\right) \\ $$

Question Number 211738    Answers: 0   Comments: 1

∫(1/(x^5 +1 ))dx.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{5}} +\mathrm{1}\:}\boldsymbol{{dx}}. \\ $$$$ \\ $$

Question Number 211734    Answers: 1   Comments: 0

Question Number 211732    Answers: 2   Comments: 0

Question Number 211730    Answers: 0   Comments: 0

Question Number 211727    Answers: 1   Comments: 0

Question Number 211726    Answers: 0   Comments: 0

Question Number 211722    Answers: 1   Comments: 0

a, b ∈ N a ∙ b = 144 how many different numbers can a and b be here?

$$\mathrm{a},\:\mathrm{b}\:\in\:\mathbb{N} \\ $$$$\mathrm{a}\:\centerdot\:\mathrm{b}\:=\:\mathrm{144} \\ $$$$ \\ $$how many different numbers can a and b be here?

Question Number 211720    Answers: 2   Comments: 0

if ((8^x −2^x )/(6^x −3^x )) = 2 find x

$$\:\:\:\:\:\boldsymbol{{if}}\:\:\frac{\mathrm{8}^{\boldsymbol{{x}}} −\mathrm{2}^{\boldsymbol{{x}}} }{\mathrm{6}^{\boldsymbol{{x}}} −\mathrm{3}^{\boldsymbol{{x}}} }\:\:\:=\:\mathrm{2}\:\boldsymbol{{find}}\:\boldsymbol{{x}} \\ $$

Question Number 211719    Answers: 0   Comments: 1

Question Number 211716    Answers: 1   Comments: 0

lim_(x→∞) (1+(1/(1×2))+(1/(1×2×3))+∙∙∙+(1/(1×2×3×∙∙∙×x)))=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}×\mathrm{3}×\centerdot\centerdot\centerdot×{x}}\right)=? \\ $$

Question Number 211717    Answers: 1   Comments: 0

lim_(x→0) (((1+x^2 )^(1/3) −1)/(e^x^2 −1))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{li}{m}}\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} −\mathrm{1}}{{e}^{{x}^{\mathrm{2}} } −\mathrm{1}}=? \\ $$

Question Number 211706    Answers: 1   Comments: 0

if x^(log27) + 9^(logx) =36 find x

$$\:\:\:\:\:\boldsymbol{{if}}\:\:\boldsymbol{{x}}^{\boldsymbol{{log}}\mathrm{27}} +\:\:\:\mathrm{9}^{\boldsymbol{{logx}}} =\mathrm{36}\:\boldsymbol{{find}}\:\boldsymbol{{x}} \\ $$

Question Number 211703    Answers: 0   Comments: 2

Calculate the quadruple integralas follows: I=∫_0 ^1 ∫_0 ^x ∫_0 ^y ∫_0 ^z ((sin(x^2 +y^2 +z^2 +w^2 ))/(1+w^2 +z^2 ))dw dz dy dx

$$ \\ $$$$\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{quadruple}\: \\ $$$$\mathrm{integralas}\:\mathrm{follows}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{I}}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\boldsymbol{{x}}} \int_{\mathrm{0}} ^{\boldsymbol{\mathrm{y}}} \int_{\mathrm{0}} ^{\boldsymbol{{z}}} \frac{\boldsymbol{\mathrm{sin}}\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{w}}^{\mathrm{2}} \right)}{\mathrm{1}+\boldsymbol{{w}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} }\boldsymbol{{dw}}\:\boldsymbol{{dz}}\:\boldsymbol{\mathrm{dy}}\:\boldsymbol{{dx}} \\ $$$$ \\ $$

Question Number 211700    Answers: 0   Comments: 1

f(x) = x^4 −x^3 + x^2 + 3x−6 price range: E(f) = ?

$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{3x}−\mathrm{6} \\ $$$$\mathrm{price}\:\mathrm{range}:\:\mathrm{E}\left(\mathrm{f}\right)\:=\:? \\ $$

Question Number 211696    Answers: 1   Comments: 0

∫^( 1) _0 (( 1)/(( 2 +2x + x^2 )^3 )) dx= ? _( ^(Improper integral ) ) −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\:\:\mathrm{1}}{\left(\:\mathrm{2}\:+\mathrm{2}{x}\:+\:{x}^{\mathrm{2}} \:\right)^{\mathrm{3}} }\:{dx}=\:? \\ $$$$\:\:\:\:\:\:\underbrace{\underset{\:\:\:\:\overset{\mathrm{Improper}\:\mathrm{integral}\:} {\:}\:\:\:\:\:} {\:}} \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 211694    Answers: 0   Comments: 4

Question Number 211691    Answers: 1   Comments: 0

Question Number 211680    Answers: 1   Comments: 1

x, y are positive integer such that, x^3 +y^3 +xy=911. (x,y)=?

$$\:{x},\:{y}\:{are}\:{positive}\:{integer}\:{such}\: \\ $$$$\:\:{that},\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{xy}=\mathrm{911}.\:\left({x},{y}\right)=? \\ $$

Question Number 211679    Answers: 1   Comments: 1

Inverse root formula: x=((2c)/(−b±(√(b^2 −4ac)))) (1)The“ antiroot formula” is derivedr fom the abovementionedt antiroo formula.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{Inverse}\:\mathrm{root}\:\mathrm{formula}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}=\frac{\mathrm{2}\boldsymbol{{c}}}{−\boldsymbol{{b}}\pm\sqrt{\boldsymbol{{b}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{ac}}}} \\ $$$$\left(\mathrm{1}\right)\mathrm{The}``\:\mathrm{antiroot}\:\mathrm{formula}''\:\mathrm{is}\:\mathrm{derivedr} \\ $$$$\mathrm{fom}\:\mathrm{the}\:\mathrm{abovementionedt} \\ $$$$\mathrm{antiroo}\:\mathrm{formula}. \\ $$

Question Number 213343    Answers: 1   Comments: 0

Question Number 213342    Answers: 0   Comments: 1

  Pg 97      Pg 98      Pg 99      Pg 100      Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com