Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 102

Question Number 213234    Answers: 2   Comments: 2

Question Number 213232    Answers: 0   Comments: 4

Just a warning: the solutions of these two here are very often wrong: MrGaster lepuissantcedricjunior They also do not answer (my) comments regarding their errors. If you need the answers to these questions for an exam or other important reasons you might face serious problems.

$$\mathrm{Just}\:\mathrm{a}\:\mathrm{warning}:\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{these}\:\mathrm{two} \\ $$$$\mathrm{here}\:\mathrm{are}\:\mathrm{very}\:\mathrm{often}\:\mathrm{wrong}: \\ $$$$ \\ $$$$\mathrm{MrGaster} \\ $$$$\mathrm{lepuissantcedricjunior} \\ $$$$ \\ $$$$\mathrm{They}\:\mathrm{also}\:\mathrm{do}\:\mathrm{not}\:\mathrm{answer}\:\left(\mathrm{my}\right)\:\mathrm{comments} \\ $$$$\mathrm{regarding}\:\mathrm{their}\:\mathrm{errors}. \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{need}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{to}\:\mathrm{these}\:\mathrm{questions} \\ $$$$\mathrm{for}\:\mathrm{an}\:\mathrm{exam}\:\mathrm{or}\:\mathrm{other}\:\mathrm{important}\:\mathrm{reasons} \\ $$$$\mathrm{you}\:\mathrm{might}\:\mathrm{face}\:\mathrm{serious}\:\mathrm{problems}. \\ $$

Question Number 213221    Answers: 1   Comments: 3

Question Number 213217    Answers: 1   Comments: 0

Question Number 213216    Answers: 1   Comments: 0

Question Number 213215    Answers: 0   Comments: 0

Question Number 213208    Answers: 1   Comments: 0

Let f(x)∈Q[x] irreducible of degree n and K it′s Splitting Field over Q Prove that if Gal(K\Q) is Abeilan then ∣Gal(K\Q)∣=n How can i prove this???

$$\mathrm{Let}\:{f}\left({x}\right)\in\mathbb{Q}\left[{x}\right]\:\mathrm{irreducible}\:\mathrm{of}\:\mathrm{degree}\:{n} \\ $$$$\mathrm{and}\:{K}\:\mathrm{it}'\mathrm{s}\:\mathrm{Splitting}\:\mathrm{Field}\:\mathrm{over}\:\mathbb{Q} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{Gal}\left({K}\backslash\mathbb{Q}\right)\:\mathrm{is}\:\mathrm{Abeilan} \\ $$$$\mathrm{then}\:\mid\mathrm{Gal}\left({K}\backslash\mathbb{Q}\right)\mid={n} \\ $$$$\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{prove}\:\mathrm{this}??? \\ $$

Question Number 213201    Answers: 2   Comments: 1

Question Number 213198    Answers: 1   Comments: 0

Question Number 213203    Answers: 4   Comments: 0

∈ N ⇒

$$\:\:\:\:\: \in\:\mathbb{N}\:\:\Rightarrow\: \\ $$$$ \\ $$$$ \\ $$

Question Number 213175    Answers: 4   Comments: 0

we can find tan120 by tan(180−60) but can not find by tan(90+30) why?

$${we}\:{can}\:{find}\:{tan}\mathrm{120}\:{by}\:{tan}\left(\mathrm{180}−\mathrm{60}\right) \\ $$$${but}\:{can}\:{not}\:{find}\:{by}\:{tan}\left(\mathrm{90}+\mathrm{30}\right)\:{why}? \\ $$

Question Number 213173    Answers: 3   Comments: 1

Question Number 213169    Answers: 1   Comments: 0

prove lim_(n→∞) ∫_0 ^1 (n/(1+n^2 x^2 ))e^x^2 dx=(π/2).

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} {x}^{\mathrm{2}} }{e}^{{x}^{\mathrm{2}} } {dx}=\frac{\pi}{\mathrm{2}}. \\ $$

Question Number 213139    Answers: 3   Comments: 0

Question Number 213138    Answers: 2   Comments: 1

Question Number 213128    Answers: 3   Comments: 0

lim_(x→0^(+ ) ) (2/(1+e^(−(1/x)) ))

$$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}^{+\:} } \frac{\mathrm{2}}{\mathrm{1}+\boldsymbol{\mathrm{e}}^{−\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}} } \\ $$

Question Number 213123    Answers: 1   Comments: 0

factoriser x^5 +x^3 +x^2 −2x−1

$$\mathrm{factoriser} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{5}} +\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{1} \\ $$

Question Number 213119    Answers: 2   Comments: 1

determiner a et b par ; AB ⊥BC { ((AM =5)),((AC =16)) :}

$$\mathrm{determiner}\:\boldsymbol{\mathrm{a}}\:\mathrm{et}\:\boldsymbol{\mathrm{b}}\:\mathrm{par}\:\:\:;\:\:\mathrm{AB}\:\bot\mathrm{BC} \\ $$$$\begin{cases}{\mathrm{AM}\:=\mathrm{5}}\\{\mathrm{AC}\:\:=\mathrm{16}}\end{cases} \\ $$

Question Number 213114    Answers: 2   Comments: 0

x^(5000) ∫_0 ^2

$$\:\:\:\:\:\:\: \mathrm{x}^{\mathrm{5000}} \\ $$$$\:\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\: \\ $$

Question Number 213109    Answers: 3   Comments: 0

lim_(x→∞) ((√(x+(√(x+(√x)))))/( (√(x+1))))=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}}}{\:\sqrt{{x}+\mathrm{1}}}=? \\ $$

Question Number 213103    Answers: 0   Comments: 1

Hey tinku tara, I couldn′t graph the equation.

$$\mathrm{Hey}\:\mathrm{tinku}\:\mathrm{tara}, \\ $$$$\mathrm{I}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{graph}\:\mathrm{the}\:\mathrm{equation}. \\ $$

Question Number 213100    Answers: 1   Comments: 1

Find this numeric expression using: The arithmetic division rule a÷b(c)=a÷b×c, The solvable incorrect syntax rule (a)b=a×b, where b is a number: 12÷4(10−8+1)2÷6×2=?

$$\mathrm{Find}\:\mathrm{this}\:\mathrm{numeric}\:\mathrm{expression}\:\mathrm{using}: \\ $$$$\mathrm{The}\:\mathrm{arithmetic}\:\mathrm{division}\:\mathrm{rule}\:{a}\boldsymbol{\div}{b}\left({c}\right)={a}\boldsymbol{\div}{b}×{c}, \\ $$$$\mathrm{The}\:\mathrm{solvable}\:\mathrm{incorrect}\:\mathrm{syntax}\:\mathrm{rule}\:\left({a}\right){b}={a}×{b},\:\mathrm{where}\:{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{number}: \\ $$$$\mathrm{12}\boldsymbol{\div}\mathrm{4}\left(\mathrm{10}−\mathrm{8}+\mathrm{1}\right)\mathrm{2}\boldsymbol{\div}\mathrm{6}×\mathrm{2}=? \\ $$

Question Number 213099    Answers: 1   Comments: 0

(1/2)(x−1)−(x−3)=(1/3)(x+3)+(1/6) x=...

$$\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{1}\right)−\left({x}−\mathrm{3}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left({x}+\mathrm{3}\right)+\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${x}=... \\ $$

Question Number 213098    Answers: 3   Comments: 0

∫((3x+2)/(5x^2 +2x+3))dx=?

$$\int\frac{\mathrm{3}{x}+\mathrm{2}}{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}\mathrm{d}{x}=? \\ $$

Question Number 213097    Answers: 1   Comments: 0

Uhhhh. can you guys solve Partial differantial equation ▽^2 𝛗=0 Cylinderical Laplacian case ▽^2 =(1/ρ)∙((∂ )/∂ρ)(ρ((∂ )/∂ρ))+((1/ρ))^2 (∂^2 /∂φ^2 )+((∂^2 )/∂z^2 ) Spherical Laplacian case ▽^2 =((1/r))^2 ((∂ )/∂r)(r^2 ((∂ )/∂r))+(1/(r^2 sin(θ)))∙((∂ )/∂θ)(sin(θ)((∂ )/∂θ))+(1/(r^2 sin^2 (θ)))∙(∂^2 /∂ϕ^2 )

$$\mathrm{Uhhhh}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{solve}\:\mathrm{Partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=\mathrm{0} \\ $$$$\mathrm{Cylinderical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\frac{\mathrm{1}}{\rho}\centerdot\frac{\partial\:\:}{\partial\rho}\left(\rho\frac{\partial\:\:}{\partial\rho}\right)+\left(\frac{\mathrm{1}}{\rho}\right)^{\mathrm{2}} \frac{\partial^{\mathrm{2}} \:}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \:\:}{\partial{z}^{\mathrm{2}} } \\ $$$$\mathrm{Spherical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\left(\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)}\centerdot\frac{\partial\:\:}{\partial\theta}\left(\mathrm{sin}\left(\theta\right)\frac{\partial\:\:}{\partial\theta}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\centerdot\frac{\partial^{\mathrm{2}} \:}{\partial\varphi^{\mathrm{2}} } \\ $$

Question Number 213096    Answers: 1   Comments: 0

Hi nikif90 can you please look at q212921 and provide details on the problem that are facimg

$$\mathrm{Hi}\:\mathrm{nikif90} \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{look}\:\mathrm{at}\:\mathrm{q212921}\:\mathrm{and} \\ $$$$\mathrm{provide}\:\mathrm{details}\:\mathrm{on}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{that} \\ $$$$\mathrm{are}\:\mathrm{facimg} \\ $$

  Pg 97      Pg 98      Pg 99      Pg 100      Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com