Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1017
Question Number 116323 Answers: 2 Comments: 0
$$\left(\mathrm{1}\right)\mathrm{Let}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{c}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{ab}}{\mathrm{a}+\mathrm{b}}\:=\:\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{bc}}{\mathrm{b}+\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{and}\:\frac{\mathrm{ac}}{\mathrm{a}+\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{5}}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{24abc}}{\mathrm{ab}+\mathrm{ac}+\mathrm{bc}}\:? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Let}\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{be}\:\mathrm{two}\:\mathrm{real}\:\mathrm{number}\:\mathrm{that} \\ $$$$\mathrm{satisfy}\:\mathrm{p}.\mathrm{q}=\mathrm{2013}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\left(\mathrm{p}+\mathrm{q}\right)^{\mathrm{2}} \:? \\ $$
Question Number 116319 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{z}\:=\:\mathrm{x}^{\mathrm{2}} \:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{y}}{\mathrm{x}}\right),\:\mathrm{find}\:\frac{\partial^{\mathrm{2}} \mathrm{z}}{\partial\mathrm{x}\partial\mathrm{y}}\: \\ $$$$\mathrm{at}\:\left(\mathrm{1},\mathrm{1}\right) \\ $$
Question Number 116318 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\:{explicite}\:{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({a}+{x}\right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$$$\left.\mathrm{1}\left.\right)\:\mathrm{1}\right){calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$$${and}\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left(\mathrm{3}+{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$
Question Number 116317 Answers: 2 Comments: 0
$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{n}+\mathrm{1}}+\sqrt{\mathrm{n}+\mathrm{2}}+\sqrt{\mathrm{n}+\mathrm{3}}+...+\sqrt{\mathrm{2n}−\mathrm{1}}}{\mathrm{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\right)\:= \\ $$
Question Number 116311 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{3}}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{2x}}{\left(\mathrm{sin}\:\mathrm{x}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:\mathrm{dx}\: \\ $$$$ \\ $$
Question Number 116310 Answers: 0 Comments: 2
Question Number 116303 Answers: 1 Comments: 0
$${Solve}\:{for}\:{x}\:{in}\:\varrho^{{x}} +{x}=\mathrm{4} \\ $$
Question Number 116299 Answers: 0 Comments: 0
$$\:\:\:...\:\:{advanced}\:\:{math}\:... \\ $$$$\:\:\:\:\:\:\:{evaluate}\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left[\frac{\mathrm{1}}{{ln}\left({x}\right)}\:+\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\right]^{\mathrm{2}} {dx}=??? \\ $$$$\:\:\:\:\:\:\:{m}.{n} \\ $$
Question Number 116290 Answers: 0 Comments: 1
Question Number 116301 Answers: 2 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{for}\:\mathrm{a} \\ $$$$\mathrm{given}\:\mathrm{line}\:\mathrm{to}\:\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{intersect}\:\mathrm{a}\:\mathrm{curve} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{a}\:\mathrm{curve} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{not}\:\mathrm{to}\:\mathrm{intersect}\:\mathrm{a}\:\mathrm{curve}\: \\ $$
Question Number 116281 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{sin}\:\mathrm{10}°\:\mathrm{sin}\:\mathrm{30}°\:\mathrm{sin}\:\mathrm{50}°\:\mathrm{sin}\:\mathrm{70}°. \\ $$
Question Number 116284 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{calculus}\:{I}\:... \\ $$$$\:\:\:\:\:{evaluate}\::\: \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{3}}} {log}\left(\mathrm{1}+\sqrt{\mathrm{3}}\:{tan}\left({x}\right)\right){dx}=??? \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 116279 Answers: 2 Comments: 0
$$\int\:\frac{{xe}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 116276 Answers: 0 Comments: 0
Question Number 116272 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({x}^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({cos}\left({x}\right)\right)\right){dx}=\pi{ln}\left({ln}\left(\mathrm{2}\right)\right) \\ $$$${posted}\:{Quation}\: \\ $$$${not}\:{solved}\:{yet}\:{i}\:{hop}\:{someon}\:{Giv}\:{idea}\:{for} \\ $$$${this}\:{one}\:{thank}\:{you} \\ $$
Question Number 116271 Answers: 2 Comments: 0
$$\int_{−\mathrm{1}} ^{\:\mathrm{0}} \left[{ln}\left({ln}\left(\mathrm{1}+{x}\right)\right)\right]^{\mathrm{2}} {dx} \\ $$
Question Number 116267 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{parabola}\:\mathrm{that} \\ $$$$\mathrm{passes}\:\mathrm{through}\:\mathrm{points}\:\left(\mathrm{1},\mathrm{2}\right)\:,\left(\mathrm{3},\mathrm{4}\right)\: \\ $$$$\mathrm{and}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:\mathrm{y}=−\mathrm{x}+\frac{\mathrm{25}}{\mathrm{3}} \\ $$
Question Number 116259 Answers: 1 Comments: 0
Question Number 116253 Answers: 0 Comments: 0
$$\left(\mathrm{1}\right)\:\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\underset{\mathrm{i}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{L}_{\mathrm{i}} \left(\mathrm{x}\right)\:\:\:=\:\:\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\mathrm{Show}\:\mathrm{that}\:\:\:\:\underset{\mathrm{i}\:\:=\:\:\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\:\mathrm{L}_{\mathrm{i}} \left(\mathrm{x}\right).\:\mathrm{x}_{\mathrm{i}} ^{\mathrm{k}} \:\:\:=\:\:\:\mathrm{x}^{\mathrm{k}} ,\:\:\:\:\:\:\:\:\mathrm{k}\:\leqslant\:\mathrm{n} \\ $$
Question Number 116252 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{−\mathrm{x}} }{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }\:=\:? \\ $$
Question Number 116250 Answers: 0 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{explicite}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{n}\left[\mathrm{x}\right]} \mathrm{cos}\left(\mathrm{3}\left[\mathrm{x}\right]\right)\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$$$\left.\mathrm{3}\right)\mathrm{find}\:\mathrm{nsture}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$
Question Number 116249 Answers: 0 Comments: 0
$$\mathrm{find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{3}}\mathrm{dx} \\ $$
Question Number 116248 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 116247 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ch}\left(\mathrm{cos}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx}\:\mathrm{and} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{ch}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{9}}\mathrm{dx} \\ $$
Question Number 116245 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{2x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Question Number 116239 Answers: 4 Comments: 0
$$\mathrm{a}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{x}−\mathrm{axis}\:,\:\mathrm{y}−\mathrm{axis} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}−\mathrm{4y}+\mathrm{6}=\mathrm{0}. \\ $$$$\mathrm{what}\:\mathrm{its}\:\mathrm{the}\:\mathrm{equation}? \\ $$
Pg 1012 Pg 1013 Pg 1014 Pg 1015 Pg 1016 Pg 1017 Pg 1018 Pg 1019 Pg 1020 Pg 1021
Terms of Service
Privacy Policy
Contact: info@tinkutara.com