Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1017
Question Number 117903 Answers: 2 Comments: 0
$${prove}\:{by}\:{mathematical}\:{induction} \\ $$$${that}\:{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\:{is}\:{an}\:{integer}\: \\ $$$${multiple}\:{of}\:\mathrm{6} \\ $$
Question Number 117901 Answers: 0 Comments: 1
Question Number 117895 Answers: 1 Comments: 1
$${prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}+\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}>\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 117866 Answers: 2 Comments: 3
$${how}\:{many}\:{four}\:{digit}\:{numbers}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{digits}\:\mathrm{0}\:\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}\:\mathrm{8} \\ $$$$\mathrm{9}? \\ $$
Question Number 117898 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\:\mathrm{1}}{\mathrm{sin}\:^{\mathrm{4}} \mathrm{x}}\:\left(\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\right)−\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}\:\right)\:=? \\ $$
Question Number 117865 Answers: 3 Comments: 0
$${discuss}\:{the}\:{lim}_{{n}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \\ $$
Question Number 117862 Answers: 0 Comments: 1
Question Number 117857 Answers: 1 Comments: 0
$$\mathrm{Let}\:\mathrm{n}\in\mathbb{N}\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\: \\ $$$$\mathrm{polynomials}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{with}\:\mathrm{coefficients} \\ $$$$\mathrm{in}\:\left\{\:\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3}\:\right\}\:\mathrm{such}\:\mathrm{that}\:\mathrm{p}\left(\mathrm{2}\right)=\:\mathrm{n}\: \\ $$
Question Number 117863 Answers: 1 Comments: 0
$${if}\:{y}=\frac{{x}+\mathrm{2}}{\:\sqrt{{x}+\mathrm{1}}}\:{find}\:\frac{{dy}}{{dx}}\:{from}\:{first} \\ $$$${principle}. \\ $$
Question Number 117852 Answers: 3 Comments: 0
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\left(\mathrm{1}\right)\left(\mathrm{tan}\:\frac{\mathrm{7}\pi}{\mathrm{24}}+\mathrm{tan}\:\frac{\mathrm{5}\pi}{\mathrm{24}}\right).\mathrm{cos}\:\frac{\pi}{\mathrm{12}}\:+\:\mathrm{2}\:. \\ $$$$\left(\mathrm{2}\right)\:\sqrt[{\mathrm{4}\:}]{\frac{\mathrm{9}−\mathrm{4}\sqrt{\mathrm{5}}}{\mathrm{5x}}}\:.\left(\mathrm{5}\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{20x}}\:\right)^{\mathrm{0}.\mathrm{5}} .\:\mathrm{2}^{−\mathrm{1}} \:=\:? \\ $$
Question Number 117848 Answers: 0 Comments: 0
$${Determine}\:{all}\:{functions}\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${such}\:{that}\:{the}\:{equality}\:{f}\left(\left[{x}\right]\:{y}\right)=\:{f}\left({x}\right)\:\left[{f}\left({y}\right)\:\right] \\ $$$${holds}\:{for}\:{all}\:{x},{y}\:\in\mathbb{R}\:.\:{Here}\:\:{by}\:\left[{x}\right]\:{we}\: \\ $$$${denote}\:{the}\:{greatest}\:{integer}\:{not}\:{exceeding}\:{x}. \\ $$$$ \\ $$
Question Number 117844 Answers: 0 Comments: 1
Question Number 117841 Answers: 1 Comments: 0
$$\int\:\mathrm{ln}\:\left(\mathrm{1}−{e}^{−\mathrm{2}{x}} \right)\:{dx}\:=? \\ $$
Question Number 117838 Answers: 1 Comments: 0
$$\:\:{Let}\:{be}\:{P}\:\:{the}\:{set}\:{of}\:{prime}\:{numbers}\:{and}\: \\ $$$${A}={P}\cup\left\{\mathrm{0},\mathrm{1}\right\} \\ $$$${Prove}\:{that}\:\:\:\underset{{n}\notin{A}} {\prod}\:\frac{{n}}{\:\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}\:=\frac{\mathrm{2}}{\pi}\sqrt{\mathrm{3}}\: \\ $$
Question Number 117832 Answers: 1 Comments: 0
$$\left.{Let}\:{a},{b}>\mathrm{0}\:\:{and}\:{x}\in\right]\mathrm{0};\frac{\pi}{\mathrm{2}}\left[\:\right. \\ $$$$\:\:{Prove}\:\:\:\left(\frac{{a}}{{sinx}}+\mathrm{1}\right)\left(\frac{{b}}{{cosx}}+\mathrm{1}\right)\geqslant\left(\mathrm{1}+\sqrt{\mathrm{2}{ab}}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 117828 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)=\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}}−\sqrt{\mathrm{3}}−\mathrm{1} \\ $$$$=\mathrm{3}−\sqrt{\mathrm{3}}−\mathrm{1} \\ $$$$=\mathrm{2}−\sqrt{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\left(\mathrm{2}{x}+\sqrt{\mathrm{3}}\right)\left(\mathrm{2}{x}−\sqrt{\mathrm{3}}\right)=\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{2}{x}\sqrt{\mathrm{3}}+\mathrm{2}{x}\sqrt{\mathrm{3}}−\mathrm{3} \\ $$$$=\mathrm{4}{x}^{\mathrm{2}} −\mathrm{3} \\ $$
Question Number 117827 Answers: 0 Comments: 5
Question Number 117826 Answers: 1 Comments: 0
$$\:\:{Prove}\:{that}\:{the}\:{Euler}\:{Constant}\:{is}\:{qlso}\:{equal}\:{to} \\ $$$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\:\:\Gamma\left({x}\right)−\frac{\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)} \\ $$
Question Number 117825 Answers: 1 Comments: 0
$${Let}\:{ABC}\:{be}\:{a}\:{triangle}\:{such}\:{as}\: \\ $$$$\:\mathrm{2}{cosA}+\mathrm{3}{sinB}=\mathrm{4}\:{and}\:\:\mathrm{3}{cosB}+\mathrm{2}{sinA}=\mathrm{3} \\ $$$${Prove}\:{that}\:{the}\:{angle}\:{C}\:{is}\:{right}. \\ $$$$\: \\ $$
Question Number 117820 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left({x}.\mathrm{sin}\:\frac{\mathrm{1}}{{x}}\right)^{{x}^{\mathrm{2}} } \\ $$
Question Number 117818 Answers: 0 Comments: 2
$$\:{let}\:{ABC}\:\:{be}\:{a}\:{triangle}\:{AB}={c}\:\:{AC}={b}\:\:{BC}={a} \\ $$$${Show}\:{that}\:{ABC}\:{is}\:{right}\:\Leftrightarrow\:\:{tan}\left(\frac{{B}}{\mathrm{2}}\right)=\frac{{a}+{c}}{{b}}\: \\ $$
Question Number 117817 Answers: 2 Comments: 1
Question Number 117816 Answers: 1 Comments: 0
$$\:\:{find}\:{out}\:\:\:{for}\:{n}\geqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\Gamma\left(\mathrm{1}+\frac{{k}}{{n}}\right) \\ $$$$ \\ $$
Question Number 117811 Answers: 1 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\boldsymbol{\pi}} \boldsymbol{\mathrm{ln}}\mid\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\mid\boldsymbol{\mathrm{dx}} \\ $$
Question Number 117806 Answers: 4 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:{i}\:::\:\:\:\mathrm{1}\:+\frac{\mathrm{4}}{\mathrm{9}}+\frac{\mathrm{9}}{\mathrm{36}}+\frac{\mathrm{16}}{\mathrm{100}}+...=\:?? \\ $$$$\:\:\:\:\:{ii}::\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}^{\mathrm{2}} {cot}\left({x}\right)\:{dx}=?? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$
Question Number 117800 Answers: 1 Comments: 0
Pg 1012 Pg 1013 Pg 1014 Pg 1015 Pg 1016 Pg 1017 Pg 1018 Pg 1019 Pg 1020 Pg 1021
Terms of Service
Privacy Policy
Contact: info@tinkutara.com