Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1017
Question Number 117258 Answers: 1 Comments: 0
$$\frac{\mathrm{4}}{\mathrm{3}}.\frac{\mathrm{9}}{\mathrm{8}}.\frac{\mathrm{49}}{\mathrm{48}}.\frac{\mathrm{121}}{\mathrm{120}}.\frac{\mathrm{169}}{\mathrm{168}}.\frac{\mathrm{289}}{\mathrm{288}}.\frac{\mathrm{529}}{\mathrm{528}}.\frac{\mathrm{831}}{\mathrm{830}}.....\infty \\ $$
Question Number 117257 Answers: 1 Comments: 1
$${If}\:\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{2}} \left({x}\right)=\mathrm{1}\:{then}\: \\ $$$${what}\:{the}\:{value}\:{of}\:\mathrm{sin}\:^{\mathrm{11}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{11}} \left({x}\right)\:=? \\ $$
Question Number 117253 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}\:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 117255 Answers: 0 Comments: 0
Question Number 117251 Answers: 0 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{ln}\left(\mathrm{3}−\mathrm{sin}\left(\mathrm{2x}\right)\right) \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 117250 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{sin}\left(\mathrm{xsh}\left(\mathrm{2x}\right)\right)−\mathrm{sh}\left(\mathrm{x}\:\mathrm{sin}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{3}} } \\ $$
Question Number 117249 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{x}^{\mathrm{2}} } }{\mathrm{x}^{\mathrm{4}} \:+\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\: \\ $$
Question Number 117243 Answers: 1 Comments: 1
Question Number 117228 Answers: 1 Comments: 0
$$\left(\frac{{x}+{y}}{{y}−\mathrm{1}}\right)\:{dx}\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{x}+\mathrm{1}}{{y}−\mathrm{1}}\right)^{\mathrm{2}} {dy}\:=\:\mathrm{0} \\ $$
Question Number 117227 Answers: 0 Comments: 0
$${why}\:{every}\:{function}\:{that}\:{is}\:{Riemann} \\ $$$${integrable}\:{is}\:{not}\:{lebsgue}\:{integrable}? \\ $$
Question Number 117223 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{mathematics}... \\ $$$$\:\:{proof}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\:=\:\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}\:} ^{\:\infty} \left[{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)\right]^{\mathrm{2}} {dx}={ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:...\:\:{m}.{n}.\mathrm{1970}... \\ $$
Question Number 117221 Answers: 3 Comments: 1
$$\underset{−\infty} {\overset{\:\:\:\:\:\infty} {\int}}\:\frac{\mathrm{cos}\:\left(\mathrm{3}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$
Question Number 117295 Answers: 1 Comments: 0
Question Number 117207 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{C}}\mathrm{an}\:\mathrm{anyone}\:\mathrm{recommend}\:\mathrm{a}\:\mathrm{pdf}\:\mathrm{for} \\ $$$$\mathrm{learning}\:\mathrm{hypergeometric}\:\mathrm{functions}? \\ $$
Question Number 117286 Answers: 2 Comments: 0
$${A}\:{person}\:{wants}\:{to}\:{invite}\:{his}\:\mathrm{6}\:{friends}\:{in}\:{a}\:{Dinner}\:{party}. \\ $$$${He}\:{has}\:\mathrm{3}\:{person}\:{to}\:{send}\:{letter}\:{to}\:{them}.{In}\:{how}\:{many}\:{ways} \\ $$$${he}\:{can}\:{invite}\:{his}\:\mathrm{6}\:{friends}? \\ $$
Question Number 117205 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \frac{\boldsymbol{{cos}}^{\mathrm{2}} \mathrm{3}\boldsymbol{{x}}}{\mathrm{1}−\mathrm{2}\boldsymbol{{a}}\centerdot\boldsymbol{{cosx}}+\boldsymbol{{a}}^{\mathrm{2}} }\boldsymbol{{dx}}\:−\:?\:\left(\boldsymbol{{a}}\in\boldsymbol{{C}}/\left\{−\mathrm{1};\:\mathrm{1}\right\}\right) \\ $$$$\boldsymbol{{I}}\:\boldsymbol{{need}}\:\boldsymbol{{a}}\:\boldsymbol{{solution}}\:\boldsymbol{{through}}\:\boldsymbol{{complex}}\:\boldsymbol{{analysis}} \\ $$
Question Number 117204 Answers: 1 Comments: 2
Question Number 117215 Answers: 0 Comments: 1
$$\mathrm{v2}.\mathrm{220}:\:\mathrm{Forum}\:\mathrm{viewing}\:\mathrm{improvement} \\ $$$$\bullet\:\mathrm{After}\:\mathrm{update}\:\mathrm{you}\:\mathrm{will}\:\mathrm{see}\:\mathrm{options} \\ $$$$\mathrm{to}\:\mathrm{zoom}\:\mathrm{out}\:\mathrm{of}\:\mathrm{post}\:\mathrm{with}\:\mathrm{longer}\:\mathrm{lines} \\ $$$$\mathrm{to}\:\mathrm{view}\:\mathrm{whole}\:\mathrm{posts}\:\mathrm{without}\:\mathrm{scrolling}. \\ $$$$\mathrm{Similar}\:\mathrm{option}\:\mathrm{are}\:\mathrm{added}\:\mathrm{while} \\ $$$$\mathrm{editing}\:\mathrm{in}\:'\mathrm{Cursor\&Page}'\:\mathrm{menu} \\ $$
Question Number 117192 Answers: 1 Comments: 0
$$\mathrm{Assuming}\:\mathrm{you}\:\mathrm{have}\:\mathrm{enough}\:\mathrm{coins}\: \\ $$$$\mathrm{of}\:\mathrm{1},\mathrm{5},\mathrm{10},\mathrm{25},\mathrm{and}\:\mathrm{50cents}.\:\mathrm{In}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{you}\:\mathrm{make}\:\mathrm{a}\:\mathrm{change}\:\mathrm{for}\:\mathrm{1dollar}. \\ $$
Question Number 117191 Answers: 0 Comments: 0
$$\int\mathrm{sin}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 117188 Answers: 2 Comments: 1
$${Given}\:{r}+\frac{\mathrm{1}}{{r}}\:=\:\sqrt{\mathrm{2}}\:,\:{then}\:{r}^{\mathrm{8}} +\frac{\mathrm{1}}{{r}^{\mathrm{8}} }\:=\:?\: \\ $$
Question Number 117176 Answers: 4 Comments: 1
$$\underset{\pi/\mathrm{4}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{4cot}\:{x}+\mathrm{1}\:}{\mathrm{4}−\mathrm{cot}\:{x}}\:{dx}\:=? \\ $$
Question Number 117172 Answers: 1 Comments: 0
Question Number 117171 Answers: 1 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+\mathrm{x}\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{cosh}\:\left(\mathrm{x}\right)}\right)^{\frac{\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{x}\right)}} \:=? \\ $$
Question Number 117164 Answers: 2 Comments: 0
$$\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{n}+\mathrm{9}}{\mathrm{2n}−\mathrm{1}}\right)^{\mathrm{n}} =? \\ $$
Question Number 117163 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{4}\:\mathrm{dx}}{\mathrm{x}\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:=? \\ $$
Pg 1012 Pg 1013 Pg 1014 Pg 1015 Pg 1016 Pg 1017 Pg 1018 Pg 1019 Pg 1020 Pg 1021
Terms of Service
Privacy Policy
Contact: info@tinkutara.com