Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1017
Question Number 117482 Answers: 2 Comments: 0
$$\:\mathrm{If}\:\:\mathrm{cosec}^{−\mathrm{1}} {x}\:\:=\:\:\mathrm{cot}^{−\mathrm{1}} {y},\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\:+\:\:\frac{\mathrm{1}}{{y}^{\mathrm{3}} }\:\:=\:\:\mathrm{0} \\ $$
Question Number 117481 Answers: 2 Comments: 0
Question Number 117480 Answers: 1 Comments: 1
Question Number 117475 Answers: 1 Comments: 0
$$\frac{\mathrm{6}}{\mathrm{5}}.\frac{\mathrm{24}}{\mathrm{23}}.\frac{\mathrm{54}}{\mathrm{53}}.\frac{\mathrm{96}}{\mathrm{95}}.\frac{\mathrm{150}}{\mathrm{149}}.\frac{\mathrm{216}}{\mathrm{215}}.\frac{\mathrm{294}}{\mathrm{293}}.... \\ $$
Question Number 117470 Answers: 3 Comments: 5
$$\frac{{d}}{{dx}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{atx}=\mathrm{1} \\ $$
Question Number 117463 Answers: 0 Comments: 2
Question Number 117460 Answers: 0 Comments: 2
$$\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9801}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{4}{n}\right)!\left(\mathrm{1103}+\mathrm{26390}{n}\right)}{\left({n}!\right)^{\mathrm{4}} \mathrm{396}^{\mathrm{4}{n}} }=\frac{\mathrm{1}}{\pi}\:\:\:\left({Prove}\:{that}\right) \\ $$
Question Number 117458 Answers: 1 Comments: 0
$$\frac{\mathrm{4}}{\mathrm{3}}.\frac{\mathrm{16}}{\mathrm{15}}.\frac{\mathrm{36}}{\mathrm{35}}.\frac{\mathrm{64}}{\mathrm{63}}.\frac{\mathrm{100}}{\mathrm{99}}.\frac{\mathrm{144}}{\mathrm{143}}.\frac{\mathrm{196}}{\mathrm{195}}.\frac{\mathrm{256}}{\mathrm{255}}.\frac{\mathrm{324}}{\mathrm{323}}......\infty \\ $$
Question Number 117446 Answers: 2 Comments: 0
$$\mathrm{Evaluate}\:\int\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x} \\ $$
Question Number 117439 Answers: 1 Comments: 0
Question Number 117438 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi{x}^{\mathrm{2}} \right){dx}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 117437 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{a}^{\mathrm{3}} +{x}^{\mathrm{3}} } \\ $$$$ \\ $$$${generaly} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{p}+{x}^{{n}} } \\ $$
Question Number 117508 Answers: 1 Comments: 0
$$\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)\:=\:\mathrm{x}^{\mathrm{2}} \: \\ $$$$\mathrm{find}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\:=? \\ $$
Question Number 117503 Answers: 1 Comments: 0
Question Number 117434 Answers: 0 Comments: 0
Question Number 117433 Answers: 0 Comments: 0
Question Number 117431 Answers: 0 Comments: 0
Question Number 117422 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3tan}\:\mathrm{4x}−\mathrm{4tan}\:\mathrm{3x}}{\mathrm{3sin}\:\mathrm{4x}−\mathrm{4sin}\:\mathrm{3x}}\:=? \\ $$
Question Number 117417 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\mathrm{tanh}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)−\frac{\mathrm{1}}{\mathrm{cosh}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} =? \\ $$
Question Number 117416 Answers: 3 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\mathrm{cosx}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$
Question Number 117414 Answers: 0 Comments: 0
Question Number 117412 Answers: 3 Comments: 2
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{6}}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2sin}\:\mathrm{x}}{\:\mathrm{1}−\sqrt{\mathrm{3}}\:\mathrm{tan}\:\mathrm{x}}\:=\:? \\ $$
Question Number 117409 Answers: 1 Comments: 0
Question Number 117403 Answers: 1 Comments: 1
$$\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{arc}\:\mathrm{tan}\:\mathrm{x}\right)^{\mathrm{2}} \:\mathrm{dx}\:=? \\ $$
Question Number 117396 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\:\:...{differential}\:\:{equation}...\: \\ $$$$ \\ $$$$\:\:\:\:{solve}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{{xy}+\mathrm{2}{x}^{\mathrm{2}} {y}} \\ $$$$\:\:\:\:\:\:\:\:\:{general}\:\:{solution}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\: \\ $$
Question Number 117398 Answers: 0 Comments: 0
Pg 1012 Pg 1013 Pg 1014 Pg 1015 Pg 1016 Pg 1017 Pg 1018 Pg 1019 Pg 1020 Pg 1021
Terms of Service
Privacy Policy
Contact: info@tinkutara.com