Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1017

Question Number 115230    Answers: 0   Comments: 6

2 women and 4 men will sit on the 8 available seats and surround the round table . The many possible arrangements of them sitting if they sat randomly

$$\mathrm{2}\:{women}\:{and}\:\mathrm{4}\:{men}\:{will}\:{sit}\:{on}\:{the} \\ $$$$\mathrm{8}\:{available}\:{seats}\:{and}\:{surround}\: \\ $$$${the}\:{round}\:{table}\:.\:{The}\:{many}\:{possible} \\ $$$${arrangements}\:{of}\:{them}\:{sitting} \\ $$$${if}\:{they}\:{sat}\:{randomly} \\ $$

Question Number 115229    Answers: 2   Comments: 0

find the mean value of y=(5/(2−x−3x^2 )) between x=−(1/3) and x=(1/3)

$${find}\:{the}\:{mean}\:{value}\:{of}\: \\ $$$${y}=\frac{\mathrm{5}}{\mathrm{2}−{x}−\mathrm{3}{x}^{\mathrm{2}} }\:\:{between}\:{x}=−\frac{\mathrm{1}}{\mathrm{3}}\:{and} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Question Number 115222    Answers: 1   Comments: 0

.... nice math ... nice integral prove :: Ψ=9∫_0 ^( ∞) x^5 e^(−x^3 ) ln(1+x)dx =^(???) Γ((1/3))−Γ((2/3))+Γ((3/3)) m.n.july.1970

$$\:\:\:\:\:\:....\:{nice}\:\:{math}\:... \\ $$$$ \\ $$$$\:\:\:\:{nice}\:\:{integral}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\::: \\ $$$$\Psi=\mathrm{9}\int_{\mathrm{0}} ^{\:\infty} {x}^{\mathrm{5}} {e}^{−{x}^{\mathrm{3}} } {ln}\left(\mathrm{1}+{x}\right){dx}\:\overset{???} {=}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{3}}\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$\:\: \\ $$

Question Number 115215    Answers: 2   Comments: 7

solve ∫_0 ^1 ln^2 (1−x^2 )dx

$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 115224    Answers: 2   Comments: 0

Question Number 115205    Answers: 1   Comments: 0

Question Number 115203    Answers: 2   Comments: 1

Question Number 115201    Answers: 1   Comments: 1

Question Number 115218    Answers: 0   Comments: 0

Show that ∀n∈N, ∀u_0 ,u_1 ,...,u_n ,v_0 ,v_1 ,...v_n ∈C ∀k≤n; u_k =Σ_(i=0) ^k ((k),(i) )v_i ⇔∀k≤n; v_k =Σ_(i=0) ^k (−1)^(k−1) ((k),(i) )u_i

$$\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N},\:\forall\mathrm{u}_{\mathrm{0}} ,\mathrm{u}_{\mathrm{1}} ,...,\mathrm{u}_{\mathrm{n}} ,\mathrm{v}_{\mathrm{0}} ,\mathrm{v}_{\mathrm{1}} ,...\mathrm{v}_{\mathrm{n}} \in\mathbb{C} \\ $$$$\forall\mathrm{k}\leqslant\mathrm{n};\:\mathrm{u}_{\mathrm{k}} =\sum_{\mathrm{i}=\mathrm{0}} ^{\mathrm{k}} \begin{pmatrix}{\mathrm{k}}\\{\mathrm{i}}\end{pmatrix}\mathrm{v}_{\mathrm{i}} \Leftrightarrow\forall\mathrm{k}\leqslant\mathrm{n};\:\mathrm{v}_{\mathrm{k}} =\sum_{\mathrm{i}=\mathrm{0}} ^{\mathrm{k}} \left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{1}} \begin{pmatrix}{\mathrm{k}}\\{\mathrm{i}}\end{pmatrix}\mathrm{u}_{\mathrm{i}} \\ $$

Question Number 115195    Answers: 1   Comments: 0

lim_(x→(π/8)) ((cot 4x−cos 4x)/((π−8x)^3 )) ?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{8}}} {\mathrm{lim}}\:\frac{\mathrm{cot}\:\mathrm{4}{x}−\mathrm{cos}\:\mathrm{4}{x}}{\left(\pi−\mathrm{8}{x}\right)^{\mathrm{3}} }\:?\: \\ $$

Question Number 115194    Answers: 0   Comments: 0

Find a three−digits number whose digits form a geometry progression ;if you known that after substract that number by 495 ,get a number written by the same digits as the number you are looking for but in the reverse order;if the digits of the number obtained after substraction(from left right)reduced by 1,1 and 2 respectively ,you obtain an arithmetic progression

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{three}−\mathrm{digits}\:\mathrm{number}\:\mathrm{whose} \\ $$$$\mathrm{digits}\:\mathrm{form}\:\mathrm{a}\:\mathrm{geometry}\:\mathrm{progression} \\ $$$$;\mathrm{if}\:\mathrm{you}\:\mathrm{known}\:\mathrm{that}\:\mathrm{after}\:\mathrm{substract}\:\mathrm{that} \\ $$$$\mathrm{number}\:\mathrm{by}\:\mathrm{495}\:,\mathrm{get}\:\mathrm{a}\:\mathrm{number} \\ $$$$\mathrm{written}\:\mathrm{by}\:\mathrm{the}\:\mathrm{same}\:\mathrm{digits}\:\mathrm{as}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{you}\:\mathrm{are}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{but}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{reverse}\:\mathrm{order};\mathrm{if}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{obtained}\:\mathrm{after} \\ $$$$\mathrm{substraction}\left(\mathrm{from}\:\mathrm{left}\:\mathrm{right}\right)\mathrm{reduced} \\ $$$$\mathrm{by}\:\mathrm{1},\mathrm{1}\:\mathrm{and}\:\mathrm{2}\:\mathrm{respectively}\:,\mathrm{you}\:\mathrm{obtain} \\ $$$$\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{progression} \\ $$

Question Number 115193    Answers: 1   Comments: 1

...advanced mathematics... :: digamma limit :: if k>0 then prove that lim_(x→0) (1/x)(ψ(((k+x)/(2x))) − ψ((k/(2x)))) =(1/k) ✓ m.n.july.1970...

$$\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{mathematics}...\:\: \\ $$$$\:\:\:\:\:\:\:::\:\:\:{digamma}\:\:{limit}\:\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:{if}\:\:\:{k}>\mathrm{0}\:\:{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}}{{x}}\left(\psi\left(\frac{{k}+{x}}{\mathrm{2}{x}}\right)\:−\:\psi\left(\frac{{k}}{\mathrm{2}{x}}\right)\right)\:=\frac{\mathrm{1}}{{k}}\:\:\:\:\checkmark \\ $$$$ \\ $$$$\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970}... \\ $$$$\: \\ $$

Question Number 115174    Answers: 2   Comments: 0

lim_(x→1) ((tan (cos^(−1) ((1/x))))/( (√(x−1)))) = ?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right)\right)}{\:\sqrt{{x}−\mathrm{1}}}\:=\:? \\ $$

Question Number 115170    Answers: 3   Comments: 0

(1)Given ((P _(n−1)^(2n+1) )/(P _n^(2n−1) )) = (3/5) , find n = ? (2) in how many ways can 6 persons stand in a queue? (3) how many different 4 letter words can be formed by using letters of EDUCATION using each letter at most once ?

$$\left(\mathrm{1}\right){Given}\:\frac{{P}\:_{{n}−\mathrm{1}} ^{\mathrm{2}{n}+\mathrm{1}} }{{P}\:_{{n}} ^{\mathrm{2}{n}−\mathrm{1}} }\:=\:\frac{\mathrm{3}}{\mathrm{5}}\:,\:{find}\:{n}\:=\:? \\ $$$$\left(\mathrm{2}\right)\:{in}\:{how}\:{many}\:{ways}\:{can}\:\mathrm{6}\:{persons} \\ $$$${stand}\:{in}\:{a}\:{queue}? \\ $$$$\left(\mathrm{3}\right)\:{how}\:{many}\:{different}\:\mathrm{4}\:{letter}\:{words} \\ $$$${can}\:{be}\:{formed}\:{by}\:{using}\:{letters}\:{of}\: \\ $$$${EDUCATION}\:{using}\:{each}\:{letter}\:{at}\: \\ $$$${most}\:{once}\:? \\ $$$$ \\ $$

Question Number 115169    Answers: 3   Comments: 0

∫ sin^2 (ln x) dx

$$\int\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{ln}\:{x}\right)\:{dx}\: \\ $$

Question Number 115167    Answers: 1   Comments: 0

lim_(x→0) ((sec (sin^(−1) (1−x)))/(3(√x))) = ?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:\:\left(\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\right)}{\mathrm{3}\sqrt{{x}}}\:=\:? \\ $$

Question Number 115166    Answers: 2   Comments: 0

Question Number 115162    Answers: 4   Comments: 0

(1) lim_(x→1) arc sin (((1−(√x))/(1−x))) =? (2) lim_(x→∞) e^(x^3 +(√(cos ((1/x^2 ))))) =? (3) lim_(x→0) csc x .sin (sin x) =?

$$\:\left(\mathrm{1}\right)\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{arc}\:\mathrm{sin}\:\left(\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−{x}}\right)\:=? \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{e}^{{x}^{\mathrm{3}} +\sqrt{\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}} \:=? \\ $$$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{csc}\:{x}\:.\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)\:=? \\ $$

Question Number 115151    Answers: 1   Comments: 0

Question Number 115143    Answers: 0   Comments: 0

Question Number 115136    Answers: 1   Comments: 0

Question Number 115135    Answers: 1   Comments: 1

Question Number 115133    Answers: 3   Comments: 0

Given that the sequence {a_n } is defined as a_1 =2, and a_(n+1) =a_n +(2n−1) for all n≥1. Find the last two digits of a_(100) .

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{defined} \\ $$$$\mathrm{as}\:{a}_{\mathrm{1}} =\mathrm{2},\:\mathrm{and}\:{a}_{{n}+\mathrm{1}} ={a}_{{n}} +\left(\mathrm{2}{n}−\mathrm{1}\right)\:\mathrm{for}\:\mathrm{all}\:{n}\geqslant\mathrm{1}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{of}\:{a}_{\mathrm{100}} . \\ $$

Question Number 115122    Answers: 4   Comments: 1

lim_(x→∞) (√((x^2 +2x)(x^2 +1))) −(√((x^2 +2x)(x^2 +4))) ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:−\sqrt{\left({x}^{\mathrm{2}} +\mathrm{2}{x}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:? \\ $$

Question Number 115121    Answers: 1   Comments: 2

solve { ((tan x + cot x = p)),((sec x − cos x = q)) :}

$${solve}\:\begin{cases}{\mathrm{tan}\:{x}\:+\:\mathrm{cot}\:{x}\:=\:{p}}\\{\mathrm{sec}\:{x}\:−\:\mathrm{cos}\:{x}\:=\:{q}}\end{cases} \\ $$

Question Number 115117    Answers: 1   Comments: 0

What is the value of a and b when 3x^4 +6x^3 −ax^2 −bx−12 is completely divisible by x^2 −3 ?

$${What}\:{is}\:{the}\:{value}\:{of}\:{a}\:{and}\:{b}\:{when}\: \\ $$$$\mathrm{3}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{3}} −{ax}^{\mathrm{2}} −{bx}−\mathrm{12}\:{is}\:{completely} \\ $$$${divisible}\:{by}\:{x}^{\mathrm{2}} −\mathrm{3}\:? \\ $$

  Pg 1012      Pg 1013      Pg 1014      Pg 1015      Pg 1016      Pg 1017      Pg 1018      Pg 1019      Pg 1020      Pg 1021   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com