Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1017

Question Number 117089    Answers: 0   Comments: 0

Question Number 117088    Answers: 2   Comments: 0

... advanced calculus... evsluate :: I=∫_0 ^( ∞) ((xsin(2x))/(x^2 +4)) dx =? hint: Φ=∫_0 ^( ∞) ((cos(px))/(x^2 +1))dx =(π/2)e^(−p) (p>0) .m.n 1970

$$\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{evsluate}\::: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{xsin}\left(\mathrm{2}{x}\right)}{{x}^{\mathrm{2}} +\mathrm{4}}\:{dx}\:=? \\ $$$$\:\:\:\:\:{hint}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({px}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\:=\frac{\pi}{\mathrm{2}}{e}^{−{p}} \:\:\:\:\left({p}>\mathrm{0}\right)\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:.{m}.{n}\:\mathrm{1970} \\ $$$$ \\ $$

Question Number 117087    Answers: 2   Comments: 0

... nice calculus... please evaluate :: Ω=∫_0 ^( 1) ((x^4 +1)/(x^6 +1))dx =??? m.n.1970

$$\:\:\:\:\:\:\:\:\:...\:\:{nice}\:\:{calculus}... \\ $$$$\:{please}\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{6}} +\mathrm{1}}{dx}\:=??? \\ $$$$\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$

Question Number 117086    Answers: 2   Comments: 0

...nice mathematics... evaluate ... lim_(n→∞) (Π_(k=1) ^n sin(((kπ)/(4n))))^(1/n) =? ...m.n.1970...

$$\:\:\:\:\:\:\:...{nice}\:\:{mathematics}... \\ $$$$\:{evaluate}\:... \\ $$$$\:\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{sin}\left(\frac{{k}\pi}{\mathrm{4}{n}}\right)\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$$$ \\ $$

Question Number 117085    Answers: 6   Comments: 0

Question Number 117082    Answers: 1   Comments: 0

If 6−3x is the geometric mean between the integer x^2 +2 and 2^ what are the values of x ?

$$\mathrm{If}\:\mathrm{6}−\mathrm{3x}\:\mathrm{is}\:\mathrm{the}\:\mathrm{geometric}\:\mathrm{mean}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{integer}\:\mathrm{x}^{\mathrm{2}} +\mathrm{2}\:\mathrm{and}\:\bar {\mathrm{2}}\:\mathrm{what}\:\mathrm{are}\:\mathrm{the}\: \\ $$$$\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:? \\ $$

Question Number 117078    Answers: 1   Comments: 0

lim_(n→∞) [ tan ((π/(2n))).tan (((2π)/(2n))).tan (((3π)/(2n)))...tan (((nπ)/(2n)))]^(1/n) =?

$$\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2n}}\right).\mathrm{tan}\:\left(\frac{\mathrm{2}\pi}{\mathrm{2n}}\right).\mathrm{tan}\:\left(\frac{\mathrm{3}\pi}{\mathrm{2n}}\right)...\mathrm{tan}\:\left(\frac{\mathrm{n}\pi}{\mathrm{2n}}\right)\right]^{\frac{\mathrm{1}}{\mathrm{n}}} =?\: \\ $$

Question Number 117066    Answers: 1   Comments: 0

Given f(x)= ((x−1)/(x+1)) . If f^2 (x)=f(f(x)), f^3 (x)=f(f(f(x))) , f^(1998) (x) = g(x) then ∫_(1/e) ^1 g(x) dx = _?

$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{x}+\mathrm{1}}\:.\:\mathrm{If}\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right),\: \\ $$$$\mathrm{f}^{\mathrm{3}} \left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:,\:\mathrm{f}^{\mathrm{1998}} \left(\mathrm{x}\right)\:=\:\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\mathrm{then}\:\int_{\frac{\mathrm{1}}{\mathrm{e}}} ^{\mathrm{1}} \mathrm{g}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:\_? \\ $$

Question Number 117061    Answers: 2   Comments: 3

How many 5-digits positive integers x_1 x_2 x_3 x_4 x_5 are there such that x_1 ≤x_2 ≤x_3 ≤x_4 ≤x_5 ?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{5}-\mathrm{digits}\:\mathrm{positive}\:\mathrm{integers} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} {x}_{\mathrm{4}} {x}_{\mathrm{5}} \:\mathrm{are}\:\mathrm{there}\:\mathrm{such}\:\mathrm{that}\: \\ $$$${x}_{\mathrm{1}} \leqslant{x}_{\mathrm{2}} \leqslant{x}_{\mathrm{3}} \leqslant{x}_{\mathrm{4}} \leqslant{x}_{\mathrm{5}} ? \\ $$

Question Number 117053    Answers: 4   Comments: 0

∫ (x/( (√(2−x^4 )))) dx =?

$$\:\:\:\int\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}−\mathrm{x}^{\mathrm{4}} }}\:\mathrm{dx}\:=? \\ $$

Question Number 117052    Answers: 1   Comments: 0

lim_(x→∞) (√(4x+(√(4x+(√(4x+(√(4x)))))))) − (√(4x)) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{4x}+\sqrt{\mathrm{4x}+\sqrt{\mathrm{4x}+\sqrt{\mathrm{4x}}}}}\:−\:\sqrt{\mathrm{4x}}\:=? \\ $$

Question Number 117121    Answers: 2   Comments: 0

...nice mathematics.. please evaluate... Ω =∫_(−∞) ^( +∞) (((x^2 −4)/(x^2 +4))∗ ((sin(2x))/x)) dx =??? m.n.1970

$$\:\:\:\:\:\:\:\:...{nice}\:\:{mathematics}.. \\ $$$$ \\ $$$$\:\:{please}\:\:{evaluate}... \\ $$$$\: \\ $$$$\:\Omega\:=\int_{−\infty} ^{\:+\infty} \left(\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{4}}\ast\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}\right)\:{dx}\:=???\:\: \\ $$$$\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$

Question Number 117046    Answers: 3   Comments: 0

Calculate without using caculator: a)−2(√2)sin10°(2sin35°−((sec5°)/2)−((cos40°)/(sin5°))) b)sin6°−sin42°−sin66°+sin78°

$$\mathrm{Calculate}\:\mathrm{without}\:\mathrm{using}\:\mathrm{caculator}: \\ $$$$\left.\mathrm{a}\right)−\mathrm{2}\sqrt{\mathrm{2}}\mathrm{sin10}°\left(\mathrm{2sin35}°−\frac{\mathrm{sec5}°}{\mathrm{2}}−\frac{\mathrm{cos40}°}{\mathrm{sin5}°}\right) \\ $$$$\left.\mathrm{b}\right)\mathrm{sin6}°−\mathrm{sin42}°−\mathrm{sin66}°+\mathrm{sin78}° \\ $$

Question Number 117045    Answers: 4   Comments: 0

If x is a complex number satisfying x^2 +x+1 = 0 , what is the value of x^(53) +x^(52) +x^(51) +x^(50) +x^(49) ?

$$\mathrm{If}\:\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{number}\:\mathrm{satisfying}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\:=\:\mathrm{0}\:,\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{x}^{\mathrm{53}} +\mathrm{x}^{\mathrm{52}} +\mathrm{x}^{\mathrm{51}} +\mathrm{x}^{\mathrm{50}} +\mathrm{x}^{\mathrm{49}} \:? \\ $$

Question Number 117037    Answers: 3   Comments: 0

lim_(x→∞) (√(x+(√(x+(√x))))) − (√x) =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}}}}\:−\:\sqrt{\mathrm{x}}\:=?\: \\ $$

Question Number 117034    Answers: 1   Comments: 0

∫(dx/( ((1+x^3 ))^(1/3) ))

$$\int\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }} \\ $$

Question Number 117029    Answers: 1   Comments: 0

(x^2 +2y^2 ) dx + (4xy−y^2 ) dy = 0

$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2y}^{\mathrm{2}} \right)\:\mathrm{dx}\:+\:\left(\mathrm{4xy}−\mathrm{y}^{\mathrm{2}} \right)\:\mathrm{dy}\:=\:\mathrm{0} \\ $$

Question Number 117027    Answers: 2   Comments: 0

solve: ((x − 4)/(x − 3)) < ((2x − 1)/2)

$$\mathrm{solve}:\:\:\:\:\frac{\mathrm{x}\:\:−\:\:\mathrm{4}}{\mathrm{x}\:\:−\:\:\mathrm{3}}\:\:\:<\:\:\:\frac{\mathrm{2x}\:\:−\:\:\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 117026    Answers: 2   Comments: 0

((√(1−x))/( (√x))) + ((√x)/( (√(1−x)))) = ((13)/6)

$$\:\frac{\sqrt{\mathrm{1}−\mathrm{x}}}{\:\sqrt{\mathrm{x}}}\:+\:\frac{\sqrt{\mathrm{x}}}{\:\sqrt{\mathrm{1}−\mathrm{x}}}\:=\:\frac{\mathrm{13}}{\mathrm{6}} \\ $$

Question Number 117010    Answers: 0   Comments: 0

Question Number 117007    Answers: 1   Comments: 0

find unit digit of 1!+2!+3!+4!+5!+....+100!

$${find}\:{unit}\:{digit}\:{of} \\ $$$$\mathrm{1}!+\mathrm{2}!+\mathrm{3}!+\mathrm{4}!+\mathrm{5}!+....+\mathrm{100}! \\ $$

Question Number 117006    Answers: 2   Comments: 1

∫_0 ^(100π) ∣sinx∣ dx

$$\int_{\mathrm{0}} ^{\mathrm{100}\pi} \mid{sinx}\mid\:{dx} \\ $$

Question Number 117002    Answers: 1   Comments: 0

∫_0 ^(nπ+v) ∣sinx∣ dx

$$\int_{\mathrm{0}} ^{{n}\pi+{v}} \mid{sinx}\mid\:{dx} \\ $$

Question Number 116999    Answers: 3   Comments: 0

∫(dx/((a+bcosx)^2 ))

$$\int\frac{{dx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$

Question Number 116998    Answers: 2   Comments: 2

∫_((−π)/2) ^(π/2) ((sin^2 x)/(1+2^x ))dx

$$\int_{\frac{−\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sin}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$

Question Number 116997    Answers: 1   Comments: 0

  Pg 1012      Pg 1013      Pg 1014      Pg 1015      Pg 1016      Pg 1017      Pg 1018      Pg 1019      Pg 1020      Pg 1021   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com