Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1013

Question Number 117555    Answers: 2   Comments: 0

Alternative forms { (((√x)+(√y)=((23)/(12)))),((9x+16y=29)) :}

$${Alternative}\:{forms} \\ $$$$\begin{cases}{\sqrt{{x}}+\sqrt{{y}}=\frac{\mathrm{23}}{\mathrm{12}}}\\{\mathrm{9}{x}+\mathrm{16}{y}=\mathrm{29}}\end{cases} \\ $$$$ \\ $$

Question Number 117552    Answers: 2   Comments: 1

please help cos (π/7) . cos ((2π)/7) . cos ((4π)/7) = ?

$$\mathrm{please}\:\mathrm{help} \\ $$$$\mathrm{cos}\:\frac{\pi}{\mathrm{7}}\:.\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{7}}\:.\:\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{7}}\:=\:? \\ $$

Question Number 117551    Answers: 3   Comments: 0

(a)lim_(x→1) ((1/(2(1−(√x)))) −(1/(3(1−(x)^(1/(3 )) )))) =? (b) lim_(x→∞) ((ln (x+(√(1+x^2 ))) −ln (x+(√(x^2 −1)) ))/((ln (((x+1)/(x−1))))^2 ))=?

$$\left(\mathrm{a}\right)\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{x}}\right)}\:−\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{1}−\sqrt[{\mathrm{3}\:}]{\mathrm{x}}\:\right)}\right)\:=? \\ $$$$\left(\mathrm{b}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{ln}\:\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\:−\mathrm{ln}\:\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\right)}{\left(\mathrm{ln}\:\left(\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}−\mathrm{1}}\right)\right)^{\mathrm{2}} }=? \\ $$

Question Number 117545    Answers: 4   Comments: 0

lim_(x→0^+ ) (1+tan^2 ((√x)))^(1/(2x))

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left(\sqrt{\mathrm{x}}\right)\right)^{\frac{\mathrm{1}}{\mathrm{2x}}} \\ $$

Question Number 117531    Answers: 0   Comments: 1

The test result of the 100 job applicants are given in the table determinant (((score 53 61 72 85 94)),(( F 12 22 25 32 9))) If 45% of applicants are accepted, what is the score of a person to be accepted?

$$\mathrm{The}\:\mathrm{test}\:\mathrm{result}\:\mathrm{of}\:\mathrm{the}\:\mathrm{100}\:\mathrm{job}\:\mathrm{applicants} \\ $$$$\mathrm{are}\:\mathrm{given}\:\mathrm{in}\:\mathrm{the}\:\mathrm{table} \\ $$$$\begin{vmatrix}{\mathrm{score}\:\:\:\mathrm{53}\:\:\:\mathrm{61}\:\:\:\:\mathrm{72}\:\:\:\:\mathrm{85}\:\:\:\:\mathrm{94}}\\{\:\:\:\:\mathrm{F}\:\:\:\:\:\:\mathrm{12}\:\:\:\mathrm{22}\:\:\:\:\mathrm{25}\:\:\:\:\mathrm{32}\:\:\:\:\:\:\mathrm{9}}\end{vmatrix} \\ $$$$\mathrm{If}\:\mathrm{45\%}\:\mathrm{of}\:\mathrm{applicants}\:\mathrm{are}\:\mathrm{accepted},\:\mathrm{what} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{score}\:\mathrm{of}\:\mathrm{a}\:\mathrm{person}\:\mathrm{to}\:\mathrm{be}\:\mathrm{accepted}? \\ $$

Question Number 117543    Answers: 2   Comments: 0

If vector a^→ +b^→ +c^→ =0 ∣a^→ ∣=7, ∣b^→ ∣=3 and ∣c^→ ∣=5 find the angle vector a^→ and c^→ ?

$$\mathrm{If}\:\mathrm{vector}\:\overset{\rightarrow} {\mathrm{a}}+\overset{\rightarrow} {\mathrm{b}}+\overset{\rightarrow} {\mathrm{c}}=\mathrm{0} \\ $$$$\mid\overset{\rightarrow} {\mathrm{a}}\mid=\mathrm{7},\:\mid\overset{\rightarrow} {\mathrm{b}}\mid=\mathrm{3}\:\mathrm{and}\:\mid\overset{\rightarrow} {\mathrm{c}}\mid=\mathrm{5} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{vector}\:\overset{\rightarrow} {\mathrm{a}}\:\mathrm{and}\:\overset{\rightarrow} {\mathrm{c}}\:? \\ $$

Question Number 117527    Answers: 1   Comments: 0

∫_( 0) ^( 1) xsec(2x)dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \mathrm{xsec}\left(\mathrm{2x}\right)\mathrm{dx} \\ $$

Question Number 117518    Answers: 1   Comments: 0

f(x+1)+xf(1−x)=x^2 f^(−1) (x) =?

$$\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{xf}\left(\mathrm{1}−\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\:=? \\ $$

Question Number 117511    Answers: 3   Comments: 0

Question Number 117498    Answers: 3   Comments: 0

lim_(x→0) ((sin (x−sin x))/( (√(1+x^3 ))−1)) ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }−\mathrm{1}}\:? \\ $$

Question Number 117500    Answers: 1   Comments: 0

In ΔABC, (a/(cos A))=(b/(cos B))=(c/(cos C)), then ΔABC is A. irregular sides acute-angled triangle B. obtuse-angled triangle C. right-angled triangle D. equilateral triangle E. isoceles triangle

$$\mathrm{In}\:\Delta\mathrm{ABC},\:\frac{{a}}{\mathrm{cos}\:{A}}=\frac{{b}}{\mathrm{cos}\:{B}}=\frac{{c}}{\mathrm{cos}\:{C}}, \\ $$$$\mathrm{then}\:\Delta\mathrm{ABC}\:\mathrm{is}\: \\ $$$${A}.\:\mathrm{irregular}\:\mathrm{sides}\:\mathrm{acute}-\mathrm{angled}\:\mathrm{triangle} \\ $$$${B}.\:\mathrm{obtuse}-\mathrm{angled}\:\mathrm{triangle} \\ $$$${C}.\:\mathrm{right}-\mathrm{angled}\:\mathrm{triangle} \\ $$$${D}.\:\mathrm{equilateral}\:\mathrm{triangle} \\ $$$${E}.\:\mathrm{isoceles}\:\mathrm{triangle} \\ $$

Question Number 117497    Answers: 1   Comments: 0

find the solution set of the equation sec 3θ = sec θ

$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{equation}\:\mathrm{sec}\:\mathrm{3}\theta\:=\:\mathrm{sec}\:\theta \\ $$

Question Number 117496    Answers: 2   Comments: 0

∫ ((sec^2 θ tan^2 θ)/( (√(9−tan^2 θ)))) dθ =?

$$\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \theta\:\mathrm{tan}\:^{\mathrm{2}} \theta}{\:\sqrt{\mathrm{9}−\mathrm{tan}\:^{\mathrm{2}} \theta}}\:\mathrm{d}\theta\:=? \\ $$

Question Number 117493    Answers: 1   Comments: 0

∫_c (3xy−e^(sin x) )dx+(7x+(√(y^4 +1)) )dy C : triangle with vertex (0,0),(0,1) and (1,0)

$$\int_{\mathrm{c}} \left(\mathrm{3xy}−\mathrm{e}^{\mathrm{sin}\:\mathrm{x}} \right)\mathrm{dx}+\left(\mathrm{7x}+\sqrt{\mathrm{y}^{\mathrm{4}} +\mathrm{1}}\:\right)\mathrm{dy} \\ $$$$\mathrm{C}\::\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{vertex}\:\left(\mathrm{0},\mathrm{0}\right),\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\mathrm{and}\:\left(\mathrm{1},\mathrm{0}\right) \\ $$

Question Number 117486    Answers: 1   Comments: 0

Question Number 117482    Answers: 2   Comments: 0

If cosec^(−1) x = cot^(−1) y, show that (d^2 y/dx^2 ) + (1/y^3 ) = 0

$$\:\mathrm{If}\:\:\mathrm{cosec}^{−\mathrm{1}} {x}\:\:=\:\:\mathrm{cot}^{−\mathrm{1}} {y},\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\:+\:\:\frac{\mathrm{1}}{{y}^{\mathrm{3}} }\:\:=\:\:\mathrm{0} \\ $$

Question Number 117481    Answers: 2   Comments: 0

Question Number 117480    Answers: 1   Comments: 1

Question Number 117475    Answers: 1   Comments: 0

(6/5).((24)/(23)).((54)/(53)).((96)/(95)).((150)/(149)).((216)/(215)).((294)/(293))....

$$\frac{\mathrm{6}}{\mathrm{5}}.\frac{\mathrm{24}}{\mathrm{23}}.\frac{\mathrm{54}}{\mathrm{53}}.\frac{\mathrm{96}}{\mathrm{95}}.\frac{\mathrm{150}}{\mathrm{149}}.\frac{\mathrm{216}}{\mathrm{215}}.\frac{\mathrm{294}}{\mathrm{293}}.... \\ $$

Question Number 117470    Answers: 3   Comments: 5

(d/dx)sin^(−1) (((2x)/(1+x^2 ))) atx=1

$$\frac{{d}}{{dx}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:{atx}=\mathrm{1} \\ $$

Question Number 117463    Answers: 0   Comments: 2

Question Number 117460    Answers: 0   Comments: 2

((2(√2))/(9801))Σ_(n=1) ^∞ (((4n)!(1103+26390n))/((n!)^4 396^(4n) ))=(1/π) (Prove that)

$$\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9801}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{4}{n}\right)!\left(\mathrm{1103}+\mathrm{26390}{n}\right)}{\left({n}!\right)^{\mathrm{4}} \mathrm{396}^{\mathrm{4}{n}} }=\frac{\mathrm{1}}{\pi}\:\:\:\left({Prove}\:{that}\right) \\ $$

Question Number 117458    Answers: 1   Comments: 0

(4/3).((16)/(15)).((36)/(35)).((64)/(63)).((100)/(99)).((144)/(143)).((196)/(195)).((256)/(255)).((324)/(323))......∞

$$\frac{\mathrm{4}}{\mathrm{3}}.\frac{\mathrm{16}}{\mathrm{15}}.\frac{\mathrm{36}}{\mathrm{35}}.\frac{\mathrm{64}}{\mathrm{63}}.\frac{\mathrm{100}}{\mathrm{99}}.\frac{\mathrm{144}}{\mathrm{143}}.\frac{\mathrm{196}}{\mathrm{195}}.\frac{\mathrm{256}}{\mathrm{255}}.\frac{\mathrm{324}}{\mathrm{323}}......\infty \\ $$

Question Number 117446    Answers: 2   Comments: 0

Evaluate ∫((3x^2 −5)/(x^4 +6x^2 +25))dx

$$\mathrm{Evaluate}\:\int\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{5}}{{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}\mathrm{d}{x} \\ $$

Question Number 117439    Answers: 1   Comments: 0

Question Number 117438    Answers: 4   Comments: 0

∫_(−∞) ^( ∞) cos((1/2)πx^2 )dx

$$ \\ $$$$\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi{x}^{\mathrm{2}} \right){dx}\:\:\:\:\: \\ $$$$ \\ $$

  Pg 1008      Pg 1009      Pg 1010      Pg 1011      Pg 1012      Pg 1013      Pg 1014      Pg 1015      Pg 1016      Pg 1017   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com