Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1010

Question Number 115935    Answers: 0   Comments: 0

Question Number 115934    Answers: 0   Comments: 0

Question Number 115916    Answers: 1   Comments: 0

Question Number 115910    Answers: 0   Comments: 1

let x be a posative real number prove that Σ_(n=1) ^∞ (((n−1)!)/((x+1)....(x+n)))=(1/x)

$${let}\:{x}\:{be}\:{a}\:{posative}\:{real}\:{number} \\ $$$${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({n}−\mathrm{1}\right)!}{\left({x}+\mathrm{1}\right)....\left({x}+{n}\right)}=\frac{\mathrm{1}}{{x}} \\ $$

Question Number 115909    Answers: 1   Comments: 0

solve the system of equations x+((3x−y)/(x^2 +y^2 ))=3 , y−((x+3y)/(x^2 +y^2 ))=0

$${solve}\:{the}\:{system}\:{of}\:{equations} \\ $$$${x}+\frac{\mathrm{3}{x}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{3}\:,\:{y}−\frac{{x}+\mathrm{3}{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{0} \\ $$

Question Number 115908    Answers: 1   Comments: 2

what is the cofficient of x^2 (1+x)(1+2x)(1+4x)......(1+2^n x)

$${what}\:{is}\:{the}\:{cofficient}\:{of}\:{x}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)\left(\mathrm{1}+\mathrm{4}{x}\right)......\left(\mathrm{1}+\mathrm{2}^{{n}} {x}\right) \\ $$

Question Number 115906    Answers: 1   Comments: 0

find all pairs of integers (x,y) such that x^3 +y^3 =(x+y)^2

$${find}\:{all}\:{pairs}\:{of}\:{integers}\:\left({x},{y}\right)\:{such}\:{that} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\left({x}+{y}\right)^{\mathrm{2}} \\ $$

Question Number 115902    Answers: 0   Comments: 0

The secret number is made from the numbers 1,2,2,3,3,4,5. Many secret numbers can be created if the same number is not adjacent except in the first two place is _ (a)1142 (b) 1212 (c) 1246 (d) 1248 (e) 1250

$${The}\:{secret}\:{number}\:{is}\:{made}\:{from} \\ $$$${the}\:{numbers}\:\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{4},\mathrm{5}.\: \\ $$$${Many}\:{secret}\:{numbers}\:{can}\:{be}\:{created} \\ $$$${if}\:{the}\:{same}\:{number}\:{is}\:{not}\:{adjacent} \\ $$$${except}\:{in}\:{the}\:{first}\:{two}\:{place}\:{is}\:\_ \\ $$$$\left({a}\right)\mathrm{1142}\:\:\:\:\left({b}\right)\:\mathrm{1212}\:\:\:\:\left({c}\right)\:\mathrm{1246} \\ $$$$\left({d}\right)\:\mathrm{1248}\:\:\:\left({e}\right)\:\mathrm{1250} \\ $$

Question Number 115898    Answers: 1   Comments: 0

If Mike has 10 blocks numbered from 1 through to 10 . What is the probability that he didn′t choose a block number 7?

$${If}\:{Mike}\:{has}\:\mathrm{10}\:{blocks}\:{numbered} \\ $$$${from}\:\mathrm{1}\:{through}\:{to}\:\mathrm{10}\:.\:{What}\:{is}\:{the} \\ $$$${probability}\:{that}\:{he}\:{didn}'{t}\:{choose} \\ $$$${a}\:{block}\:{number}\:\mathrm{7}? \\ $$

Question Number 115897    Answers: 2   Comments: 1

Given a_n = (√(1 + (1 − (1/n))^2 )) + (√(1 + (1 + (1/n))^2 )) The value of Σ_(n=1) ^(2015) ((4/a_n )) is ...

$$\mathrm{Given} \\ $$$${a}_{{n}} \:=\:\sqrt{\mathrm{1}\:+\:\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}\:+\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{2015}} {\sum}}\left(\frac{\mathrm{4}}{{a}_{{n}} }\right)\:\mathrm{is}\:... \\ $$

Question Number 115896    Answers: 2   Comments: 0

∫ ((sec^4 x dx)/( (√(tan^3 x)))) =?

$$\:\int\:\frac{\mathrm{sec}\:^{\mathrm{4}} {x}\:{dx}}{\:\sqrt{\mathrm{tan}\:^{\mathrm{3}} {x}}}\:=? \\ $$

Question Number 115892    Answers: 1   Comments: 0

Question Number 115891    Answers: 0   Comments: 0

sec^2 10°+cosec^2 20°+cosec^2 40°−sec^2 45°

$$\mathrm{sec}\:^{\mathrm{2}} \mathrm{10}°+\mathrm{cosec}\:^{\mathrm{2}} \mathrm{20}°+\mathrm{cosec}\:^{\mathrm{2}} \mathrm{40}°−\mathrm{sec}\:^{\mathrm{2}} \mathrm{45}° \\ $$

Question Number 115889    Answers: 1   Comments: 0

lim_(x→0) ((((1+cos 2x))^(1/(3 )) −(2)^(1/(3 )) )/(x^2 .sin 3x))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}\:}]{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}}\:−\sqrt[{\mathrm{3}\:}]{\mathrm{2}}}{{x}^{\mathrm{2}} .\mathrm{sin}\:\mathrm{3}{x}} \\ $$

Question Number 115888    Answers: 0   Comments: 1

2x+3y+4z=1 ⇒min((1/x)+(1/y)+(1/z))

$$\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{4}{z}=\mathrm{1}\:\:\Rightarrow{min}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right) \\ $$

Question Number 115885    Answers: 1   Comments: 0

given f((1/x))+f(1−x)=x , x≠0 find 2f(x) (a) ((1+x^2 +x^3 )/(x^2 −x)) (b) ((x^2 −1−x^3 )/(x^2 −x)) (c) ((x^2 −x^3 )/(x^2 +x)) (d) ((x−x^3 )/(x^2 −x)) (e) ((1+x^2 −x^3 )/(x^2 +x))

$${given}\:{f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x}\:,\:{x}\neq\mathrm{0} \\ $$$${find}\:\mathrm{2}{f}\left({x}\right) \\ $$$$\left({a}\right)\:\frac{\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} −{x}} \\ $$$$\left({b}\right)\:\frac{{x}^{\mathrm{2}} −\mathrm{1}−{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} −{x}} \\ $$$$\left({c}\right)\:\frac{{x}^{\mathrm{2}} −{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +{x}} \\ $$$$\left({d}\right)\:\frac{{x}−{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} −{x}} \\ $$$$\left({e}\right)\:\frac{\mathrm{1}+{x}^{\mathrm{2}} −{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} +{x}} \\ $$

Question Number 115884    Answers: 0   Comments: 0

Question Number 115882    Answers: 1   Comments: 0

Question Number 115876    Answers: 1   Comments: 0

Prove that f(x)=ax^2 +bx+c has no real roots if and only if a∙[f(−(b/(2a)))]>0

$$\mathrm{Prove}\:\mathrm{that}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}\:\mathrm{has}\: \\ $$$$\mathrm{no}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:{a}\centerdot\left[{f}\left(−\frac{{b}}{\mathrm{2}{a}}\right)\right]>\mathrm{0} \\ $$

Question Number 115869    Answers: 0   Comments: 0

(dy/dx) +2y = x^3 .e^(−2y)

$$\:\frac{{dy}}{{dx}}\:+\mathrm{2}{y}\:=\:{x}^{\mathrm{3}} .{e}^{−\mathrm{2}{y}} \\ $$

Question Number 115859    Answers: 2   Comments: 0

Determine, in simplest form the smallest of the three numbers x, y and z which satisfy the system { ((log _9 (x)+log _9 (y)+log _3 (z)=2)),((log _(16) (x)+log _4 (y)+log _(16) (z)=1)),((log _5 (x)+log _(25) (y)+log _(25) (z)=0)) :}

$${Determine},\:{in}\:{simplest}\:{form}\:{the} \\ $$$${smallest}\:{of}\:{the}\:{three}\:{numbers}\:{x}, \\ $$$${y}\:{and}\:{z}\:{which}\:{satisfy}\:{the}\:{system} \\ $$$$\begin{cases}{\mathrm{log}\:_{\mathrm{9}} \left({x}\right)+\mathrm{log}\:_{\mathrm{9}} \left({y}\right)+\mathrm{log}\:_{\mathrm{3}} \left({z}\right)=\mathrm{2}}\\{\mathrm{log}\:_{\mathrm{16}} \left({x}\right)+\mathrm{log}\:_{\mathrm{4}} \left({y}\right)+\mathrm{log}\:_{\mathrm{16}} \left({z}\right)=\mathrm{1}}\\{\mathrm{log}\:_{\mathrm{5}} \left({x}\right)+\mathrm{log}\:_{\mathrm{25}} \left({y}\right)+\mathrm{log}\:_{\mathrm{25}} \left({z}\right)=\mathrm{0}}\end{cases} \\ $$

Question Number 115858    Answers: 2   Comments: 0

What are all ordered pairs of real number (x,y) for which 5^(y−x) (x+y) = 1 and (x+y)^(x−y) = 5

$${What}\:{are}\:{all}\:{ordered}\:{pairs}\:{of}\:{real} \\ $$$${number}\:\left({x},{y}\right)\:{for}\:{which}\: \\ $$$$\mathrm{5}^{{y}−{x}} \:\left({x}+{y}\right)\:=\:\mathrm{1}\:{and}\:\left({x}+{y}\right)^{{x}−{y}} \:=\:\mathrm{5} \\ $$

Question Number 115857    Answers: 1   Comments: 0

What are all real values of p for which the inequality −3<((x^2 +px−2)/(x^2 −x+1))<2 is satisfied by all real values of x

$${What}\:{are}\:{all}\:{real}\:{values}\:{of}\:{p}\:{for} \\ $$$${which}\:{the}\:{inequality}\: \\ $$$$−\mathrm{3}<\frac{{x}^{\mathrm{2}} +{px}−\mathrm{2}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}<\mathrm{2}\:{is}\:{satisfied}\: \\ $$$${by}\:{all}\:{real}\:{values}\:{of}\:{x} \\ $$

Question Number 115856    Answers: 2   Comments: 0

Which is greater P = (1983)(1+2+3+...+1984) , or Q = (1984)(1+2+3+...+1983)

$${Which}\:{is}\:{greater} \\ $$$${P}\:=\:\left(\mathrm{1983}\right)\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{1984}\right)\:,\:{or} \\ $$$${Q}\:=\:\left(\mathrm{1984}\right)\left(\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{1983}\right) \\ $$

Question Number 115854    Answers: 1   Comments: 0

If f(2x)= x^2 +4x+1 , what all values of t for which f((t/2)) = −((11)/4) where f represents a function

$${If}\:{f}\left(\mathrm{2}{x}\right)=\:{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\:,\:{what}\:{all} \\ $$$${values}\:{of}\:{t}\:{for}\:{which}\:{f}\left(\frac{{t}}{\mathrm{2}}\right)\:=\:−\frac{\mathrm{11}}{\mathrm{4}} \\ $$$${where}\:{f}\:{represents}\:{a}\:{function} \\ $$

Question Number 115871    Answers: 1   Comments: 1

  Pg 1005      Pg 1006      Pg 1007      Pg 1008      Pg 1009      Pg 1010      Pg 1011      Pg 1012      Pg 1013      Pg 1014   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com