Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1010
Question Number 118545 Answers: 1 Comments: 1
Question Number 118541 Answers: 3 Comments: 1
$$\:\:\:\int\:\mathrm{tan}\:\left({x}\right).\mathrm{tan}\:\left(\mathrm{2}{x}\right).\mathrm{tan}\:\left(\mathrm{3}{x}\right)\:{dx}\:=\:? \\ $$
Question Number 118546 Answers: 3 Comments: 7
$${nilai}\:{maksimum}?{fungsi}\:{y}=\:\mathrm{1}+\:{sin}\:\mathrm{2}{x}\:+{cos}\:\mathrm{2}{x} \\ $$
Question Number 118513 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:\:+\:\:\mathrm{f}\left(\frac{\mathrm{x}\:\:−\:\:\mathrm{1}}{\mathrm{x}}\right)\:\:\:=\:\:\:\mathrm{1}\:\:+\:\:\mathrm{x},\:\:\:\:\:\:\:\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{2}\right). \\ $$
Question Number 121164 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathrm{ADVANCED}\:\:\mathrm{CALCULUS}... \\ $$$$\:\:\:\:\mathrm{If}\:\:\:\int_{\mathrm{0}} ^{\:\infty} {ln}\left({x}\right){sin}\left({x}^{\mathrm{2}} \right){dx}\:=\lambda\int_{\mathrm{0}} ^{\:\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}\: \\ $$$$\:\:\:\:\:\:\:\:{then}\:\:{find}\:\:{the}\:\:{value}\:{of}\:''\lambda''\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathrm{m}.\mathrm{n}.\mathrm{july}.\mathrm{1970}... \\ $$
Question Number 118506 Answers: 2 Comments: 0
Question Number 118511 Answers: 3 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{positive}\:\mathrm{integers}\:{x}\:\mathrm{satisfy} \\ $$$$\mathrm{log}_{\frac{{x}}{\mathrm{8}}} \frac{{x}^{\mathrm{2}} }{\mathrm{4}}<\mathrm{7}+\mathrm{log}_{\mathrm{2}} \frac{\mathrm{8}}{{x}} \\ $$
Question Number 118491 Answers: 1 Comments: 0
$$ \\ $$$$...\:\blacklozenge\mathrm{Advanced}\:\mathrm{Calculus}\blacklozenge... \\ $$$$ \\ $$$$\mathrm{Evaluate}:: \\ $$$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{sec}\theta}{\:\sqrt{\mathrm{4tan}^{\mathrm{2}} \theta+\mathrm{5}}}\mathrm{d}\theta \\ $$$$ \\ $$$$...\spadesuit\boldsymbol{\mathrm{L}\phi\mathrm{rD}}\:\boldsymbol{\varnothing\mathrm{sE}}\spadesuit... \\ $$$$ \\ $$$$...\clubsuit\boldsymbol{\mathrm{GooD}}\:\boldsymbol{\mathrm{LucK}}\clubsuit \\ $$
Question Number 118489 Answers: 2 Comments: 0
$$\left(\mathrm{1}\right)\:{solve}\:{the}\:{equation}\:\frac{{x}−\mathrm{49}}{\mathrm{50}}\:+\:\frac{{x}−\mathrm{50}}{\mathrm{49}}\:=\:\frac{\mathrm{49}}{{x}−\mathrm{50}}\:+\:\frac{\mathrm{50}}{{x}−\mathrm{49}} \\ $$$$\left(\mathrm{2}\right)\:{How}\:{many}\:{numbers}\:{from}\:\mathrm{12}\:{to}\:\mathrm{12345}\: \\ $$$${inclusive}\:{have}\:{digits}\:{which}\:{are}\: \\ $$$${consecutive}\:{an}\:{in}\:{increasing}\:{order}, \\ $$$${reading}\:{from}\:{left}\:{to}\:{right}\:?\: \\ $$
Question Number 118488 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{Conjecture}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{formula}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{infinite}} \\ $$$$\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{series}}. \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{15}}+\frac{\mathrm{1}}{\mathrm{35}}+\:\centerdot\:\centerdot\:\centerdot\:\frac{\mathrm{1}}{\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)} \\ $$$$\boldsymbol{\mathrm{And}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{formula}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{Induction}}. \\ $$
Question Number 118482 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{a}\:\mathrm{focal}\:\:\mathrm{chord}\:\mathrm{of} \\ $$$$\mathrm{parabola}\:\mathrm{meet}\:\mathrm{the} \\ $$$$\mathrm{tangent}\:\mathrm{at}\:\mathrm{the}\:\:\mathrm{vertex} \\ $$$$\mathrm{in}\:\mathrm{C},\mathrm{D}.\mathrm{prove}\:\mathrm{that}\:\mathrm{CD} \\ $$$$\mathrm{substends}\:\mathrm{a}\:\mathrm{right}\:\mathrm{angle} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{focus} \\ $$
Question Number 118478 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{2x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{3x}\right)\mathrm{dx} \\ $$
Question Number 118476 Answers: 0 Comments: 0
$$\mathrm{find}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{1}+\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 118475 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{2}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{9}}\mathrm{dx} \\ $$
Question Number 118466 Answers: 2 Comments: 0
$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tan}^{−\mathrm{1}} {x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$
Question Number 118455 Answers: 6 Comments: 1
Question Number 118452 Answers: 2 Comments: 3
$$\boldsymbol{{Question}}: \\ $$$$\mathrm{2}^{\boldsymbol{{x}}} +\mathrm{2}^{\mathrm{2}\boldsymbol{{x}}+\mathrm{1}} +\mathrm{1}=\boldsymbol{{y}}^{\mathrm{2}} \:\:\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{equation}}\:\boldsymbol{{if}} \\ $$$$\boldsymbol{{x}},\boldsymbol{{y}\epsilon}\mathbb{Z} \\ $$
Question Number 118448 Answers: 3 Comments: 0
Question Number 118442 Answers: 1 Comments: 0
$$\:\:\mathrm{sin}\:{x}.{y}''\:+\mathrm{2cos}\:{x}.\:{y}'−{y}\:\mathrm{sin}\:{x}\:=\:{e}^{{x}} \\ $$$$ \\ $$
Question Number 118485 Answers: 2 Comments: 0
$${If}\:{partial}\:{fraction}\: \\ $$$$\frac{\mathrm{10}{x}^{\mathrm{2}} +{px}+\mathrm{18}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} +{x}−\mathrm{2}}\:{can}\:{be}\:{written} \\ $$$${as}\:\frac{{q}}{\mathrm{2}{x}−\mathrm{1}}\:+\:\frac{\mathrm{4}}{{x}+\mathrm{2}}\:+\:\frac{{r}}{{x}+\mathrm{1}}.\:{Then}\:{find}\:{the} \\ $$$${value}\:{of}\:{p}−{q}+\mathrm{2}{r}\:. \\ $$
Question Number 118438 Answers: 0 Comments: 0
$$\:\:\:\:\:\:...\:\:{nice}\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${lim}_{{s}\rightarrow\mathrm{0}} \frac{\zeta\left(\:\mathrm{1}+{s}\:\right)+\zeta\left(\mathrm{1}−{s}\right)}{\mathrm{2}}\:\overset{?} {=}\gamma \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\gamma:\:{euler}−{mascheroni}\:{constant} \\ $$$$\:\:\:{m}.{n}.\mathrm{1970}. \\ $$$$ \\ $$
Question Number 118436 Answers: 4 Comments: 0
$$\:\:\int\:\mathrm{cos}\:^{\mathrm{4}} \left({x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{2}{x}\right)\:{dx}\: \\ $$
Question Number 118435 Answers: 2 Comments: 0
$${If}\:\mathrm{4}\:\sqrt[{\mathrm{4}\:}]{{x}^{\mathrm{9}} }\:−\mathrm{9}\:\sqrt[{\mathrm{8}\:}]{{x}^{\mathrm{9}} }\:+\:\mathrm{4}\:=\:\mathrm{0}\:,\:{then}\: \\ $$$$\:\sqrt[{\mathrm{4}\:}]{{x}^{\mathrm{9}} }\:+\:\sqrt[{\mathrm{4}\:}]{{x}^{−\mathrm{9}} }\:=? \\ $$
Question Number 118427 Answers: 7 Comments: 0
$$\:\:\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt[{{x}^{\mathrm{2}} \:}]{\mathrm{cos}\:{x}}\: \\ $$$$\:\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{cos}\:\pi{x}}{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}} \\ $$
Question Number 118419 Answers: 4 Comments: 1
$$\:\:\:\int\:\frac{\mathrm{2sin}\:\mathrm{2}{x}}{\mathrm{4cos}\:{x}+\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\: \\ $$
Question Number 118411 Answers: 1 Comments: 0
$${Write}\:{the}\:{vector}\:{v}=\left(\mathrm{1},−\mathrm{2},\mathrm{3}\right)\:{as}\:{a} \\ $$$${linear}\:{combination}\:{of}\:{vectors} \\ $$$${u}_{\mathrm{1}} =\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:,{u}_{\mathrm{2}} =\left(\mathrm{1},\mathrm{2},\mathrm{3}\right)\:{and}\:{u}_{\mathrm{3}} =\left(\mathrm{2},−\mathrm{1},\mathrm{1}\right) \\ $$
Pg 1005 Pg 1006 Pg 1007 Pg 1008 Pg 1009 Pg 1010 Pg 1011 Pg 1012 Pg 1013 Pg 1014
Terms of Service
Privacy Policy
Contact: info@tinkutara.com