If f(x) is a polynomial function satisfying the relation
f(x)+f((1/x))=f(x)f((1/x))
for all 0≠x∈R and if f(2)=9, then f(6) is
(A) 216 (B) 217 (C) 126 (D) 127
Let f : [1,∞)→[2,∞) be the function defined by
f(x)=x+(1/x)
If g : [2,∞)→[1,∞), is a function such that (g○f)(x)=x
for all x≥1. Show that g(t)=((t+(√(t^2 −4)))/2)