Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1006
Question Number 112962 Answers: 4 Comments: 3
Question Number 112994 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{n}\:\mathrm{is}\:\mathrm{any}\:\mathrm{even}\:\mathrm{number},\:\mathrm{then} \\ $$$$\mathrm{n}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{20}\right)\:\mathrm{is}\:\mathrm{always}\:\mathrm{divisible}\:\mathrm{by}? \\ $$
Question Number 112958 Answers: 0 Comments: 3
Question Number 112934 Answers: 1 Comments: 7
$$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{2}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}\:\mathrm{and}\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{biology}\:\mathrm{books}.\:\mathrm{in}\:\mathrm{how}\:\mathrm{many} \\ $$$$\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile}\:\mathrm{the}\:\mathrm{10}\:\mathrm{books} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}. \\ $$
Question Number 112917 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\mathrm{csc}^{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{x}}\right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}^{\mathrm{2}} \right] \\ $$
Question Number 112908 Answers: 2 Comments: 1
$${if}\:{the}\:{angle}\:{between}\left(\:{kx}+\mathrm{5}{y}=\mathrm{1}\:,\:{kx}−\mathrm{2}{y}=\mathrm{2}\right){equal}\:\mathrm{60}^{°} {then}\:{k}=? \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$
Question Number 112906 Answers: 0 Comments: 4
$${prove}\:{that}\:\left({B}^{−\mathrm{1}} \right)\left({A}^{−\mathrm{1}} \right)=\left({AB}\right)^{−\mathrm{1}} \:{if}\:{A}=\left(\mathrm{34},\mathrm{12}\right),{B}=\left(\mathrm{12},−\mathrm{13}\right) \\ $$$${please}\:{sir}\:{help}\:{me} \\ $$
Question Number 112904 Answers: 1 Comments: 0
$${solve}\:{the}\:{equation}\:{y}+{x}=\mathrm{3},\:\mathrm{2}{y}+{x}=\mathrm{5}\:{by}\:{ussing}\:{matrixis}\:{method} \\ $$$${help}\:{me}\:{sir}\:{please}\:? \\ $$
Question Number 112902 Answers: 3 Comments: 0
$${find}\:{the}\:{angle}\:{between}\:\mathrm{3}{y}+\frac{{x}}{\:\sqrt{\mathrm{3}}}=\mathrm{1}\:,\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{y}−{x}=\mathrm{2} \\ $$$${help}\:{me}\:{sir} \\ $$
Question Number 112900 Answers: 1 Comments: 1
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} −\mathrm{2}}\right)^{\mathrm{x}} ? \\ $$
Question Number 112885 Answers: 0 Comments: 9
Question Number 112882 Answers: 3 Comments: 2
Question Number 112881 Answers: 1 Comments: 0
Question Number 112874 Answers: 1 Comments: 2
$$\mathrm{y}=\mathrm{sec}\left\{\mathrm{sec}\left[\mathrm{tan}\left(\mathrm{tan}\left(\mathrm{sin}\:\mathrm{4x}^{\mathrm{2}} \right)\right)\right]\right\} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:? \\ $$
Question Number 112867 Answers: 2 Comments: 2
$${solve} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{H}_{{n}} }{{n}^{\mathrm{2}} \mathrm{2}^{{n}} } \\ $$
Question Number 112866 Answers: 6 Comments: 0
Question Number 112863 Answers: 4 Comments: 1
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2x}+\mathrm{3}}{\mathrm{2x}−\mathrm{1}}\right)^{\mathrm{4x}+\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{3x}+\mathrm{1}}{\mathrm{3x}−\mathrm{1}}\right)^{\mathrm{4x}−\mathrm{2}} \\ $$
Question Number 112855 Answers: 3 Comments: 0
$$ \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}{x}+\mathrm{4}}−\sqrt{\mathrm{3}{x}+\mathrm{9}}}{\mathrm{4}{x}}=... \\ $$$$ \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}−\mathrm{4}{x}+\mathrm{3}{x}^{\mathrm{2}} }−\sqrt{\mathrm{4}−\mathrm{3}{x}+\mathrm{3}{x}^{\mathrm{2}} }}{\mathrm{2}{x}}=... \\ $$$$ \\ $$
Question Number 112854 Answers: 0 Comments: 3
$$\:\:\:\:\:\:\:\:\:....\:{mathematical}\:\:{analysis}....\:\: \\ $$$$ \\ $$$$\:\:\:\:{please}\:\:{solve}:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\Omega\:=\int_{\mathrm{0}\:} ^{\:\infty} \frac{{x}^{\frac{\mathrm{4}}{\mathrm{5}}} \:−{x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right){ln}\left({x}\right)}\:{dx}\:=??? \\ $$$$ \\ $$$$\:\:...\:{m}.{n}.{july}\:\mathrm{1970}...#\: \\ $$$$ \\ $$$$ \\ $$
Question Number 112851 Answers: 2 Comments: 0
$$\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{a}}{\mathrm{x}}\:−\:\mathrm{cot}\:\frac{\mathrm{x}}{\mathrm{a}}\right)\:? \\ $$
Question Number 112848 Answers: 0 Comments: 1
Question Number 112847 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:? \\ $$
Question Number 112844 Answers: 2 Comments: 1
$$\:\mathrm{Find}\:\mathrm{general}\:\mathrm{solution} \\ $$$$\left(\mathrm{1}\right)\left(\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{y}}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{cos}\:\mathrm{x} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{X}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{11}}\right)+\mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{24}}{\mathrm{7}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\:\:\mathrm{find}\:\mathrm{X}\:. \\ $$
Question Number 112840 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{y}''−\mathrm{y}'+\mathrm{e}^{\mathrm{2x}} \mathrm{y}\:=\:\mathrm{0} \\ $$
Question Number 112838 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solutions} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mid\mathrm{2x}+\mathrm{8}\mid^{\mathrm{2}} −\mid\mathrm{9x}+\mathrm{36}\mid−\mathrm{9}=\mathrm{0} \\ $$
Question Number 112818 Answers: 0 Comments: 3
Pg 1001 Pg 1002 Pg 1003 Pg 1004 Pg 1005 Pg 1006 Pg 1007 Pg 1008 Pg 1009 Pg 1010
Terms of Service
Privacy Policy
Contact: info@tinkutara.com